首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This paper follows the form of that by Mazzarello that precedes it (Mazzarello, 2006) and presents an imaginary interview with Santiago Ramón y Cajal in December 1906. A few days earlier Cajal had been awarded the Nobel Prize for Physiology or Medicine, an award that he shared equally with Professor Camillo Golgi. Golgi had been recognized for his work as a pioneer into investigations of the nervous system, primarily on account of his discovery of the "black reaction" of silver chromate impregnation of whole nerve cells and their processes. Cajal had been recognized for his implementation of that method and for laying with it the foundations of what was to become modern neuroanatomical science. Paradoxically, the two awardees had been led by their researches to diametrically opposed views of the organization of the nervous system. Golgi believed in a continuous network of axons that formed the basis of all the integrative properties of the nervous system, while Cajal had provided the information that led to the formulation of the neuron doctrine that saw the nervous system as being made up of chains of discontinuous cells joined by polarized functional contacts that we now call synapses. The paper takes the form of an interview with Professor Cajal in the Grand Hotel Stockholm. His responses to questions posed by the imaginary interviewer are all taken from Cajal's own writings.  相似文献   

2.
Spanish histologist Santiago Ramón y Cajal, one of the most notable figures in Neuroscience, and winner, along with Camillo Golgi, of the 1906 Nobel Prize in Physiology or Medicine for his discoveries on the structure of the nervous system, did not escape experimenting with some of the psychiatric techniques available at the time, mainly hypnotic suggestion, albeit briefly. While a physician in his thirties, Cajal published a short article under the title, "Pains of labour considerably attenuated by hypnotic suggestion" in Gaceta Médica Catalana. That study may be Cajal's only documented case in the field of experimental psychology. We here provide an English translation of the original Spanish text, placing it historically within Cajal's involvement with some of the key scientific and philosophical issues at the time.  相似文献   

3.
Focusing on a philatelic oddity that erringly identifies a picture of Santiago Ramón y Cajal as that of Camillo Golgi, this brief article examines official and unofficial stamp issues honoring the two great neuroanatomists, one from Spain and the other from Italy, who were early Nobel Prize winners in Physiology or Medicine.  相似文献   

4.
Spanish histologist Santiago Ramón y Cajal, one of the most notable figures in Neuroscience, and winner, along with Camillo Golgi, of the 1906 Nobel Prize in Physiology or Medicine for his discoveries on the structure of the nervous system, did not escape experimenting with some of the psychiatric techniques available at the time, mainly hypnotic suggestion, albeit briefly. While a physician in his thirties, Cajal published a short article under the title, “Pains of labour considerably attenuated by hypnotic suggestion” in Gaceta Médica Catalana. That study may be Cajal's only documented case in the field of experimental psychology. We here provide an English translation of the original Spanish text, placing it historically within Cajal's involvement with some of the key scientific and philosophical issues at the time.  相似文献   

5.
Camillo Golgi and Santiago Ramón y Cajal shared the Nobel Prize in 1906 for their work on the histology of the nerve cell, but both held diametrically opposed views about the Neuron Doctrine which emphasizes the structural, functional and developmental singularity of the nerve cell. Golgi's reticularist views remained entrenched and his work on the nervous system did not venture greatly into new territories after its original flowering, which had greater impact than is now commonly credited. Cajal, by contrast, by the time he was awarded the Nobel Prize, was already breaking new ground with a new staining technique in the field of peripheral nerve regeneration, seeing the reconstruction of a severed nerve by sprouting from the proximal stump as another manifestation of the Neuron Doctrine. Paradoxically, identical studies were going on simultaneously in Golgi's laboratory in the hands of Aldo Perroncito, but the findings did not seem to influence Golgi's thinking on the Neuron Doctrine.  相似文献   

6.
Colgi, Cajal and the Neuron Doctrine   总被引:1,自引:0,他引:1  
Camillo Golgi and Santiago Ramon y Cajal shared the Nobel Prize in 1906 for their work on the histology of the nerve cell, but both held diametrically opposed views about the Neuron Doctrine which emphasizes the structural, functional and developmental singularity of the nerve cell. Golgi's reticularist views remained entrenched and his work on the nervous system did not venture greatly into new territories after its original flowering, which had greater impact than is now commonly credited. Cajal, by contrast, by the time he was awarded the Nobel Prize, was already breaking new ground with a new staining technique in the field of peripheral nerve regeneration, seeing the reconstruction of a severed nerve by sprouting from the proximal stump as another manifestation of the Neuron Doctrine. Paradoxically, identical studies were going on simultaneously in Golgi's laboratory in the hands of Aldo Perroncito, but the findings did not seem to influence Golgi's thinking on the Neuron Doctrine.  相似文献   

