首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between fracturing and fracture filling in opening‐mode fractures in the Triassic Buntsandstein in the Lower Saxony Basin (LSB; NW Germany) has been studied by an integration of petrographic and structural analysis of core samples, strontium isotope analysis and microthermometry on fluid inclusions. This revealed the relationship between the timing of the fracturing and the precipitation of different mineral phases in the fractures by constraining the precipitation conditions and considering the possible fluid transport mechanisms. The core was studied from four different boreholes, located in different structural settings across the LSB. In the core samples from the four boreholes, fractures filled with calcite, quartz and anhydrite were found, in addition to pore‐filling calcite cementation. In boreholes 2 and 3, calcite‐filled fractures have a fibrous microstructure whereas in borehole 1, fractures are filled with elongate‐blocky calcite crystals. Anhydrite‐filled fractures have, in all samples, a blocky to elongate‐blocky microstructure. Fractures that are filled with quartz are observed in borehole 2 only where the quartz crystals are ‘stretched’ with an elongated habit. Fluid inclusion microthermometry of fracturing‐filling quartz crystals showed that quartz precipitation took place at temperatures of at least 140°C, from a fluid with NaCl–CaCl2–H2O composition. Melting phases are meta‐stable and suggest growth from high salinity formation water. Strontium isotopes, measured in leached host rock, indicate that, in boreholes 2 and 3, the fluid which precipitated the calcite cements and calcite‐filled fractures is most likely locally derived whereas in borehole 1, the 87Sr/86Sr ratios from the pore‐filling cements and in the elongate‐blocky calcite‐filled fracture can only be explained by mixing with externally derived fluids. The elongate‐blocky anhydrite‐filled fractures, present in boreholes 1, 3 and 4, precipitated from a mixture of locally derived pore fluids and a significant quantity of fluid with a lower, less radiogenic, 87Sr/86Sr ratio. Taking into account the structural evolution of the basin and accompanying salt tectonics, it is likely that the underlying Zechstein is a source for the less radiogenic fluids. Based on the samples in the LSB, it is probable that fibrous fracture fillings in sedimentary rocks most likely developed from locally derived pore fluids whereas elongate‐blocky fracture fillings with smooth walls developed from externally derived pore fluids.  相似文献   

2.
Petrography, geochemistry (stable and radiogenic isotopes), and fluid inclusion microthermometry of matrix dolomite, fracture‐filling calcite, and saddle dolomite in Ordovician to Devonian carbonates from southwestern Ontario, Canada, provide useful insights into fluid flow evolution during diagenesis. The calculated δ18Ofluid, ΣREE, and REESN patterns of matrix and saddle dolomite suggest diverse fluids were involved in dolomitization and/or recrystallization of dolomite. The 87Sr/86Sr ratios of dolomite of each succession vary from values in the range of coeval seawater to values more radiogenic than corresponding seawater, which indicate diagenetic fluids were influenced by significant water/rock interaction. High salinities (22.4–26.3 wt. % NaCl + CaCl2) of Silurian and Ordovician dolomite–hosted fluid inclusions indicate involvement of saline waters from dissolution of Silurian evaporites. High fluid inclusion homogenization temperatures (>100°C) in all samples from Devonian to Ordovician show temperatures higher than maximum burial (60–90°C) of their host strata and suggest involvement of hydrothermal fluids in precipitation and/or recrystallization of dolomite. A thermal anomaly over the mid‐continent rift during Devonian to Mississippian time likely was the source of excess heat in the basin. Thermal buoyancy resulting from this anomaly was the driving force for migration of hydrothermal fluids through regional aquifers from the center of the Michigan Basin toward its margin. The decreasing trend of homogenization temperatures from the basin center toward its margin further supports the interpreted migration of hydrothermal fluids from the basin center toward its margin. Hydrocarbon‐bearing fluid inclusions in late‐stage Devonian to Ordovician calcite cements with high homogenization temperatures (>80°C) and their 13C‐depleted values (approaching ?32‰ PDB) indicate the close relationship between hydrothermal fluids and hydrocarbon migration.  相似文献   

