首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We examine the post‐seismic change in the groundwater level following the 1999 (Mw = 7.5) Chi‐Chi earthquake in central Taiwan, as recorded by a network of 70 evenly distributed hydrological stations over a large alluvial fan near the epicenter. Four types of post‐seismic responses may be distinguished. In type 1, the groundwater level declined exponentially with time following a coseismic rise. This was the most common response in the study area and occurred in unconsolidated sediments on the Choshui River fan. In type 2, the groundwater level rose exponentially with time following a coseismic fall. This occurred in the deformed and fractured sedimentary rocks in the foothills near the Chelungpu fault that ruptured in the Chi‐Chi earthquake. In type 3, the groundwater level continued to decline with time following a coseismic fall. This also occurred in the deformed and fractured sedimentary rocks near the ruptured fault. Finally, in type 4, the groundwater level, following a coseismic rise, stayed at the same level or even rose with time before it eventually declined. This occurred mostly in unconsolidated sediments along the coast of central Taiwan and along the Peikang Stream. We analyze these post‐seismic responses by using a one‐dimensional model. Together with the results from well test, the analysis show that the type 1 response may be explained by an aquifer model with coseismic recharge and post‐seismic subhorizontal discharge across a length of 500–5000 m; the type 2 response may be explained by a model of coseismic discharge and post‐seismic recharge from surface water; the type 3 response may be explained by a model of coseismic discharge and post‐seismic subhorizontal discharge across a length of 500–5000 m; and the type 4 response may be explained by a model of coseismic recharge and sustained post‐seismic recharge from surface water. The characteristic time for the post‐seismic changes is similar to that for the groundwater‐level decline during dry seasons before the earthquake, suggesting that there was no earthquake‐induced changes in the aquifer properties (i.e. hydraulic conductivity), confirming the earlier results from recession analyses of the post‐seismic streamflow elsewhere after several earthquakes.  相似文献   

3.
Hydrogeochemical monitoring of a basalt‐hosted aquifer, which contains Ice Age meteoric water and is situated at 1220 m below sea level in the Tjörnes Fracture Zone, northern Iceland, has been ongoing since July 2002. Based on hydrogeochemical changes following an earthquake of magnitude (Mw) 5.8 on 16 September 2002, we constrained the timescales of post‐seismic fault sealing and water–rock interaction. We interpret that the earthquake ruptured a hydrological barrier, permitting a rapid influx of chemically and isotopically distinct Ice Age meteoric water from a second aquifer. During the two subsequent years, we monitored a chemical and isotopic recovery towards pre‐earthquake aquifer compositions, which we interpret to have been mainly facilitated by fault‐sealing processes. This recovery was interrupted in November 2004 by a second rupturing event, which was probably induced by two minor earthquakes and which reopened the pathway to the second aquifer. We conclude that the timescale of fault sealing was approximately 2 years and that the approach to isotopic equilibrium (from global meteoric water line) was approximately 18% after >104 years.  相似文献   

4.
M. R. M. Brown  M. Liu 《Geofluids》2016,16(5):801-812
Utah is one of the top producers of oil and natural gas in the United States. Over the past 18 years, more than 4.2 billion gallons of wastewater from the petroleum industry has been injected into the Navajo Sandstone, Kayenta Formation, and Wingate Sandstone in Carbon and Emery Counties, central Utah, where seismicity has increased during the same period. Previous studies have attributed this seismicity to coal mining. Here, we present evidence for wastewater injection being a major cause of the increased seismicity. We show that, in the coal mining area, seismicity rate increased significantly 1–5 years following the wastewater injection, and the earthquakes, mostly with magnitudes <3.0, are concentrated in areas seismically active prior to the injection. Using simple analytical and numerical models, we show that the injection in central Utah can sufficiently raise pore pressure to trigger seismicity within 10–20 km of the injection wells, and the time needed for the diffusion of pore pressure may explain the observed lag of seismicity increase behind the commencement of injection. The b‐value of these earthquakes increased following the wastewater injection, which is consistent with these events being injection‐induced. We conclude that the marked increase in seismicity rate in central Utah is induced by both mining activity and wastewater injection, which raised pore pressure along preexisting faults.  相似文献   