7.
Gustaf Retzius (1842-1919), the Swedish anatomist and anthropologist, and Camillo Golgi were contemporaries. They met on several occasions and came in closer contact when Golgi, together with Ramon y Cajal, was awarded the Nobel Prize in Physiology or Medicine in Stockholm in 1906. Retzius came from an illustrious family. His father was professor of anatomy at Karolinska Institutet and Gustaf himself made a fast career. At 35, he was appointed to a professorship in histology, especially created for him at Karolinska Institutet, and later he became professor of anatomy in the same institution. Retzius was exceedingly productive, and published more than 300 scientific papers, most of which dealt with the nervous system and sensory organs. The majority of these were included in his magnificent volumes Biologische Untersuchungen, Neue Folge (Biological Investigation, New Series), which appeared from 1890 to 1921, and in Das Gehororgan der Wirbelthiere ("The Acoustic Organ of Vertebrates", 1881 and 1884), which may be his internationally better know contribution. Much of his work, especially on invertebrates, was based on Ehrlich's methylene blue method, but he also used the Golgi method early on. Particularly his studies of the innervation of the sensory organs became of great importance for the support of the neuron doctrine. His standing internationally was reflected in his membership in many of the most prominent academies abroad, as well as in invitations to him to give a "Croonian Lecture" in 1908 and "The Huxley Lecture" in 1909.  相似文献   

8.
In this report we present and discuss an unpublished letter written by Santiago Ramón y Cajal in October 1904 in relation to his possible nomination for the Nobel Prize for Physiology and Medicine. This letter shows that Cajal was aware of his previous nominations for the Prize. He was convinced that these nominations had not been successful because neither anatomy nor histology were among the sciences included in the Nobel Statutes' definition of Physiology or Medicine. He gives a list of the merits he thought might be used for a new nomination, which included only works concluded during the previous five years.  相似文献   

9.
The concept of neuronal plasticity is widely used, but seldom defined in the neurosciences. It can signify many different occurrences, such as structural alterations of axons and dendrites (Cotman & Nadler, 1978), behavioural adaptations (Rosenzweig & Bennett, 1996), or physiological changes in synapse formation (Martin et al., 2000) at different stages of health and disease. Although there is such a wealth of research from many disciplines, the neuroanatomical aspects of plasticity are the focus of this paper. It seeks to illuminate the evolution of different concepts of plasticity concerning the structure and circuitry of the central nervous system (CNS). Early modern morphological research on de- and regeneration phenomena in the 19th- and early 20th-century is well documented. These studies, however, almost exclusively concentrated on the peripheral nervous system (PNS). It was one of the major contributions of Santiago Ramón y Cajal (1852-1934), that he applied the concept of regenerative capacities to the CNS. But the term plasticity seemed to have disappeared for about two decades after his death. The ensuing comeback of the expression may be attributed, at least in part, to new neuroanatomical staining and tracing methods. The pursuit of these techniques will serve as a guidepost through varying approaches in different times: It was the 1950s which seemed to spawn the time for new departures in structural investigations of neuronal plasticity.  相似文献   

10.
Book Review     
Gustaf Retzius (1842–1919), the Swedish anatomist and anthropologist, and Camillo Golgi were contemporaries. They met on several occasions and came in closer contact when Golgi, together with Ramón y Cajal, was awarded the Nobel Prize in Physiology or Medicine in Stockholm in 1906. Retzius came from an illustrious family. His father was professor of anatomy at Karolinska Institutet and Gustaf himself made a fast career. At 35, he was appointed to a professorship in histology, especially created for him at Karolinska Institutet, and later he became professor of anatomy in the same institution. Retzius was exceedingly productive, and published more than 300 scientific papers, most of which dealt with the nervous system and sensory organs. The majority of these were included in his magnificent volumes Biologische Untersuchungen, Neue Folge (Biological Investigations, New Series), which appeared from 1890 to 1921, and in Das Gehörorgan der Wirbelthiere (“The Acoustic Organ of Vertebrates”, 1881 and 1884), which may be his internationally better known contribution. Much of his work, especially on invertebrates, was based on Ehrlich's methylene blue method, but he also used the Golgi method early on. Particularly his studies of the innervation of the sensory organs became of great importance for the support of the neuron doctrine. His standing internationally was reflected in his membership in many of the most prominent academies abroad, as well as in invitations to him to give a “Croonian Lecture” in 1908 and “The Huxley Lecture” in 1909.  相似文献   

