首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Classification of earthquake strong ground motion (SGM) records is performed using fuzzy pattern recognition to exploit knowledge in the data that is utilised in a genetic algorithm (GA) search and scaling program. SGM records are historically treated as “fingerprints” of certain event magnitude and mechanism of faulting systems recorded at different distances on different soil types. Therefore, databases of SGM records of today present data of complex nature in high dimensions (many of the dimensions—or SGM parameters in time and frequency domain—are presently available from different archives). In this study, simple ground motion parameters were used but were combined and scaled nonlinearly such that the physical properties of the data could be preserved while reducing its dimensionality. The processed data was then analysed using fuzzy c-means (FCM) clustering method to explore the possibility of meaningfully representing earthquake SGM data in lower dimensions through finding subsets of mathematically similar vectors in a benchmark database. This representation can be used in practical applications and has a direct influence on the processes of synthesising ground motion records, identifying unknown ground motion parameters (e.g. soil type in this study), improving the quality of matching SGM records to design target spectra, and in rule generalisation for response. The results showed that the stochastic behaviour of earthquake ground motion records can be accurately simplified by having only a few of motion parameters. The very same parameters may also be utilised to derive unknown characteristics of the motion when the classification task on “training” records is performed carefully. The clusters are valid and stable in time and frequency domain and are meaningful even with respect to seismological features that were not included in the classification task.  相似文献   

2.
This article investigates the ductility reduction factors for RC eccentric frame structures subjected to pulse-like ground motions. The structural models are with the strength eccentricities which are much disadvantageous than the stiffness eccentricities during the inelastic response range. A method to determine the ductility reduction factors of the strength eccentric structures is suggested by modifying those of reference symmetric structures through an eccentricity modification factor. The four factors of strength eccentricity ratio, ductility ratio, story number and velocity pulse of ground motions, are investigated to gain insight into this modification factor. It shows that the ductility reduction factors of the eccentric structures are clearly smaller than those of the symmetric structures. The eccentricity modification factor is mainly affected by the strength eccentricity and the ductility ratio, decreasing with the increment of the eccentricity or the decrement of the ductility ratio in a medium eccentricity range. The earthquake pulse-like effect and the eccentricity have coupling influence on the modification factor, while the effect of story number is not apparent. Based on the results of a comprehensive statistical study a simplified expression is suggested, which can estimate the eccentricity modification factors for both pulse-like and nonpulse-like ground motion cases.  相似文献   

3.
This article makes an attempt to investigate the low-frequency characterizations of pulse-type ground motions through ground motion components instead of original records. A decomposed method based on multi-resolution analysis is introduced in this article. The accuracy and validity of the method is tested in frequency domain, time domain and dynamic response. A dataset of 398 low-frequency components is obtained after the decomposition of 91 typical pulse-type records. A probabilistic model to describe the proportion of low-frequency components in corresponding original ground motions is established. At last, the decomposed method is used to investigate the impulsive characterizations of pulse-type ground motions.  相似文献   

4.
Nonlinear time domain site response analysis is used to capture the soil hysteretic response and nonlinearity due to medium and large ground motions. Soil damping is captured primarily through the hysteretic energy dissipating response. Viscous damp-ing, using the Rayleigh damping formulation, is often added to represent damping at very small strains where many soil models are primarily linear. The Rayleigh damping formulation results in frequency dependent damping, in contrast to experiments that show that the damping of soil is mostly frequency independent. Artificially high damp-ing is introduced outside a limited frequency range that filters high frequency ground motion. The extended Rayleigh damping formulation is introduced to reduce the over-damping at high frequencies. The formulation reduces the filtering of high frequency motion content when examining the motion Fourier spectrum. With appropriate choice of frequency range, both formulations provide a similar response when represented by the 5% damped elastic response spectrum.