5.
Offshore fresh or brackish groundwater has been observed around the globe and represents an interesting but unusual freshwater reserve. Formation waters in sedimentary basins evolve at geological time through fluid–rock interactions and water movements in aquifers. However, the mechanism and timing of freshwater displacing and mixing with pre‐existing formation water offshore under the seafloor has not been investigated in many cases. The growing need for developing freshwater resources in deeper parts of sedimentary basins that have not been economic or technically feasible in the past, may potentially lead to an increasing conflict with petroleum production or injection of carbon dioxide. For being able to assess and mitigate possible impacts of fluid production or injection on groundwater flow and quality, a better understanding of the natural history of the interaction between fresh meteoric water and deep basin formation water is necessary. A low‐salinity wedge of meteoric origin with less than 5000 ppm currently extends to about 20 km offshore in the confined Latrobe aquifer in the Gippsland Basin (Australia). The Latrobe aquifer is a freshwater resource in the onshore, hosts major petroleum reservoirs and has been considered for carbon dioxide storage in the offshore parts of the basin. The objective of this study is to constrain the evolution of formation water in the Latrobe aquifer by investigating the water naturally trapped in fluid inclusions during burial. The measured palaeo‐salinities from onshore and offshore rock samples have a minimum of about 12 500 ppm (NaCl equivalent) and a maximum of about 50 000 ppm. Most of the salinities are in the 32 000–35 000 ppm range. There is no evidence for freshwater in fluid inclusions and the variation in palaeo‐salinity across the basin is consistent with the palaeogeography of deposition of the sedimentary rocks. The current low‐salinity water wedge must have started to form recently after most of the diagenetic processes that led to the trapping of water in fluid inclusions happened. The minimum homogenisation temperatures (Th) recorded are consistent with current formation temperature. However, they are generally higher than present day suggesting that hotter temperatures were attained in the past. The Th and salinity data together suggest that the fluid inclusions record the diagenetic modification of connate water to higher salinities over a time period that was accompanied by an increase in temperature, consistent with a westward palaeo‐fluid flow from the deeper part of the basin through the aquifer. Subsequent pore‐water evolution from palaeo‐ to current day conditions is consistent with an influx of fresher and cooler meteoric water into the Latrobe Group. The meteoric recharge originates from the area of the Baragwanath anticline in the onshore part of the basin where the Latrobe Group subcrops at high elevations.  相似文献   

6.
We model pore‐pressure diffusion caused by pressurized waste‐fluid injection at two nearby wells and then compare the buildup of pressure with the observed initiation and migration of earthquakes during the early part of the 2010–2011 Guy–Greenbrier earthquake swarm. Pore‐pressure diffusion is calculated using MODFLOW 2005 that allows the actual injection histories (volume/day) at the two wells to diffuse through a fractured and faulted 3D aquifer system representing the eastern Arkoma basin. The aquifer system is calibrated using the observed water‐level recovery following well shut‐in at three wells. We estimate that the hydraulic conductivities of the Boone Formation and Arbuckle Group are 2.2 × 10?2 and 2.03 × 10?3 m day?1, respectively, with a hydraulic conductivity of 1.92 × 10?2 m day?1 in the Hunton Group when considering 1.72 × 10?3 m day?1 in the Chattanooga Shale. Based on the simulated pressure field, injection near the relatively conductive Enders and Guy–Greenbrier faults (that hydraulically connect the Arbuckle Group with the underlying basement) permits pressure diffusion into the crystalline basement, but the effective radius of influence is limited in depth by the vertical anisotropy of the hydraulic diffusivity. Comparing spatial/temporal changes in the simulated pore‐pressure field to the observed seismicity suggests that minimum pore‐pressure changes of approximately 0.009 and 0.035 MPa are sufficient to initiate seismic activity within the basement and sedimentary sections of the Guy–Greenbrier fault, respectively. Further, the migration of a second front of seismicity appears to follow the approximately 0.012 MPa and 0.055 MPa pore‐pressure fronts within the basement and sedimentary sections, respectively.  相似文献   