3.
K. LI  C. CAI  H. HE  L. JIANG  L. CAI  L. XIANG  S. HUANG  C. ZHANG 《Geofluids》2011,11(1):71-86
Petrographic features, isotopes, and trace elements were determined, and fluid inclusions were analyzed on fracture‐filling, karst‐filling and interparticle calcite cement from the Ordovician carbonates in Tahe oilfield, Tarim basin, NW China. The aim was to assess the origin and evolution of palaeo‐waters in the carbonates. The initial water was seawater diluted by meteoric water, as indicated by bright cathodoluminescence (CL) in low‐temperature calcite. The palaeoseawater was further buried to temperatures from 57 to 110°C, nonluminescent calcite precipitated during the Silurian to middle Devonian. Infiltration of meteoric water of late Devonian age into the carbonate rocks was recorded in the first generation of fracture‐ and karst‐filling dull red CL calcite with temperatures from <50°C to 83°C, low salinities (<9.0 wt%), high Mn contents and high 86Sr/87Sr ratios from 0.7090 to 0.7099. During the early Permian, 87Sr‐rich hydrothermal water may have entered the carbonate rocks, from which precipitated a second generation of fracture‐filling and interparticle calcite and barite cements with salinities greater than 22.4 wt%, and temperatures from 120°C to 180°C. The hydrothermal water may have collected isotopically light CO2 (possibly of TSR‐origin) during upward migration, resulting in hydrothermal calcite and the present‐day oilfield water having δ13C values from ?4.3 to ?13.8‰ and showing negative relationships of 87Sr/86Sr ratios to δ13C and δ18O values. However, higher temperatures (up to 187°C) and much lower salinities (down to 0.5 wt%) measured from some karst‐filling, giant, nonluminescent calcite crystals may suggest that hydrothermal water was deeply recycled, reduced (Fe‐bearing) meteoric water heated in deeper strata, or water generated from TSR during hydrothermal water activity. Mixing of hydrothermal and local basinal water (or diagenetically altered connate water) with meteoric waters of late Permian age and/or later may have resulted in large variations in salinity of the present oilfield waters with the lowest salinity formation waters in the palaeohighs.  相似文献   

4.
More than a dozen hydrocarbon seep‐carbonate occurrences in late Jurassic to late Cretaceous forearc and accretionary prism strata, western California, accumulated in turbidite/fault‐hosted or serpentine diapir‐related settings. Three sites, Paskenta, Cold Fork of Cottonwood Creek and Wilbur Springs, were analyzed for their petrographic, geochemical and palaeoecological attributes, and each showed a three‐stage development that recorded the evolution of fluids through reducing–oxidizing–reducing conditions. The first stage constituted diffusive, reduced fluid seepage (CH4, H2S) through seafloor sediments, as indicated by Fe‐rich detrital micrite, corroded surfaces encrusted with framboidal pyrite, anhedral yellow calcite and negative cement stable isotopic signatures (δ13C as low as ?35.5‰ PDB; δ18O as low as ?10.8‰ PDB). Mega‐invertebrates, adapted to reduced conditions and/or bacterial chemosymbiosis, colonized the sites during this earliest period of fluid seepage. A second, early stage of centralized venting at the seafloor followed, which was coincident with hydrocarbon migration, as evidenced by nonluminescent fibrous cements with δ13C values as low as ?43.7‰ PDB, elevated δ18O (up to +2.3‰ PDB), petroleum inclusions, marine borings and lack of pyrite. Throughout these early phases of hydrocarbon seepage, microbial sediments were preserved as layered and clotted, nondetrital micrites. A final late‐stage of development marked a return to reducing conditions during burial diagenesis, as implied by pore‐associated Mn‐rich cement phases with bright cathodoluminescent patterns, and negative δ18O signatures (as low as ?14‰ PDB). These recurring patterns among sites highlight similarities in the hydrogeological evolution of the Mesozoic convergent margin of California, which influenced local geochemical conditions and organism responses. A comparison of stable carbon and oxygen isotopic data for 33 globally distributed seep‐carbonates, ranging in age from Devonian to Recent, delineated three groupings that reflect variable fluid input, different tectono‐sedimentary regimes and time–temperature‐dependent burial diagenesis.  相似文献   

