首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent research clearly shows the importance of including the vertical component of earthquake ground motion in seismic analysis and design. In addition, pioneering studies [e.g., Elnashai and Papazoglou (1997)] have explored and documented the characteristics of available near-field vertical ground motion records. As a follow-up, this paper complements earlier studies, and investigates additional far-field records and available downhole array vertical motion records. A total of 111 free-field strong motion records (from California) and available downhole array records are employed. Compared to near-field records, far-field records generally contain more energy at longer periods. Based on the available data, response spectra are presented for near-field and far-field records respectively. The currently scarce downhole-array vertical motion records show that significant amplification may occur within the top 10-20 m soil layers. A simple one-dimensional (ID) vertical wave propagation model did not appear adequate for modelling the observed downhole array response. In using such a simplified model, very high viscous damping in the range of 15-25% was needed to match the recorded downhole vertical response, even for small tremors. Additional data and research are required [Beresnev et al., 2002] towards the development of a rational vertical motion site response analysis procedure.  相似文献   

2.
By the full-wave algorithm with Fourier synthesis, 3-D propagation of a whistler beam incident on the pre-dawn lower ionosphere at very low latitude is numerically investigated. Processes of transmission, reflection, and coupling with the Earth-ionosphere waveguide are discussed via the wave energy and polarisation distributions and their dependence on the wave parameters and the ionospheric profile (such as the Es-layer). It is shown that the dominant wave above 90 km altitude has the propagation characteristics of the magneto-ionic whistler mode, and absorption, spreading, reflection and mode conversion mainly occur at, and are greatly affected by, the bottom of the ionosphere. It is found that the transmitted energy density along the Earth's surface is reduced by 20 dB or more. Beam transmission loss varies asymmetrically with the incident angle, but changes little with the frequency. In the region 150 km (for 5 kHz) away from the ‘exit area’ where whistlers emerge, the bearing measurements using ground-based VLF direction-finders may be in error because direction-finding algorithms assume plane wave propagation. Only a small portion (about −25 dB at 5 kHz) of the incident energy is reflected up to an altitude of 150 km, and major reflection takes place in a small range of altitude at the bottom of the ionosphere with little spreading and lateral shift with respect to the incident beam. Reflection is enhanced considerably at lower frequency. Our results also suggest that an Es-layer or an ionospheric gradient refracting waves to higher latitudes would be favorable factors for multi-hop echoes to be received on the ground.  相似文献   

3.
Observations made on 10 July 1987 with the EISCAT UHF radar are presented. The F-region measurements of both electron density and field-aligned ion velocity show that an upward propagating gravity wave with a period of about 1 h is present. The origin of the gravity wave is probably auroral. The E-region ion velocities show a tidal wave and both upward and downward propagating gravity waves. The gravity waves have three dominant periods with a possible harmonic relationship and similar vertical wavelengths. These waves are either reflected at a single reflection level, ducted between two levels, or they are generated in a non-linear interaction between gravity and tidal waves. The E-region electron density is dominated by particle precipitation. After a short burst of more intense precipitation, a sporadic E-layer forms at 105km and then disappears 40min later. Within this time, the layer rises and falls by a few kilometres, following closely the motion of a convergent null in the velocity profile. We suggest that the formation and destruction of this layer is controlled by both the precipitation, which indirectly provides a source of metal ions through charge exchange, and the superposition of gravity waves and the tidal wave.  相似文献   

4.
Three classes of low frequency waves (period range 20–80 s) were identified using data from the UCLA fluxgate magnetometer experiment on board the ISEE 2 spacecraft. These are continuous pulsations similar in type to Pc 3, band-limited oscillations distinguished by mixed period fluctuations, and relatively isolated wave bundles. The waves were preferentially observed when the interplanetary magnetic field (IMF) direction was sunward and were most common when the cone angle, i.e. the angle between IMF and the Sun-Earth line (θxb) was often between 15° and 45°. Their frequency is proportional to the IMF magnitude.Comparison between the waves observed on board the ISEE 2 spacecraft and the Pc 3–4 recorded simultaneously at a mid-latitude ground station, Oulu (L = 4.5), showed that similarity of spectra of the waves in the spacecraft and on the ground was very rare and that correspondence between the events in space and on the ground was extremely low.  相似文献   