7.
Y. Ma 《Geofluids》2016,16(3):434-439
Pre‐earthquake and postearthquake temperature changes were documented in two hot springs at Xiangcheng. Pre‐earthquake changes were documented in spring I, 13 days before and 106 km away from the Ms 5.8 Zhongdian earthquake. The 11‐year cutoff spring spouted again, and the spouted water was 24°C hotter than the former escaping gas. Postearthquake changes were documented in spring II following the 2008 Mw 7.9 Wenchuan earthquake, approximately 425 km away from the epicenter. Temperature in spring II showed a step‐like increase with a magnitude of 4°C induced by the earthquake. Spring I which is 0.3 m apart from spring II did not show a sudden change following the earthquake. However, temperatures in the two springs were identical after the Wenchuan earthquake. It indicates that the earthquake generated new hydraulic connectivity between springs I and II, and the heat transport between the two springs accounts for the postearthquake temperature changes.  相似文献   

8.
In granitic rocks, fracture networks typically provide pathways for groundwater flow and solute transport that need to be understood to assess the long‐term performance of deep underground storage or disposal facilities such as radioactive waste repositories. However, relatively little is known about the long‐term processes of fracturing and/or the longevity of flow paths (FP) in granitic rocks distributed within orogenic belts. To clarify these issues, Japanese plutons of different ages and in situ fractures in granite at the Mizunami Underground Research Laboratory (MIU) located in central Japan were studied. Detailed structural characterization and geochemical analysis of in situ fracture fillings sampled from a depth of 300 m were carried out to clarify the relationship between fracturing and mineral infilling processes. Different plutons show identical episodes of fracturing and fracture filling, consisting of: brittle tensile fracturing, due to decreasing temperature through the ductile–brittle transition after plutonic intrusion (Stage I); relatively rapid uplifting (ca. a few mm/year) accompanied by hydrothermal water circulation, which produced uncrushed layered mineral fillings (Stage II); and a period of low‐temperature meteoric water circulation following exposure after uplift (Stage III). The parageneses of carbonate mineral fracture fillings and their carbon isotopic compositions (14C, δ13C) show that there were distinct episodes of carbonate mineral precipitation during the rapid uplifting of a pluton. The carbonate minerals that formed during each episode incorporated carbon from a distinct source. The evolution of fillings identified here enables development of a specific model of fracturing and persistence of fluid‐conducting systems in the plutons of the orogenic field.  相似文献   

9.
The August 30, 1986 (MW ?=?7.1) and May 30, 1990 (MW ?=?6.9) Vrancea intermediate-depth earthquakes, despite their almost similar magnitudes, have produced very different spectral contents as shown by the strong ground motions recorded in Bucharest and its surroundings. The differences can be attributed to different epicentral distances and to different values of the stress drop. The characteristics of the seismic ground motions recorded in Bucharest area in the 1986 and 1990 seismic events are discussed in the context of (a) the source characteristics of the two earthquakes and (b) the local soil conditions in Bucharest. Furthermore, an attempt is made to determine the soil factors S defined in EN 1998-1 EN 1998-1. 2004. Design of Structures for Earthquake Resistance – Part 1: General Rules, Seismic Actions and Rules for Buildings, CEN.  [Google Scholar] for the Bucharest area, based on the strong ground motion dataset recorded during the two seismic events.  相似文献   