11.
In this report we present and discuss an unpublished letter written by Santiago Ramon y Cajal in October 1904 in relation to his possible nomination for the Nobel Prize for Physiology and Medicine. This letter shows that Cajal was aware of his previous nominations for the Prize. He was convinced that these nominations had not been successful because neither anatomy nor histology were among the sciences included in the Nobel Statutes' definition of Physiology or Medicine. He gives a list of the merits he thought might be used for a new nomination, which included only works concluded during the previous five years.  相似文献   

12.
Theories and data do not always fit and sometimes are sources of conflicts among scientists. This is the case of a morphological structure, the perineuronal net, which was denied on the basis of an ideological conflict between two giants of neurosciences: Camillo Golgi and Santiago Ramón y Cajal. The perineuronal net is a reticular structure enveloping many neurons. Originally reported by Golgi in 1893 and 1898 and confirmed by several authors before the turn of the century, the perineuronal net was used by Golgi to support the reticular theory of the organization of the nervous system. Ramón y Cajal, the paladin of the neuronal theory who had also observed this anatomical structure, denied its existence suggesting that it was a fixation artifact. After Cajal's statements, only a few Italian scientists continued to work in this field, and after the 1930s the perineuronal net was forgotten. Only the recent advances in histochemical and immunocytochemical technology confirmed the existence of this structure opening new fields in functional neuroanatomy and neuropathology.  相似文献   

13.
Ivan Pavlov (1849–1936) and Santiago Ramón y Cajal (1852–1934) were two contemporary scientists who not only had a great impact on Russian and Spanish science but also on the international stage. Both shared several common features in their life and work, yet they followed fundamentally different paths during their training as scientists. While Pavlov received his laboratory training under the guidance of Ilya Tsion (1843–1912), Cajal did not receive any formal training within a particular laboratory nor did he have a mentor in the traditional sense, rather he was mainly self-taught, although he was supported by key figures like Maestre de San Juan (1828–1890) and Luis Simarro (1851–1921). In this article, we compare the scientific training of these two Nobel Prize laureates and the influences they received during their scientific lives.  相似文献   

14.
Knowledge of cerebral structure and function in its modern form can be traced to the neurone doctrine based largely on the work of Santiago Ramón y Cajal [1852–1934] and his lifelong exploitation of the Golgi method. Cajal openly acknowledged his debt to the neuropsychiatrist Luis Simarro Lacabra [1851–1921] who introduced him to the method in 1887, and recalled that the sight of the silver-impregnated nerve cells was the turning point which led him to abandon general anatomy and concentrate on neurohistology. Simarro, who dissipated his free time in trying to improve not only the scientific but also the political world around him, was able to produce exciting Golgi preparations of the cerebral cortex after he returned from voluntary exile in Paris from 1880 to 1885. Certainly it was there that he learned the methods of experimental histology from Louis-Antoine Ranvier [1835–1922] whose laboratory exercises, in the guise of lectures, he attended assiduously.  相似文献   

15.
Born in Corteno, a tiny village in the province of Brescia, Camillo Golgi studied at the University of Pavia where he graduated in medicine in 1865 under the guidance of the psychiatrist Cesare Lombroso who sparked his vocation to study the brain. Golgi then began to learn histological techniques under the direction of the pathologist Giulio Bizzozero. In 1872 he moved to Abbiategrasso as chief of a hospital for chronic diseases. In a rudimentary laboratory he developed the silver-bichromate staining technique, the 'black reaction', which was a breakthrough for nervous tissue structure research. While in Abbiategrasso Golgi demonstrated the branching of the axons, and observed striatal and cortical lesions in a case of chorea. He returned to Pavia as Professor of Histology and General Pathology, and made a series of important discoveries that still bear his name: the Golgi tendon organ, the Golgi-Mazzoni corpuscles, another Golgi method to stain nerve cells based on the use of potassium dichromate and mercuric chloride, the canaliculi of the parietal cells of the gastric glands (Muller-Golgi tubules), the Golgi-Rezzonico myelin's annular apparatus (or Golgi-Rezzonico horny funnels), the cycle of malarian parasites (Golgi cycle), the relationship between recurrent malarian fever bouts and the multiplication of the Plasmodium in the blood (Golgi law), the relationship between the vascular pole of the Malpighian glomerulus and the distal tubule, the Golgi's pericellular nets and finally, and most importantly, the cytoplasmic 'internal reticular apparatus' (Golgi apparatus). In 1906 Golgi was awarded the Nobel prize for Medicine or Physiology. He died in Pavia on 21 January 1921.  相似文献   