The proposed formulations used in non-linear site response analysis show that the equivalent linear frequency domain solution commonly used to approximate non-linear site response underestimates surface ground motion within a period range relevant to engineering applications. A new guideline is provided for the use of the proposed formulations in non-linear site response analysis.  相似文献   

5.
To fulfill a displacement-based design or response prediction for nonlinear structures, the concept of equivalent linearization is usually applied, and the key issue is to derive the equivalent parameters considering the characteristics of hysteretic model, ductility level, and input ground motions. Pinching hysteretic structures subjected to dynamic loading exhibit hysteresis with degraded stiffness and strength and thus reduced energy dissipation. In case of excitation of near-fault earthquake ground motions, the energy dissipation is further limited due to the short duration of vibration. In order to improve the energy dissipation capability, viscous-type dampers have been advantageously incorporated into these types of structures. Against the viscously damped pinching hysteretic structure under the excitation of near-fault ground motions, this study aims to develop a seismic response estimation method using an equivalent linearization technique. The energy dissipation of various hysteretic cycles, including stationary hysteretic cycle, amplitude expansion cycle, and amplitude reduction cycle, is investigated, and empirical formulas for the equivalent damping ratio is proposed. A damping modification factor that accounts for the near-fault effect is introduced and expanded to ensure its applicability to structures with damping ratios less than 5%. An approach for estimating the maximum displacement of a viscously damped pinching hysteretic structure, in which the pinching hysteretic effect of a structure and the near-fault effect of ground motions are considered, is developed. A time history analysis of an extensive range of structural parameters is performed. The results confirm that the proposed approach can be applied to estimate the maximum displacement of a viscously damped pinching hysteretic structure that is subjected to near-fault ground motions.  相似文献   

6.
As only a very limited number of earthquake strong ground motion records are available in southwest Western Australia (SWWA), it is difficult to derive a reliable and unbiased strong ground motion attenuation model based on these data. To overcome this, in this study a combined approach is used to simulate ground motions. First, the stochastic approach is used to simulate ground motion time histories at various epicentral distances from small earthquake events. Then, the Green's function method, with the stochastically simulated time histories as input, is used to generate large event ground motion time histories. Comparing the Fourier spectra of the simulated motions with the recorded motions of a ML6.2 event in Cadoux in June 1979 and a ML5.5 event in Meckering in January 1990, provides good evidence in support of this method. This approach is then used to simulate a series of ground motion time histories from earthquakes of varying magnitudes and distances. From the regression analyses of these simulated data, the attenuation relations of peak ground acceleration (PGA), peak ground velocity (PGV), and response spectrum of ground motions on rock site in SWWA are derived.  相似文献   

7.
This study proposes a method for selecting ground motions from a ground motion library with response spectra that match the target response spectrum mean, variance, and correlation structures. The proposed method is conceptually simple and straightforward. In this method, a desired number of ground motions are sequentially selected from first to last. The accuracy and consistency of the proposed method are verified through comparisons of the ground motions selected using the proposed method with those selected using conventional methods. This study shows that the seismic responses of the frames vary according to ground motion selection and correlation structures.  相似文献   

8.
It is well known that local soil conditions play a key role in the amplification of earthquake waves. In particular, a liquefiable shallow soil layer may produce a significant influence on ground motion during strong earthquakes. In this paper, the response of a liquefiable site during the 1995 Kobe earthquake is studied using vertical array records, with particular attention on the effects of nonlinear soil behaviour and liquefaction on the ground motion. Variations of the characteristics of the recorded ground motions are analysed using the spectral ratio technique, and the nonlinearity occurring in the shallow liquefied layer during earthquake is identified. A fully coupled, inelastic finite element analysis of the response of the array site is performed. The calculated stress-strain histories of soils and excess pore water pressures at different depths are presented, and their relations to the characteristics of the ground motions are addressed.  相似文献   

9.
Fragility functions play an essential role in evaluating the seismic vulnerability of structures. To establish the seismic fragility functions of lightly Reinforced Concrete (RC) beam-column joints, the Park-Ang Damage model has been amended to quantify the damage states and the modified Bouc-Wen-Baber-Noori model has been employed and implemented in ABAQUS to predict the structural hysteresis behavior. Following successful calibration of the numerical results of a RC test frame from literature, the proposed model has been utilized to assess the seismic fragility curves of low to mid-rise RC frames in Singapore for 30 scaled ground motions using incremental dynamic analysis approach.  相似文献   