10.
A geochemical study was carried out on the CO2‐rich water occurring in granite areas of Chungcheong Province, Korea. In this area, very dilute and acidic CO2‐rich waters [62–242 mg l?1 in total dissolved solid (TDS), 4.0–5.3 in pH; group I) occur together with normal CO2‐rich waters (317–988 mg l?1 in TDS, 5.5–6.0 in pH; group II). The concentration levels and ages of group I water are similar to those of recently recharged and low‐mineralized groundwater (group III). Calculation of reaction pathways suggests that group I waters are produced by direct influx of CO2 gas into group III type waters. When the groundwater is injected with CO2, it develops the capacity to accept dissolved solids and it can evolve into water with very high solute concentrations. Whether the water is open or closed to the CO2 gases becomes less important in controlling the reaction pathway of the CO2‐rich groundwater when the initial pco 2 is high. Our data show that most of the solutes are dissolved in the CO2‐rich groundwater at pH > 5 where the weathering rates of silicates are very slow or independent of pH. Thus, groundwater age is likely more important in developing high solute concentrations in the CO2‐rich groundwaters than accelerated weathering kinetics because of acidic pH caused by high pco 2.  相似文献   

11.
Abstract

Excavations of the southern part of a very rich sacri?cial bog in Illerup Ådal, Denmark between 1950 and 1985 recovered approximately 15,000 Iron Age artefacts. At the time, 60 per cent of the area was left unexcavated and thousands of objects are now preserved in situ, but the present preservation status has not been investigated for approximately twenty-?ve years. Extensive in situ monitoring was carried out for one year in order to present a prioritized plan for further monitoring of the unexcavated areas, producing documentation of groundwater table variations, water quality and vegetation in the area. Results show that the remaining artefacts are generally well preserved in a waterlogged and anaerobic environment. However, in the north-eastern part of the bog, the groundwater table is too low even in a year when net precipitation and hydrological conditions were near normal. In the centre of the bog elevated salt concentrations have been measured in the groundwater.  相似文献   

12.
The Central Apennines are affected by frequent earthquakes of moderate magnitude that occur mainly within the upper part of the crust at depths of <15 km. A large number of cold gas emissions that are rich in CO2 are also found in the region. One particular vent with a high rate of degassing was equipped with a sensor to measure flow rates, which were recorded for a number of different periods between 2005 and 2010. Factors that could affect potentially CO2 flow rates include barometric pressure, atmospheric temperature, precipitation and local seismicity. Our analysis indicates that the periods of anomalous flow rate were related not to the environmental factors but probably to the deformative processes of the crust associated with the local seismicity. Local seismic events as expression of geodynamic processes occurred always before and during these anomalous gas flow periods. This correlation exists only for events that occurred eastwards of the gas emission site close to the Martana fault zone. We herein consider this correlation as indication for a continuous interaction between the field of static strain and the deep fluid pressure. An approximation of the fluid pressure transmission towards the gas emission site gives reasonable values of 1–10 m2 sec?1. To make comparisons with the long‐term effects of the static strain, we also recorded the short‐term effects of the dynamic release of strain induced by the series of strong earthquakes that took place in L’Aquila in 2009. We detected a significant anomalous flow rate that occurred at the same time as this seismic sequence, during which widespread degassing was induced around the focal zone.  相似文献   

13.
Northwestern Italian weak-motion data were used to study attenuation characteristics of horizontal peak ground acceleration (PGA) and horizontal peak ground velocity (PGV) from earthquakes of local magnitudes (M l ) up to 5.1. Data have been provided by the RSNI (Regional seismic network of Northwestern Italy) and RSLG (Regional seismic network of Lunigiana-Garfagnana) waveform database. The database consists of more than 14000 horizontal components recorded in the period 1999-2002 by both broadband and enlarged band seismometers. The accuracy of the procedure used to extract PGA values from the velocity recordings was verified comparing observed and derived PGA values at station STV2, which was equipped with both a temporary K2 Kinemctrtcs accelerometer and Guralp CMG40 broadband sensor. The attenuation of both peak ground acceleration and peak ground velocity was found to be logarithmically distributed with a strong attenuation for low distances (less than 50 km) and low M l values (<3.0). The resulting equations are:

