首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The seismic damage evaluated through Nonlinear Time-History Analyses is significantly affected by the response quantity chosen to represent the seismic responses. Starting from the theory of tolerance regions, a generic upper limit of the seismic responses is proposed. The method is applied to a reinforced concrete structure subjected to different record combinations. For each considered damage index and record combination, the upper limit damage is compared with the average value suggested by seismic codes. The proposed method yields a higher seismic damage than the average response and an increase in the damage indices as the number of records decreases.  相似文献   

2.
The effects of masonry infills on the global seismic response of reinforced concrete structures is studied through numerical analyses. Response spectra of elastic SDOF frames with nonlinear infills show that, despite their apparent stiffening effect on the system, infills reduce spectral displacements and forces mainly through their high damping in the first large post-cracking excursion. Parametric analyses on a large variety of multi-storey infilled reinforced concrete structures show that, due to the hysteretic energy dissipation in the infills, if the infilling is uniform in all storeys, drifts and structural damage are dramatically reduced, without an increase in the seismic force demands. Soft-storey effects due to the absence of infills in the bottom storey are not so important for seismic motions at the design intensity, but may be very large at higher motion intensities, if the ultimate strength of the infills amounts to a large percentage of the building weight. The Eurocode 8 provisions for designing the weak storey elements against the effects of infill irregularity are found to be quite effective, in general, for the columns, but unnecessary and often counterproductive for the beams.  相似文献   

3.
Concrete shear walls are widely employed in buildings as a main resistance system against lateral loads. Early identification of seismic damage to concrete shear walls is vital for deciding post-earthquake occupancy in these structures. In this article, a method based on artificial neural networks for real-time identification of seismic damage to concrete shear walls was proposed. Inter-story drifts and plastic hinge rotation of concrete walls were used as the inputs and outputs of a MLP neural network. Modal Pushover Analysis was employed to prepare well-distributed data sets for training the neural network. The proposed method was applied to a five-story concrete shear wall building. The results from the network were compared with those obtained from Nonlinear Time History Analysis. It was observed that the trained neural network successfully detected damage to concrete shear walls and accurately estimated the severity of seismic-induced damage.  相似文献   

4.
In this paper, results of an analytical study on the non-linear dynamic behaviour of reinforced concrete buildings designed according to modern European Codes (Eurocode 8) are presented. An investigation of the seismic performance of 8-storey regular and irregular buildings is carried out. The study is aimed at evaluating their seismic structural performance with a focus on the influence of several design parameters used in the code affecting non-linear response. Towards this aim, use is made of a suite of spectrum-compatible artificial accelerograms. It is concluded that EC8 provisions, although correct in principle, are conservative, at least for the structures and input motions considered, in view of the very low predicted damage levels observed in most cases.  相似文献   

5.
Different relations have been represented for the local damage index of structures to date, while the same application is defined for them as can be an indicator of relative sustained damage by the components or stories. Since different force-resisting systems subjected to the ground motions can behave differently, some well-known story damage indices are evaluated for the reinforced concrete frames with regards to their operation during nonlinear time history analysis. Two general concepts of story damage determination are selected for this purpose. SDI is a modal-based story damage index, which is calculated by the modal frequency and mode shapes. The behavior of this local index is evaluated during the seismic excitations. The results were compared with Park-Ang and modal flexibility story damage indices. Based on analytical study on seismic responses of some RC frames subjected to a suit of earthquake records a new story damage index has been developed. It has been derived from a simple global damage equation (softening index) using a normalized ratio of inelastic story shear to its drift. A procedure is recommended to use the proposed equation without any requirement to perform nonlinear dynamic analysis, which can significantly reduce the computational efforts. Distribution of the new represented SDI along the structural height shows a good agreement with damaged state of the RC frames after seismic excitations.  相似文献   

6.
The objective of the present work is to present a methodology for the identification of relevant limit states, namely ultimate limit states leading to structural collapse, and for the assessment of design q factors (or force reduction factors) for reinforced concrete structures under seismic loading. It follows a probabilistic approach based on damage indices. The utilised nonlinear models, as well as the damage indices, which are those proposed by Miner and by Park and Ang, are.described. The methodology of analysis is presented emphasising its probabilistic characteristics. Some parametric studies are carried out, including the analysis of one regular plane frame reinforced concrete structure, designed for three different ductility classes (those proposed by Eurocode 8) and assuming different q factors in design. Results show how the chosen damage indices can be used as parameters to characterise the structural response and how the proposed methodology can be used to assess the design q factors. It is also shown that, for moderate seismic input, the three ductility classes are essentially equivalent in terms of maximum damage indices, but that for higher seismic levels the differences are evident, justifying the use of different q factors.  相似文献   