5.
In the source areas of some large shallow earthquakes, we have found many dislodged boulders struck by severe ground shaking. Some boulders were located at quite distances from the former sockets, which remained undisturbed with surrounding clear edges. This fact indicates the possibility that vertically upward seismic acceleration exceeded the earth's gravity (1g). This phenomenon of upthrown boulders is investigated herein by examining the effects of waves, which emanate deep in the ground due to an earthquake, propagate through the ground and boulder, and reflect back to the ground, involving a variety of their interaction. An elastic dynamic analysis is carried out on the basis of a one-dimensional continuum model consisting of the ground and boulder. It is subjected to the input of the Ricker wave, which is intended to simulate an earthquake-generated wave, emanating from the bottom of the model ground. The upthrow of a boulder is taken to occur when the dynamic response at the bottom of the boulder satisfies certain conditions. It turns out that the possibility of upthrow occurrence is high when the period of the Ricker wave coincides with the fundamental period of the ground vibration. It leads to the conclusion that the upthrow takes place due to resonance in the response of the system of the ground and boulder to the external wave input. The upthrow possibility increases as the input acceleration increases. Trial is made of predicting the maximum acceleration and velocity of an earthquake, based on this consideration of the up throw phenomenon.  相似文献   

6.
A theoretical attenuation model of earthquake-induced ground motion is presented and discussed. This model is related directly to physical quantities such as source and wave motion parameters. An attenuation formula for rms acceleration of ground motion is derived and verified using acceleration data from moderate-sized earthquakes recorded in Iceland from 1986 to 1997. The source parameters and the crustal attenuation are computed uniformly for the applied earthquake data. Furthermore, attenuation formulas for peak ground acceleration are put forward.  相似文献   

7.
This article is the second of two companion articles that evaluate seismic hazard in northwestern (NW) Pakistan. Using the properties and characteristics of discrete faults in NW Pakistan described in the first article, probabilistic and deterministic seismic hazard analyses for 11 major cities in NW Pakistan were conducted. The results from both probabilistic and deterministic seismic hazard analyses exhibit good agreement. Median deterministic spectra compare favorably with uniform hazard spectra (UHS) for 475- or 975-year return periods, while the 84th-percentile deterministic spectra compare favorably with the UHS for a 2475-year return period. Peak ground accelerations (PGAs) for 2475-year return periods exceed 1.0 g for the cities of Kaghan and Muzaffarabad, which are surrounded by major faults. The PGAs for a 475-year return period for these cities are approximately 0.6g — 3 to 4 times greater than estimates by previous studies using diffuse areal source zones. The PGAs for some cities located farther from faults (including Astor, Malakand, Mangla, Peshawar, and Talagang) are similar to those predicted using diffuse areal source zones. Seismic hazard maps for PGA and spectral accelerations at periods of 0.2 s and 1.0 s corresponding to three return period (2475, 975, and 475 years) were produced. Based on deaggregation results, a discussion of the conditional mean spectra for engineering applications is presented.  相似文献   

8.
In Part 1 of this paper the variability of diurnal and semidiurnal components of the meridional thermospheric wind was discussed. The observed variability is discussed in the light of the non-linear theory of wave-wave interactions. It is shown that it is possible to explain, at least partially, the variability through the non-linear interactions of tides with long period oscillations having periods between 2 and 15 days. Given that the periods obtained both from the quarterly spectra of the tidal amplitudes and the non-linear interaction analysis coincide with periods reported in the literature for planetary waves in the lower and middle atmosphere, the existence of global scale oscillations are sought in the upper atmosphere. Wave events are observed, coincident with the above-mentioned periods, for a set of five longitudinally distributed locations between 30 and 35 S throughout the yearly samples. The wave events have basically westward phase displacements though eastward travelling phases are observed at times.  相似文献   