Log(PGA)=?3.19+0.87M?0.042M 2?1.92 Log(R)+0.249S,

Log(PGA)=?4.23+0.76M?0.018M2?1.56 Log(R)+0.230S,

where PGA is expressed in g, PGV is expressed in m/s, M is local magnitude, R is the hypocentral distance in kilometers and S is a dummy variable assuming values of 0 and 1 for rock and soil respectively. For increasing distance and magnitude, both PGA and PGV values show a linear distribution. The validity range of the obtained attenuation relationships is 0–200 km for distances and M l up to 4.5. Sensitivity studies performed by analysis of residuals, showed that predicted PGA and PGV values are stable with respect to reasonable variations of the model and distances providing the data. Comparisons with attenuation relationships proposed for Italian region, derived from strong motion records, are also presented.  相似文献   

14.
Stable oxygen isotopes from estuarine bivalve carbonate from Saxidomus gigantea were analysed combined with high‐resolution sclerochronology from modern and archaeological shells from British Columbia, Canada, to determine the seasonality of shellfish collection from the archaeological site of Namu. The combination of high‐resolution sclerochronology and a micro‐milled sampling strategy for δ18O analysis permits a precise estimate of archaeological seasonality, because seasonal freshwater influxes and changes in temperature have dual effects on the δ18O value of the shell. Sclerochronological analysis identifies the timing and duration of growth that is temporally aligned to stable oxygen isotope results, since δ18Oshell appears to be strongly influenced by seasonal inputs of very low δ18O snowmelt‐water from adjacent coastal mountain ranges. The results show that shellfish were collected year‐round at this site over a 4000‐year period, and these data combined with other zooarchaeological lines of evidence support the interpretation of year‐round occupation.  相似文献   

15.
The frequency content of ground motions seems to be one of the most important parameters to explain the structural damage experienced during worldwide strong earthquakes. The frequency content of ground motions can be characterized by various stochastic and/or deterministic indicators: the frequency bandwidth indicator ? (Cartwright & Longuet-Higgins) related to the power spectral density function and, respectively, the control (corner) period Tc of the structural response spectra or the mean period TM . Peak ground velocity (PGV) and the ratio PGA/PGV can be used as either damage potential parameters or frequency content indicators. A comparative analysis of stochastic and deterministic frequency content indicators and of PGV is applied to a set of 30 strong ground motion records having peak ground acceleration (PGA) from 0.2–0.8 g and recorded on 4 continents during the last 70 years.  相似文献   

16.
Trace element and Sr isotope data were obtained by laser ablation‐ and solution mode‐(MC)‐ICP‐MS analysis for tooth enamel from remains excavated at the New Kingdom period Egyptian colonial and Nubian cemetery site of Tombos (Sudan). Elemental abundances determined by both methods of ICP‐MS analysis yielded comparable values; however, 87Sr/86Sr values obtained by laser ablation were higher compared to their solution mode counterparts. This discrepancy is related to the production of a molecular interference—Ca + P + O (overlaps 87Sr); hence the higher 87Sr/86Sr values recorded during ablation analyses. Laser ablation studies of enamel may provide relatively precise 87Sr/86Sr values rather quickly but cannot be used for accurately deciphering historical population migrations.  相似文献   

17.
The first European settlers came to North America in the early 17th century using glass in the form of containers and decorative objects. Thus, glass is a horizon marker for all historic period settlements and a potential source of chronometric dates at archaeological sites belonging to the historic period in the Americas. We have developed a new absolute dating method based upon water diffusion into the surface of manufactured glasses that predicts diffusion coefficients based upon variation in glass chemical constituents. Low‐temperature (< 190°C) hydration experiments have been performed on a set of five high‐calcium (21.7–28.3%) glasses that were used to manufacture wine bottles from the 17th?19th centuries. Infrared spectroscopy and secondary ion mass spectrometry was used to model the water diffusion/alkali exchange process. The ability of the model to accurately predict archaeological ages was evaluated with artefacts recovered from ceramic‐dated contexts at Thomas Jefferson's plantation known as Monticello.  相似文献   