5.
We present a structural, microstructural, and stable isotope study of a calcite vein mesh within the Cretaceous Natih Formation in the Oman Mountains to explore changes in fluid pathways during vein formation. Stage 1 veins form a mesh of steeply dipping crack‐seal extension veins confined to a 3.5‐m‐thick stratigraphic interval. Different strike orientations of Stage 1 veins show mutually crosscutting relationships. Stage 2 veins occur in the dilatant parts of a younger normal fault interpreted to penetrate the stratigraphy below. The δ18O composition of the host rock ranges from 21.8‰ to 23.7‰. The δ13C composition ranges from 1.5‰ to 2.3‰. This range is consistent with regionally developed diagenetic alteration at top of the Natih Formation. The δ18O composition of vein calcite varies from 22.5‰ to 26.2‰, whereas δ13C composition ranges from ?0.8‰ to 2.1‰. A first trend observed in Stage 1 veins involves a decrease of δ13C to compositions nearly 1.3‰ lower than the host rock, whereas δ18O remains constant. A second trend observed in Stage 2 calcite has δ18O values up to 3.3‰ higher than the host rock, whereas the δ13C composition is similar. Stable isotope data and microstructures indicate an episodic flow regime for both stages. During Stage 1, formation of a stratabound vein mesh involved bedding‐parallel flow, under near‐lithostatic fluid pressures. The 18O fluid composition was host rock‐buffered, whereas 13C composition was relatively depleted. This may reflect reaction of low 13C CO2 derived by fluid interaction with organic matter in the limestones. Stage 2 vein formation is associated with fault‐controlled fluid flow accessing fluids in equilibrium with limestones about 50 m beneath. We highlight how evolution of effective stress states and the growth of faults influence the hydraulic connectivity in fracture networks and we demonstrate the value of stable isotopes in tracking changes in fluid pathways.  相似文献   

6.
A. WILSON  C. RUPPEL 《Geofluids》2007,7(4):377-386
Thermohaline convection associated with salt domes has the potential to drive significant fluid flow and mass and heat transport in continental margins, but previous studies of fluid flow associated with salt structures have focused on continental settings or deep flow systems of importance to petroleum exploration. Motivated by recent geophysical and geochemical observations that suggest a convective pattern to near‐seafloor pore fluid flow in the northern Gulf of Mexico (GoMex), we devise numerical models that fully couple thermal and chemical processes to quantify the effects of salt geometry and seafloor relief on fluid flow beneath the seafloor. Steady‐state models that ignore halite dissolution demonstrate that seafloor relief plays an important role in the evolution of shallow geothermal convection cells and that salt at depth can contribute a thermal component to this convection. The inclusion of faults causes significant, but highly localized, increases in flow rates at seafloor discharge zones. Transient models that include halite dissolution show the evolution of flow during brine formation from early salt‐driven convection to later geothermal convection, characteristics of which are controlled by the interplay of seafloor relief and salt geometry. Predicted flow rates are on the order of a few millimeters per year or less for homogeneous sediments with a permeability of 10?15 m2, comparable to compaction‐driven flow rates. Sediment permeabilities likely fall below 10?15 m2 at depth in the GoMex basin, but such thermohaline convection can drive pervasive mass transport across the seafloor, affecting sediment diagenesis in shallow sediments. In more permeable settings, such flow could affect methane hydrate stability, seafloor chemosynthetic communities, and the longevity of fluid seeps.  相似文献   