7.
The feasibility of using output-only model-free wavelet-based techniques for damage detection in reinforced concrete structures subjected to seismic loads is explored through the analysis of the results of a full scale shake table test of a reinforced concrete bridge column recently performed at the NEES Large High Performance Outdoor Shake Table. The evaluated approaches are based solely in the analysis of the acceleration time histories recorded in the structure. The viability of using numerical models to validate this type of damage detection methodologies is also evaluated. Wavelet analyses were capable of identifying the rebar fracture episodes and partially identified the frequency shifts in the structure as the inelastic demand increased. It was also found that, depending on the methodology employed, the use of numerical models to validate damage detection techniques can oversimplify the actual problem and/or induce spurious irregularities.  相似文献   

8.
Structures designed according to earlier codes with inadequate seismic provisions have not performed satisfactorily during recent earthquakes. The seismic performance of an existing three-storey reinforced concrete building designed according to the 1963 ACI 313-63 is evaluated and compared to the performance of a similar frame designed according to current code provisions. Non-linear static and dynamic analyses of the reinforced concrete frames are conducted. In this study, a probabilistic approach is adopted where a large number of artificially generated ground motion records is used as input motion to the structure. The results of the analysis indicated the probability of various degrees of damage to be expected when the existing frame is subjected to different ground motion levels. This information is useful in the design of the required rehabilitation scheme to provide an identified level of protection.  相似文献   

9.
The seismic response of bridges is affected by a number of modeling considerations, such as pier embedment, buried pile caps, seat-type abutments, pounding, bond slip and architecturally flared part of piers, and loading considerations, such as non-uniform ground excitations and orientation of ground motion components, which are not readily addressed by design codes. This article addresses a methodology for the nonlinear static and dynamic analysis of a tall, long-span, curved, reinforced-concrete bridge, the Mogollon Rim Viaduct. Various modeling scenarios are considered for the bridge components, soil-structure interaction system, and materials, i.e., concrete and reinforcing steel, covering all its geotechnical and structural aspects based on recent advances in bridge engineering. Various analysis methodologies (nonlinear static pushover, time history response to uniform and spatially variable seismic excitations, and incremental dynamic analyses) are performed. For the dynamic analyses, a suite of nine earthquake accelerograms are selected and their characteristics are investigated using seismic intensity parameters. A recently developed approach for the generation of non-uniform seismic excitations, i.e., spatially variable simulations conditioned on the recorded time series, is used. Methods for the evaluation of structural performance are discussed and their limitations addressed. The numerical results of the seismic assessment of the Mogollon Rim Viaduct are presented in the companion article (Part II). The sensitivity of the bridge response to the adopted modeling, loading and analyzing strategies, as well as the correlation between structural damage and seismic intensity parameters are examined in detail.  相似文献   

10.
A statistical procedure, called discriminant analysis, is used to develop a model for the preliminary assessment of the seismic vulnerability of low- to medium-rise (2-7 storey) reinforced concrete buildings. The earthquake damage data compiled in Düzce province after the 12 November 1999 Düzce earthquake formed the damage database. Number of storeys, minimum normalised lateral stiffness index, minimum normalised lateral strength index, normalised redundancy score, soft storey index and overhang ratio are selected as the basic damage inducing variables. Two discriminant functions are derived in terms of these variables considering immediate occupancy and life safety performance levels. In the proposed preliminary seismic vulnerability assessment model, the discri-minant scores obtained from these two discriminant functions are combined in an optimal way and axe used to classify existing buildings as “safe”, “unsafe” and “requires further evaluation”. The optimality criterion imposed into the model is the minimisation of the misclassification rate of damage states causing collapse. The validity of the proposed model is checked by using the seismic damage data associated with recent earthquakes that occurred in Turkey. The consistency between the observed damage distribution and the predictions of the proposed model supports the effectiveness of the proposed model.  相似文献   