18.
Abstract

This paper sets out the results of the last phase of the hydrological monitoring programme conducted at the Hanson Over quarry in Cambridgeshire, during the first full year (March 2004 to March 2005) in which the area of the first phase of gravel extraction was reinstated as reed beds under the management of the Royal Society for the Protection of Birds. It follows on from the studies of the pre-extraction and extraction phases, both published previously in Environmental Archaeology (French et al. 1999; French 2004). It is reassuring to report that the groundwater table in the formerly quarried area and the landscape immediately upstream and downstream has ostensibly been restored to pre-extraction levels, along with a return to previous pH, conductivity, redox and dissolved oxygen values in the groundwater system. Significantly, the continuing gradual fall in groundwater levels observed beyond 500 m from the quarry face for a distance of at least 1·5 km was seen to be arrested, although these had not quite recovered to pre-extraction levels downstream to the northeast. In addition, the soil moisture within the alluvial overburden and the buried palaeosol has also almost returned to pre-extraction levels. This indicates that the clay bunding of the formerly quarried areas acts as an effective barrier against further water abstraction, both inside and outside the sealed area, and allows the natural aquifer to begin to return to its previous levels of influence.

The study dramatically indicates that both the mineral operator, drainage authority and archaeological curator need to collaborate from the outset of any quarrying operation to ensure the continuing maintenance of the groundwater and soil moisture system regardless of how well the combined gravel and water abstraction processes are conducted, and how successful the post-quarry conservation is. As every site's landscape dynamics contribute to its individual hydrological setting, each case is different and requires tailored monitoring programmes to protect the archaeological and palaeo-environmental record from the adverse effects of water abstraction associated with development schemes.  相似文献   

19.
We used hydrologic models to explore the potential linkages between oil‐field brine reinjection and increases in earthquake frequency (up to Md 3.26) in southeastern New Mexico and to assess different injection management scenarios aimed at reducing the risk of triggered seismicity. Our analysis focuses on saline water reinjection into the basal Ellenburger Group beneath the Dagger Draw Oil field, Permian Basin. Increased seismic frequency (>Md 2) began in 2001, 5 years after peak injection, at an average depth of 11 km within the basement 15 km to the west of the reinjection wells. We considered several scenarios including assigning an effective or bulk permeability value to the crystalline basement, including a conductive fault zone surrounded by tighter crystalline basement rocks, and allowing permeability to decay with depth. We initially adopted a 7 m (0.07 MPa) head increase as the threshold for triggered seismicity. Only two scenarios produced excess heads of 7m five years after peak injection. In the first, a hydraulic diffusivity of 0.1 m2 s?1 was assigned to the crystalline basement. In the second, a hydraulic diffusivity of 0.3 m2 s?1 was assigned to a conductive fault zone. If we had considered a wider range of threshold excess heads to be between 1 and 60 m, then the range of acceptable hydraulic diffusivities would have increased (between 0.1–0.01 m2 s?1 and 1–0.1 m2 s?1 for the bulk and fault zone scenarios, respectively). A permeability–depth decay model would have also satisfied the 5‐year time lag criterion. We also tested several injection management scenarios including redistributing injection volumes between various wells and lowering the total volume of injected fluids. Scenarios that reduced computed excess heads by over 50% within the crystalline basement resulted from reducing the total volume of reinjected fluids by a factor of 2 or more.  相似文献   

20.
Changes in the prices of homes and the reasons for those changes may be more accurately predicted from repeat sales of the same homes after controlling for their changed attributes and differences in time between their sales and resales. This paper analyzes 346 of 583 sold houses in the Glengarry neighbourhood in Windsor, Ontario, that were sold more than once between 1981 and mid‐2017, and a corresponding 414 of 737 sold houses in the city's Wellington‐Crawford neighbourhood, sold more than once between 1986 and mid‐2017. After comparing types of resold homes with once‐sold ones, a repeat sales model predicts a first period of increasing annual percentage changes in resale prices compared to sale prices during the 1980s, followed by a second period of stagnation and possible decreases until 2011, and then increases during a third period after that. In addition, changes in resold homes’ attributes of the dwelling unit and neighbourhood are a second type of neighbourhood change in two inner‐city neighbourhoods during the past 30 or more years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号