7.
F. H. Weinlich 《Geofluids》2014,14(2):143-159
The ascent of magmatic carbon dioxide in the western Eger (Oh?e) Rift is interlinked with the fault systems of the Variscian basement. In the Cheb Basin, the minimum CO2 flux is about 160 m3 h?1, with a diminishing trend towards the north and ceasing in the main epicentral area of the Northwest Bohemian swarm earthquakes. The ascending CO2 forms Ca‐Mg‐HCO3 type waters by leaching of cations from the fault planes and creates clay minerals, such as kaolinite, as alteration products on affected fault planes. These mineral reactions result in fault weakness and in hydraulically interconnected fault network. This leads to a decrease in the friction coefficient of the Coulomb failure stress (CFS) and to fault creep as stress build‐up cannot occur in the weak segments. At the transition zone in the north of the Cheb Basin, between areas of weak, fluid conductive faults and areas of locked faults with frictional strength, fluid pressure can increase resulting in stress build‐up. This can trigger strike‐slip swarm earthquakes. Fault creep or movements in weak segments may support a stress build‐up in the transition area by transmitting fluid pressure pulses. Additionally to fluid‐driven triggering models, it is important to consider that fluids ascending along faults are CO2‐supersaturated thus intensifying the effect of fluid flow. The enforced flow of CO2‐supersaturated fluids in the transitional zone from high to low permeability segments through narrowings triggers gas exsolution and may generate pressure fluctuations. Phase separation starts according to the phase behaviour of CO2‐H2O systems in the seismically active depths of NW Bohemia and may explain the vertical distribution of the seismicity. Changes in the size of the fluid transport channels in the fault systems caused, or superimposed, by fault movements, can produce fluid pressure increases or pulses, which are the precondition for triggering fluid‐induced swarm earthquakes.  相似文献   

8.
It has been repeatedly shown that palaeoecological inferences from the elemental and isotopic content of carbonate hydroxylapatite of fossil teeth and bones are unrecoverable without removing diagenetic overprinting by chemical pretreatments. Such pretreatments may in turn cause modification of the biogenic signature. In this paper, we focus upon optimal removal of Ca–bearing carbonates (mainly calcite). In order to control the progress with time of calcite dissolution, we perform leaching under vacuum, and we monitor the evolution of the pH, pCO2, δ13C of released CO2, %C, δ13C and δ18O of the remaining mineral. For a set of different Quaternary bones and teeth, mass and isotopic balances indicate that 1 hour at most is necessary for complete dissolution of calcite with an optimal conservation of carbonate hydroxylapatite. Long–lasting experiments lead to a fractionation of hydroxylapatite 18O/16O carbonates.  相似文献   

9.
D. Zhu  Q. Meng  Z. Jin  W. Hu 《Geofluids》2015,15(4):527-545
Well TS1 reveals many uncemented pores and vugs at depths of more than 8000 m in a deep Cambrian dolomite reservoir in the Tarim Basin, northwestern China. The fluid environment and mechanism required for the preservation of reservoir spaces have yet not been well constrained. Carbon, oxygen, and strontium isotope compositions and fluid inclusion data suggest two types of fluids, meteoric water and hydrothermal fluid, affecting the Lower Paleozoic carbonate reservoirs in the Tarim Basin. Based on simulation using a thermodynamic model for H2O‐CO2‐NaCl‐CaCO3 system, meteoric water has the ability to continuously dissolve carbonate minerals during downward migration from the surface to deep strata until it reaches a transition depth, below which it will begin to precipitate carbonate minerals to fill preexisting pore spaces. In contrast, hydrothermal fluid has the ability to dissolve carbonate in deep strata and precipitate carbonate in shallow strata during upward migration. Based on the dissolution–precipitation characteristics of the two types of fluids, the ideal fluid environment for the preservation of preexisting reservoir spaces occurs when carbonate reservoir is neither in the CaCO3 precipitation domain of meteoric water nor in the CaCO3 precipitation domain of hydrothermal fluid. Taking the Lower Paleozoic carbonate reservoirs in the north uplift area as an example, the spaces in the deep Cambrian dolomite reservoir near well TS1 were seldom filled because thick Ordovician deposits blocked meteoric water from migrating downward into the Cambrian dolomite reservoir and because the Cambrian dolomite reservoir has been in the domain of hydrothermal dissolution since the Permian. The deep carbonate layers in basins elsewhere with a similar fluid environment may have high uncemented porosity and consequently have good hydrocarbon exploration potential.  相似文献   