11.
This paper presents the experimental investigation of the Fei-Tsui arch dam using the forced vibration test and its seismic response data. A forced vibration test was conducted on Fei-Tsui dam, this study presents the identified dynamic properties of the dam from these test data. For the identification of dam properties from seismic response data, in order to consider the nonuniform excitation of the seismic input and to describe the global behavior of the dam, the multiple input/multiple output discrete-time ARX model with least square estimation is applied to identify the dynamic characteristics of the dam. The system modal frequency, damping ratio and frequency response function are identified from both the forced vibration and seismic response data. To verify the accuracy of the identification result, comparison between discrete-time ARX model and a frequency domain conditioned spectral analysis was made. Finally, the spatial variation of ground motion across the free-field canyon surface is also studied.  相似文献   

12.
Recent damage examples of aged steel bridge infrastructures around the world are so alarming. They intensified the importance of careful evaluation of existing structures for the feasibility of current usage and to ensure public safety. Corrosion and fatigue cracking may be the two most important types of damages in aging structures. Furthermore, recent earthquakes demonstrated potential seismic vulnerability of some types of steel bridges. Corrosion and its effects can trigger the damages caused by earthquakes, and it will be vital to understand the behavior of existing steel bridges which are corroding for decades in future severe seismic events as well. This article comprises the results of nonlinear FEM analysis of many actual corroded plates with different corrosion conditions and proposes a simple and reliable methodology to estimate remaining seismic strength and energy dissipation capacities by measuring only the minimum thickness of a corroded surface, which can be used to make rational decisions about the maintenance management plan of steel infrastructures.  相似文献   

13.
The sequence of earthquakes that has affected Christchurch and Canterbury since September 2010 has caused damage to a great number of buildings of all construction types. Following post-event damage surveys performed between April 2011 and June 2011, an inventory of the stone masonry buildings in Christchurch and surrounding areas was carried out in order to assemble a database containing the characteristic features of the building stock, as a basis for studying the vulnerability factors that might have influenced the seismic performance of the stone masonry building stock during the Canterbury earthquake sequence. The damage suffered by unreinforced stone masonry buildings is reported and different types of observed failures are described using a specific survey procedure currently in use in Italy. The observed performance of seismic retrofit interventions applied to stone masonry buildings is also described, as an understanding of the seismic response of these interventions is of fundamental importance for assessing the utility of such strengthening techniques when applied to unreinforced stone masonry structures.  相似文献   

14.
ABSTRACT

Traditional domes are obtained by double curvature shells, which can be rotationally formed by any curved geometrical plane figure rotating about a central vertical axis. They are self-supported and stabilized by the force of gravity acting on their weight to hold them in compression. However, the behavior of inverted domes is different since the dome is downward and masonry inverted domes and their structural behaviors in the literature received limited attention. This article presents a nonlinear finite element analysis of historical brick masonry inverted domes under static and seismic loads. The brick masonry inverted dome in the tomb of scholar Ahmed-El Cezeri, town of Cizre, Turkey, constructed in 1508 is selected as an application. First, a detailed literature review on the masonry domes is given and the selected inverted dome is described briefly. 3D solid and continuum finite element models of the inverted masonry dome are obtained from the surveys. An isotropic Concrete Damage Plasticity (CDP) material model adjusted to masonry structures with the same tensile strength assumed along the parallel and meridian directions of the inverted dome is considered. The nonlinear static analyses and a parametric study by changing the mechanical properties of the brick unit of the inverted masonry dome are performed under gravity loads. The acceleration records of vertical and horizontal components of May 1, 2003 Bingöl earthquake (Mw = 6.4), Turkey, occurred near the region, are chosen for the nonlinear seismic analyses. Nonlinear step by step seismic analyses of the inverted dome are implemented under the vertical and horizontal components of the earthquake, separately. Static modal and seismic responses of the inverted masonry dome are evaluated using mode shapes, minimum and maximum principal strains and stresses, and damage propagations.  相似文献   

15.
A seismic design procedure for partially concrete-filled box-shaped steel columns is presented in this paper. To determine the ultimate state of such columns, concrete and steel segments are modelled using beam-column elements and a pushover analysis procedure is adopted. This is done by means of a new failure criterion based on the average strain of concrete and steel at critical regions. The proposed procedure is applicable to columns having thin- and thick-walled sections, which are longitudinally stiffened or not. An uniaxial constitutive relation recently developed is employed for concrete filled in the thick-walled unstiffened section columns. Modifications are introduced to this model for other types of columns. Subsequently, the strength and ductility predictions obtained using the present and previous procedures are compared with the corresponding experimental results. Comparisons show that the present procedure yields better predictions. It is revealed that the inclusion of the confinement effects and softening behaviour of concrete is important in the present kind of prediction procedures. Furthermore, an extensive parametric study is carried out to examine the effects of procedures and geometrical and material properties on capacity predictions.  相似文献   