9.
This is a reconnaissance report on the damage to bridges during the 2008 Wenchuan, China, earthquake. Site investigation was conducted by the authors on August 10–14, 2008. Presented is a detailed discussion of the damage to 12 bridges as well as possible damage mechanisms. Characteristics of two near-field ground accelerations and Chinese seismic bridge design practices are also presented. An investigation of the damage finds insufficient intensity of seismic design force, inadequate structural detailing for enhancing the ductility capacity, and an absence of unseating prevention devices.  相似文献   

10.
A discussion is given of gravity wave saturation and its relation to eddy diffusion in the middle atmosphere. Attention is focused on the saturation process and some of its observable manifestations. It does not serve as a review of all related work. Although a theoretical point of view is taken, the emphasis is on which wave parameters need be measured to predict quantitatively the influence of gravity waves on eddy transport. The following considerations are stressed: the variation of spectra with observation time T; that eddy diffusivities are determined by velocity spectra; the anisotropic nature of diffusivity; a unified approach to saturation; an attempt to make eddy diffusivity more precise; the relationship between eddy diffusivity and wave dissipation.The subjects of ‘wave drag’ (momentum flux deposition) and heat flux need only be treated briefly, because they are related to eddy diffusivity in simple ways. Consideration is also given to two different theoretical mechanisms of wave saturation—wave induced convective instability and strong nonlinear wave interactions. The saturation theory is then used to predict a globally averaged height profile of vertical diffusivity in the middle atmosphere. This calculation shows that gravity waves are a major contributor to eddy diffusion from heights of 40–110 km, and that they are significant down to 20 km. A more detailed calculation of wave induced eddy diffusion, including latitudinal and seasonal variations, can be made if wave velocity spectra become available. The paper closes with recommendations for future research.  相似文献   

11.
There are various possibilities for the selection and scaling of ground motions for advanced seismic assessment of buildings using nonlinear response-history analyses. As part of an on-going project looking at building-specific loss assessment in Italy, this article highlights a number of challenges currently facing the use of conditional spectra for ground motion selection in practice, essentially related to the limited amount of seismic hazard information that is publicly available. To illustrate the points being made, the challenges faced when trying to develop conditional spectra and select spectrum-compatible accelerograms for a rock site in Napoli, Italy, are described and the seismic assessment results obtained for a number of reinforced concrete wall structures are presented. Aside from providing practitioners with an appreciation of the potential difficulty associated with using conditional spectra for record selection, this technical note should also motivate national authorities to provide more background information on national seismic hazard data and detailed guidance for record selection.  相似文献   

12.
A simplified full-wave method adapted to the propagation of very obliquely incident LF radio waves is developed. For a selected ionosphere model the wave-field structure is calculated inside a horizontally stratified ionosphere and the peculiarities of the reflected field are clearly described. The penetration of the investigated radio waves in the lower ionosphere at noon-time is found to be restricted to a layer several wavelengths thick. The reflected wave is created entirely by the mechanism of partial reflections and the region responsible for its formation is usually below 70 km. The influence of some typical parameters of the electron density profile, as well as the atmospheric pressure and temperature, on the attenuation of the investigated radio waves is demonstrated. It is also found that the reflection at very oblique incidence depends mainly on the height of the bottom of the ionosphere.  相似文献   

13.
This paper studies the effects of soil layering in the basin based on the characteristics of basin-edge induced surface waves and associated differential ground motion. Seismic responses of various basin-edge models were simulated using software based on parsimonious finite difference staggered grid approximation of 2.5D eiastodynamic wave equation. Seismic responses of various models with different number of soil/soft rock layers but for a fixed thickness of deposit, fundamental frequency and impedance contrast revealed a decrease of surface wave amplitude with an increase in the number of layers in the basin. Shifting of dominant frequency towards the higher values was obtained with an increase of number of layers. An increase of dispersion of surface waves with an increase of number of soil layers in the basin was observed. A minor increase of Rayleigh wave velocity with an increase of number of soil layers was also obtained, but in the case of Love wave it was almost negligible.