10.
The concentrations of H2, O2, CO2, and concentrations and isotopic composition of the noble gases (including 222Rn), N2, CH4, and higher hydrocarbons dissolved in 4000 m deep‐seated fluids from a 12‐month fluid production test in the KTB pilot hole were analyzed. This determination of the gas geochemistry during the test in combination with the knowledge of the hydraulic data provides relevant information about the fluid hydraulics of the deep system. All gas concentrations and isotopic signatures, except for 222Rn, showed constancy during the course of the test. This, in combination with large fluid flow rates at a moderate water table drawdown, imply an almost infinite fluid reservoir in 4000 m depth. From the change in 222Rn‐activity as a function of pump rate, the contribution of smaller and wider pores to the overall fluid flow in an aquifer can be deduced. This 222Rn‐activity monitoring proved therefore to be a valuable instrument for the qualitative observation of the scavenging of pore and fracture surfaces, a hydraulic feature invisible to standard hydraulic testing tools. The observance of this scavenging effect is due to (i) the continuous on‐line geochemical monitoring, (ii) the durability of the test, (iii) a change in pump rate during the course of the test, and (iv) due to the short half‐life of 222Rn. The fluids have a 5.9% mantle He component, and a δ21Ne excess of 14%, and a noble gas model age of about (5.5–6.2) ± 2.0 Myr. The mean N2/Ar‐ratio of 516 and δ15N‐data of about +1.5‰ indicates sedimentary or metamorphic origin of N2. The hydrocarbons, amounting to 33 vol.% in the gas phase, are derived from thermal decomposition of marine organic matter of low maturity. But a key question, the identification of the potential source region of the fluids and the migration pathway, is still unidentified.  相似文献   

11.
L. Jiang  W. Pan  C. Cai  L. Jia  L. Pan  T. Wang  H. Li  S. Chen  Y. Chen 《Geofluids》2015,15(3):483-498
Permian hydrothermal activity in the Tarim Basin may have been responsible for the invasion of hot brines into Ordovician carbonate reservoirs. Studies have been undertaken to explain the origin and geochemical characteristics of the diagenetic fluid present during this hydrothermal event although there is no consensus on it. We present a genetic model resulting from the study of δ13C, δ18O, δ34S, and 87Sr/86Sr isotope values and fluid inclusions (FIs) from fracture‐ and vug‐filling calcite, saddle dolomite, fluorite, barite, quartz, and anhydrite from Ordovician outcrops in northwest (NW) Tarim Basin and subsurface cores in Central Tarim Basin. The presence of hydrothermal fluid was confirmed by minerals with fluid inclusion homogenization temperatures being >10°C higher than the paleo‐formation burial temperatures both in the NW Tarim and in the Central Tarim areas. The mixing of hot (>200°C), high‐salinity (>24 wt% NaCl), 87Sr‐rich (up to 0.7104) hydrothermal fluid with cool (60–100°C), low‐salinity (0 to 3.5 wt% NaCl), also 87Sr‐rich (up to 0.7010) meteoric water in the Ordovician unit was supported by the salinity of fluid inclusions, and δ13C, δ18O, and 87Sr/86Sr isotopic values of the diagenetic minerals. Up‐migrated hydrothermal fluids from the deeper Cambrian strata may have contributed to the hot brine with high sulfate concentrations which promoted thermochemical sulfate reduction (TSR) in the Ordovician, resulting in the formation of 12C‐rich (δ13C as low as ?13.8‰) calcite and 34S‐rich (δ34S values from 21.4‰ to 29.7‰) H2S, pyrite, and elemental sulfur. Hydrothermal fluid mixing with fresh water in Ordovician strata in Tarim Basin was facilitated by deep‐seated faults and up‐reaching faults due to the pervasive Permian magmatic activity. Collectively, fluid mixing, hydrothermal dolomitization, TSR, and faulting may have locally dissolved the host carbonates and increased the reservoir porosity and permeability, which has significant implications for hydrocarbon exploration.  相似文献   