16.
The seismic performance of superimposed reinforced concrete (RC) shear walls is decreased by rocking behavior and damage concentration at the horizontal joint. An enhanced horizontal joint method is proposed to improve the corresponding seismic performance. To validate the reliability of the proposed method, three full-scale superimposed walls and a cast-in-place shear wall (for comparison) are designed and tested under the quasi-static load. The test results indicate that the rocking phenomenon can be prevented using the proposed method, and the seismic performance of superimposed RC shear walls with enhanced horizontal joints is comparable to that of the cast-in-place RC shear walls.  相似文献   

17.
Due to lack of investigation on nonlinear seismic behavior of cable-stayed bridges under strong earthquake excitation, the concrete towers, as the main gravity-carrying component, are usually required to remain nearly elastic. However, in order to achieve this high seismic performance objective, the reinforcement ratio of the tower legs and the tower struts need to be greatly increased in addition to its static loading requirement. To study the potential plastic region and possible failure mode of the cable-stayed bridge, a 1/20-scale full bridge model from a typical medium span concrete cable-stayed bridge was designed, constructed and tested on 4 linear shake tables using a site specific artificial wave in the transverse direction. Test results showed that the damage characteristics of the bridge model were as follows: (1) the severe damage was observed at the upper strut, with several steel bars fractured at both ends; (2) the repairable damage was observed at tower legs at the bottom and the middle part, with concrete cover spalling and exposure of steel bars; (3) the minimal damage was observed at the lower strut and the both sides of the side bents, with only slightly concrete spalling; and (4) no damage was observed at the auxiliary bents, the superstructure and the cables. Numerical results and test results were further compared and showed good agreement in low amplitudes of excitations. The test also proved that the bridge system was stable in flexural failure of upper struts, and had the negligible residual displacement subjected to high amplitudes of excitations.  相似文献   

18.
In this article a study is presented of the inelastic seismic performance of two 5-story reinforced concrete wall specimens, which were tested in the context of the CAMUS 2000 program. The structure has been sized and detailed following the French PS92 code. To investigate the simplifying assumptions made in design, a 3-D refined nonlinear analysis was conducted. Particular aspects of the behavior of the two tested specimens are presented and then test results are compared with numerical predictions. The experimental-analytical comparisons not only demonstrate the accuracy of the time-history analysis model, but also allow obtaining more detailed information about the behavior of the specimen when it is subjected to seismic excitation. The significant effect of degradation of the stiffness and strength of the wall suggests that it is always important that design procedures are derived from numerical modeling and experimental observations.  相似文献   

19.
ABSTRACT

The seldom investigation of variable length of damage region prevents the estimation of probabilistic drift limits of reinforced concrete columns at different performance levels for the performance-based seismic design. However, if using the numerical approach to predict the variability of damage region within the framework of force-based beam-column element, the current force-based beam-column element is unable to model the spreading of damage region. Therefore, a new numerical simulation method is proposed to compute the emergence, propagation and termination of damage region of reinforced concrete columns. Then, based on the developed numerical simulation method, the measured response of experimental testing is calibrated. From the calibration, it can be observed that there is a rapid increase on the variable length of damage region with the increasing of lateral displacement and then followed by a stable stage. The propagation of the longitudinal reinforcement yielding and concrete tensile cracking mainly occurs in the ascending branch of the load–displacement response. Then, based on the growth characteristic of the damage region from the numerical simulation, an empirical equation is proposed to describe the variable length of damage region by using the least-square regression analysis to fit the computed responses for its simplicity to use in engineering practices. Finally, the stable length of damage region is reinvestigated by carrying out a parametric study with the developed numerical simulation method, indicating that two critical design parameters, specifically the axial load ratio and the shear span ratio, have considerable influences on this quantity of interest.  相似文献   

20.
The unique dynamic response of skewed bridges causes them to experience more noticeable damage compared to straight bridges during seismic events. The effectiveness of different retrofit strategies on the fragility of skewed bridges can change with the skew angle. This article assesses the impact of skew angle and various retrofit strategies on the fragility of multi span continuous concrete I-girder bridges. The results indicate that the level of effectiveness of a retrofit strategy is highly dependent on the skew angle and damage state of interest and an appropriate retrofit strategy should be chosen based on the vulnerability of the components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号