Spectral analysis of the edge-induced surface waves revealed that the anomalous earthquake intensity may arise in a zone of width of 2.5–3.0 km, parallel to basin-edge and at an offset of 0.5–0.7 km from the edge. Maximum horizontal differential ground motion (HDGM) developed by Love wave (≈4.9×10?2) was more than that of Rayleigh wave (≈9.4×10?3). Large variation in HDGM caused by the surface waves was obtained with a change in the number of layers in the basin and maximum HDGM was observed when there were only two layers in the basin. It was inferred that the effect of soil layering in the basin was more on the Rayleigh wave as compared to the Love wave. Development of large HDGM near the basin-edge and its dependency on the number of soil layers reveals that basin-edge induced surface waves need special attention during seismic microzonation or seismic hazard prediction.  相似文献   

14.
Excitation of the guided acoustic-gravity waves in the upper thermosphere in response to enhanced auroral electrojets is calculated in the absence of dissipation under a fully ducted condition. It is shown that a model atmosphere terminated with an isothermal half-space supports a long-period, high-speed mode, which is the interface mode guided along the half-space termination of the atmosphere. The dispersion properties and the vertical distributions of the kinetic energy density of this mode are similar to those of the so called ‘gravity pseudomode’. The excitation of this mode is computed to show how the wave generation depends on the source mechanism (the Lorentz force and joule heating) and on the source altitude. Joule heating can generate the waves with appreciable amplitudes. On the other hand, the Lorentz force prevailing in the lower region cannot excite the waves with any observable amplitudes. The waves are intensified with increasing the heat source altitude. The gross features of the calculated waves indicate that the ducted thermospheric gravity waves are capable of producing observable thermospheric waves. It is therefore suggested that further examination of the excitation of the ducted acoustic-gravity waves undergoing partial reflections due to viscosity and thermal conduction should be useful for the theory of large-scale travelling ionospheric disturbances.  相似文献   

15.
It is shown that, when the whistler-mode phase refractive index is plotted along the length of geomagnetic field lines as a function of altitude, there is a minimum at an altitude of between 1400 and 2200 kms depending on magnetospheric model and wave frequency. Ray-tracing calculations are presented which show that the wave normal direction of upgoing whistler-mode waves can become field-aligned at and above the altitude of the refractive index minimum and this can lead to trapping of waves through the side of a suitably positioned duct. The mechanism is made possible by the increase of refractive index along the duct length above the altitude of the refractive index minimum. Ray paths resulting from trapping by this mechanism in both a winter night and a summer day model of the magnetospheric plasma are presented and discussed.  相似文献   

16.
Plasma wave data from the Pioneer Venus Orbiter provide the largest body of data cited as evidence for lightning on Venus. These data are also the most controversial, mainly because of the ambiguity in mode identification due to limited spectral information. We review some of the more recent studies of the plasma wave data at Venus, and we demonstrate that the characteristics of the 100 Hz waves are consistent with whistler-mode waves propagating vertically from below the ionosphere. We further show that in situ instabilities are too weak to generate whistler-mode waves, mainly because the thermal pressure is comparable with the magnetic field pressure in the ionosphere of Venus. The lower hybrid drift instability has also been suggested as an alternative source for the 100 Hz waves. However, the wave properties are more consistent with whistler-mode propagation; the lower hybrid drift instability requires very short gradient scale lengths to overcome damping due to collisions. We also note that an apparent association between Langmuir probe anomalies and 100 Hz waves is much lower than previously reported, once we apply a consistent intensity threshold for identifying wave bursts. The lightning hypothesis remains the most probable explanation of the plasma waves detected at low altitudes in the nightside ionosphere of Venus.  相似文献   