10.
Earthquake damage to light-frame wood buildings is a major concern for North America because of the volume of this construction type. In order to estimate wood building damage using synthetic ground motions, we need to verify the ability of synthetically generated ground motions to simulate realistic damage for this structure type. Through a calibrated damage potential indicator, four different synthetic ground motion models are compared with the historically recorded ground motions at corresponding sites. We conclude that damage for sites farther from the fault (>20 km) is under-predicted on average and damage at closer sites is sometimes over-predicted.  相似文献   

11.
This article presents results of a statistical study focused on evaluating inelastic displacement ratios (i.e., ratio of maximum inelastic displacement with respect to maximum elastic displacement demand) of degrading and non degrading single-degree-of-freedom (SDOF) systems subjected to forward-directivity near-fault ground motions. CR spectra are computed for normalized periods of vibration with respect to the predominant period of the ground motion to provide a better ground motion characterization. This period normalization allows reducing the record-to-record variability in the estimation of CR. An equation to obtain estimates of CR for the seismic assessment of structures exposed to forward-directivity near-fault ground motions is proposed.  相似文献   

12.
The development and refinement of performance seismic design is underway, thus understanding the dynamic behavior of woodframe structures has become critical. Although several full scale shake table tests have been performed, many details associated with load transfer/path and behavior of varying systems remains to be investigated. This short technical communication presents the results of a study whose objective was to scale a woodframe structure to one-half scale using similitude theory, something that has eluded researchers to date. It is widely felt that woodframe structures cannot be scaled because there is no way to scale a naturally occurring fibrous material with non isotropic properties. However, because the dynamic response of wood shearwalls (and thus woodframe structures) is dominated by the behavior of the sheathing-to-framing connectors, an energy-based similitude was developed at the connector/fastener (nail) level. Shake table tests were performed for both the full-scale prototype and half-scale model. Peak displacements at roof level for the prototype and model were found to be very close, i.e., within 2%, for the largest simulated ground motion and only within 30% for the smallest simulated ground motions. While the displacement time series scaled very well, the resulting damage did not scale.  相似文献   

13.
The goal of this article is to select those real (or recorded) ground motions capable of exposing the low- and mid-rise reinforced concrete frame structures to an extreme limit state. By performing correlation analyses, two optimal intensity measures are first selected to represent the ground motion damage potential. Then based on each record's damage potential, four subsets of strong ground motions, referred to as the most unfavorable ground motions, are identified and preliminarily confirmed to be applicable to the low- and mid-rise RC frame structures.  相似文献   

14.
Inelastic response spectra are estimated for elasto-plastic SDOF systems subjected to strong earthquake ground motions by applying the strength reduction factors determined for a simple pulse to the elastic response spectrum of the ground motion. This approach relies upon similarities in the strength reduction factors computed for earthquake ground motions and for short duration pulses. The accuracy of the estimated inelastic spectra obtained using 24 simple pulse waveforms is assessed in order to identify subsets of just several pulse waveforms that are suited for this purpose. Based upon the ground motions and pulses investigated, this approach appears to be equally applicable to short and long duration ground motions and those having near-fault forward directivity features.  相似文献   

15.
An important record of ground motion from a M6.4 earthquake occurring on May 1, 2003, at epicentral and fault distances of about 12 and 9 km, respectively, was obtained at a station near the city of Bingöl, Turkey. The maximum peak ground values of 0.55 g and 36 cm/s are among the largest ground-motion amplitudes recorded in Turkey. From simulations and comparisons with ground motions from other earthquakes of comparable magnitude, we conclude that the ground motion over a range of frequencies is unusually high. Site response may be responsible for the elevated ground motion, as suggested from analysis of numerous aftershock recordings from the same station. The mainshock motions have some interesting seismological features, including ramps between the P-and S-wave that are probably due to near- and intermediate-field elastic motions and strong polarisation oriented at about 39 degrees to the fault (and therefore not in the fault-normal direction). Simulations of motions from an extended rupture explain these features. The N10E component shows a high-amplitude spectral acceleration at a period of 0.15 seconds resulting in a site specific design spectrum that significantly overestimates the actual strength and displacement demands of the record. The pulse signal in the N10E component affects the inelastic spectral displacement and increases the inelastic displacement demand with respect to elastic demand for very long periods.  相似文献   