16.
Born in Corteno, a tiny village in the province of Brescia, Camillo Golgi studied at the University of Pavia where he graduated in medicine in 1865 under the guidance of the psychiatrist Cesare Lombroso who sparked his vocation to study the brain. Golgi then began to learn histological techniques under the direction of the pathologist Giulio Bizzozero. In 1872 he moved to Abbiategrasso as chief of a hospital for chronic diseases. In a rudimentary laboratory he developed the silver-bichromate staining technique, the ‘black reaction’, which was a breakthrough for nervous tissue structure research. While in Abbiategrasso Golgi demonstrated the branching of the axons, and observed striatal and cortical lesions in a case of chorea. He returned to Pavia as Professor of Histology and General Pathology, and made a series of important discoveries that still bear his name: the Golgi tendon organ, the Golgi-Mazzoni corpuscles, another Golgi method to stain nerve cells based on the use of potassium dichromate and mercuric chloride, the canaliculi of the parietal cells of the gastric glands (Müller-Golgi tubules), the Golgi-Rezzonico myelin's annular apparatus (or Golgi-Rezzonico horny funnels), the cycle of malarian parasites (Golgi cycle), the relationship between recurrent malarian fever bouts and the multiplication of the Plasmodium in the blood (Golgi law), the relationship between the vascular pole of the Malpighian glomerulus and the distal tubule, the Golgi's pericellular nets and finally, and most importantly, the cytoplasmic ‘internal reticular apparatus’ (Golgi apparatus). In 1906 Golgi was awarded the Nobel prize for Medicine or Physiology. He died in Pavia on 21 January 1921.  相似文献   

17.
Theories and data do not always fit and sometimes are sources of conflicts among scientists. This is the case of a morphological structure, the perineuronal net, which was denied on the basis of an ideological conflict between two giants of neurosciences: Camillo Golgi and Santiago Ramon y Cajal. The perineuronal net is a reticular structure enveloping many neurons. Orginally reported by Golgi in 1893 and 1898 and confirmed by several authors before the turn of the century, the perineuronal net was used by Golgi to support the reticular theory of the organization of the nervous system. Ramon y Cajal, the paladin of the neuronal theory who had also observed this anatomical structure, denied its existence suggesting that it was a fixation artifact. After Cajal's statements, only a few Italian scientists continued to work in this field, and after the 1930s the perineuronal net was forgotten. Only the recent advances in histochemical and immunocytochemical technology confirmed the existence of this structure opening new fields in functional neuroanatomy and neuropathology.  相似文献   

18.
This article explores the politics of malaria eradication in Argentina during the first government of Juan D. Perón. The article develops the theme of historical convergence to understand the rapid mobilization and success of the climactic battle against malaria in Northwest Argentina. The nearly complete eradication of malaria in Argentina resulted from a combination of three factors. First, Carlos Alvarado, the director of Argentina's Malaria Service, had already developed a solid but flexible organizational base that allowed a dramatic change in control strategy. Second, an infusion of new technologies, especially DDT but also motor vehicles, was instrumental. Lastly, a radical reorientation of national public health policy in the 1940s, under the direction of Perón and his health minister, Ramón Carrillo, encouraged eradication. These figures embraced and refashioned long-standing organicist ideologies that hitched the strength of the nation-state to the health and vigor of its ordinary citizens. This ideological orientation was reflected in bold, populist political strategies that showcased swift, massive, and expensive public health campaigns, including malaria eradication. In the conclusion, the article explores the ambiguous connections between malaria eradication and an ecological perspective on the disease.  相似文献   

19.
In 1981 the Nobel Prize for Medicine or Physiology was awarded to Roger Sperry for his work on the functional specialization of the cerebral hemispheres, and to David Hubel and Torsten Wiesel for their work on information processing in the visual system. The present paper points to some important links between the work of Sperry and that of Hubel and Wiesel and to their influences on neuroscience in the best tradition going back to Cajal.  相似文献   

20.
探索史学的历史、理论及其社会意义--瞿林东教授访谈录   总被引:1,自引:0,他引:1  
史文  薛义 《史学月刊》2003,(1):5-14
20世纪80年代以来,瞿林东教授在中国史学史研究领域,取得了丰富的成果。对瞿林东教授所作的访谈,内容涉及到他的学生时代、治学道路、学术思想、研究方法.他的一些有代表性的论著,他对中国史学史研究发展趋势及前景的一些认识和对青年史学工作者的希望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号