17.
We present a detailed approach to implement a moment-tensor point source to compute displacements, particle velocities and accelerations using direct grid methods. Here, the wave modeling algorithm is based on pseudospectral methods to compute the partial derivatives. A comparison to the analytical solution in the 3D acoustic case verifies the discrete implementation of the source in the mesh. Then, the more general 3D elastic case is illustrated and simulations, with and without free surface, are performed that can be used as a reference solution for other grid methods.  相似文献   

18.
Seismic responses of weathered ridge model with various types of weathering materials/soils and thickness were simulated, using double-couple point shear dislocation sources to evaluate the significance of ridge-weathering effects on the ground motion characteristics. 2.5D finite difference modeling was adopted for simulating the ground motion using parsimonious staggered grid scheme. The analysis of responses of weathered and non-weathered ridge models reveals that surface waves were generated near the top of the ridge. The surface waves were not dominating on the top of the ridge but at some lower elevation. Results also revealed ground motion amplification with elevation. Maximum amplitude of ground displacement was observed on the top of the ridge, when it was not very much weathered, but the reverse was the case (surface waves were dominating near the base) when weathering velocity was more than three times lesser than the underlying rock. An important conclusion was drawn based on simulated results that the thickness of weathering in terms of wavelength (λ) play a vital role in the generation of very strong surface wave with long duration, i.e. when the thickness is equal to or more than λ/8. The decrease of weathering-velocity further increased the amplitude and duration of surfaces waves. On the other hand, surface waves caused by the ridge itself or by weathered materials having thickness less than λ/12 have amplitudes similar or somewhat more than the incoming waves and with much smaller duration. Therefore, special measure for weathering thickness and its velocity is recommended on the basis of simulated results during the construction of buildings on the ridge topography.  相似文献   

19.
In this paper, a lightning channel is simulated by a vertical wire of finite length and of moderate electric conductivity. At low frequencies, such a wire behaves like a resonant wave guide cavity in which only discrete resonant wave modes can be generated. The theory of resonant waves in a wire of finite diameter is outlined and applied to the return stroke with electric contact to the earth and to intracloud K-strokes without electric contact to the earth. Two types of current wave forms exist: aperiodic waves of the Bruce-Golde type and damped oscillations. The configurations of the electric charge density and the electric current in the wire are presented for the various wave modes as functions of height and time. From the observations of lightning current and of sferic wave forms, it is apparent that the first mode dominates, and that both types of wave forms can be identified. From these wave forms, the channel parameters-length and diameter can be derived. For the higher order modes, the resonance model loses its validity and freely propagating waves are expected during the whole lightning flash. These waves contribute to the observed continuous spectrum. The skin effect becomes important increasing the effective resistance of the wire with frequency. Since these waves interfere destructively, they do not contribute significantly to an effective charge transport.  相似文献   

20.
Whistler mode signals from the NAA transmitter (24 kHz) received at Faraday, Antarctica are processed to obtain the Doppler shift at a much higher time resolution than has previously been possible. This has allowed the observation of pulsations of about 13 mHz frequency which are believed to be associated with hydromagnetic waves in the magnetosphere. The pulsations are observed separately on signals with a number of discrete group delay features that can be interpreted as individual whistler ducts. Using the measured pulsation phase over the array of ducts the phase velocity and wave normal direction of the hydromagnetic wave in the equatorial plane are estimated. The direction of propagation is consistent with a source on the dayside magnetopause.The association between whistler mode Doppler shifts and hydromagnetic waves has been reported before but not, as far as we are aware, using an experimental technique that allows measurements on individual ducts in order to determine the direction of propagation of the hydromagnetic wave.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号