16.
The causality of natural ground motions is evaluated through statistical values for the phase difference. The causality is expressed in terms of the Hilbert transform relationship between the real and imaginary parts of the Fourier transform of the ground motion. We find that ground motions with a shorter duration have a higher degree of causality. Furthermore, we propose a ground-motion simulation algorithm that incorporates causality. The simulated ground motions, compatible with design response spectra, have almost the same spectrum conversion factors as those estimated from natural ground motions.  相似文献   

17.
The M w , 7.1 Duzce earthquake occurred on 12 November 1999 along the North Anatolian Fault in northwestern Turkey. This paper documents observations from a field reconnaissance team, addressing two principal aspects of this significant earthquake: the recorded ground motions and the distribution and severity of the earthquake effects on the built environment. In general, the recorded ground motions from this earthquake were smaller than predicted by ground motion predictive equations available at the time of the event. One anomalous recording is presented and potential causes for this irregular motion based on observations from field reconnaissance are discussed. The effects of rupture directivity on the near-fault recordings are assessed and the effects of soil conditions on the recorded ground motions are examined. The patterns of building damage based on post-earthquake reconnaissance are presented for the most strongly shaken cities in the near-fault region: Duzce, Kaynasli, and Bolu. Damage in Duzce was concentrated in the southern part of the city, which is underlain by softer sediments. Damage in Bolu was distributed evenly throughout the city; whereas damage was concentrated on more recent alluvial sediments in Kaynasli. No evidence of liquefaction or ground failure was observed in the populated areas surveyed after the earthquake.  相似文献   

18.
Modal parameters of an instrumented multi-storied reinforced concrete building (G +9) have been studied using strong motion records of Bhuj Earthquake, 2001. The Ambient Vibration Testing (AVT) is also conducted to measure the modal parameters of the same building under ambient environmental forces. Frequency Domain Decomposition (FDD) or Peak Picking (PP) in frequency domain and Stochastic Subspace Identification (SSI) technique in time domain is used for extracting the modal parameters. The observed natural frequencies during strong motion are smaller than the ambient vibration testing. The difference in the frequencies may be caused by interaction between structure and soil due to high level of strain during strong motion earthquake. The modal pattern of first five modes obtained from strong motion records and ambient vibration records are identical.  相似文献   

19.
Review of older non seismically detailed reinforced concrete building collapses shows that most collapses are triggered by failures in columns, beam-column joints, and slab-column connections. Using data from laboratory studies, failure models have previously been developed to estimate loading conditions that correspond to failure of column components. These failure models have been incorporated in nonlinear dynamic analysis software, enabling complete dynamic simulations of building response including component failure and the progression of collapse. A reinforced concrete frame analytical model incorporating column shear and axial failure elements was subjected to a suite of near-fault ground motions recorded during the 1994 Northridge earthquake. The results of this study show sensitivity of the frame response to ground motions recorded from the same earthquake, at sites of close proximity, and with similar soil conditions. This suggests that the variability of ground motion from site to site (so-called intra-event variability) plays an important role in determining which buildings will collapse in a given earthquake.  相似文献   

20.
This paper describes an algorithm to efficiently select ground motions from a database while matching a target mean, variance, and correlations of response spectral values at a range of periods. The approach improves an earlier algorithm by Jayaram et al. [2011]. Key steps in the process are to screen a ground motion database for suitable motions, statistically simulate response spectra from a target distribution, find motions whose spectra match each statistically simulated response spectrum, and then perform an optimization to further improve the consistency of the selected motions with the target distribution. These steps are discussed in detail, and the computational expense of the algorithm is evaluated. A brief example selection exercise is performed, to illustrate the type of results that can be obtained. Source code for the algorithm has been provided, along with metadata for several popular databases of recorded and simulated ground motions, which should facilitate a variety of exploratory and research studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号