12.
An integrated fluid inclusion and stable isotope study was carried out on hydrothermal veins (Sb‐bearing quartz veins, metal‐bearing fluorite–barite–quartz veins) from the Schwarzwald district, Germany. A total number of 106 Variscan (quartz veins related to Variscan orogenic processes) and post‐Variscan deposits were studied by microthermometry, Raman spectroscopy, and stable isotope analysis. The fluid inclusions in Variscan quartz veins are of the H2O–NaCl–(KCl) type, have low salinities (0–10 wt.% eqv. NaCl) and high Th values (150–350°C). Oxygen isotope data for quartz range from +2.8‰ to +12.2‰ and calculated δ18OH2O values of the fluid are between ?12.5‰ and +4.4‰. The δD values of water extracted from fluid inclusions vary between ?49‰ and +4‰. The geological framework, fluid inclusion and stable isotope characteristics of the Variscan veins suggest an origin from regional metamorphic devolatilization processes. By contrast, the fluid inclusions in post‐Variscan fluorite, calcite, barite, quartz, and sphalerite belong to the H2O–NaCl–CaCl2 type, have high salinities (22–25 wt.% eqv. NaCl) and lower Th values of 90–200°C. A low‐salinity fluid (0–15 wt.% eqv. NaCl) was observed in late‐stage fluorite, calcite, and quartz, which was trapped at similar temperatures. The δ18O values of quartz range between +11.1‰ and +20.9‰, which translates into calculated δ18OH2O values between ?11.0‰ and +4.4‰. This range is consistent with δ18OH2O values of fluid inclusion water extracted from fluorite (?11.6‰ to +1.1‰). The δD values of directly measured fluid inclusion water range between ?29‰ and ?1‰, ?26‰ and ?15‰, and ?63‰ and +9‰ for fluorite, quartz, and calcite, respectively. Calculations using the fluid inclusion and isotope data point to formation of the fluorite–barite–quartz veins under near‐hydrostatic conditions. The δ18OH2O and δD data, particularly the observed wide range in δD, indicate that the mineralization formed through large‐scale mixing of a basement‐derived saline NaCl–CaCl2 brine with meteoric water. Our comprehensive study provides evidence for two fundamentally different fluid systems in the crystalline basement. The Variscan fluid regime is dominated by fluids generated through metamorphic devolatilization and fluid expulsion driven by compressional nappe tectonics. The onset of post‐Variscan extensional tectonics resulted in replacement of the orogenic fluid regime by fluids which have distinct compositional characteristics and are related to a change in the principal fluid sources and the general fluid flow patterns. This younger system shows remarkably persistent geochemical and isotopic features over a prolonged period of more than 100 Ma.  相似文献   

13.
The Monte Perdido thrust fault (southern Pyrenees) consists of a 6‐m‐thick interval of intensely deformed clay‐bearing rocks. The fault zone is affected by a pervasive pressure solution seam and numerous shear surfaces. Calcite extensional‐shear veins are present along the shear surfaces. The angular relationships between the two structures indicate that shear surfaces developed at a high angle (70°) to the local principal maximum stress axis σ1. Two main stages of deformation are present. The first stage corresponds to the development of calcite shear veins by a combination of shear surface reactivation and extensional mode I rupture. The second stage of deformation corresponds to chlorite precipitation along the previously reactivated shear surfaces. The pore fluid factor λ computed for the two deformation episodes indicates high fluid pressures during the Monte Perdido thrust activity. During the first stage of deformation, the reactivation of the shear surface was facilitated by a suprahydrostatic fluid pressure with a pore fluid factor λ equal to 0.89. For the second stage, the fluid pressure remained still high (with a λ value ranging between 0.77 and 0.84) even with the presence of weak chlorite along the shear surfaces. Furthermore, evidence of hydrostatic fluid pressure during calcite cement precipitation supports that incremental shear surface reactivations are correlated with cyclic fluid pressure fluctuations consistent with a fault‐valve model.  相似文献   

14.
Calcite veins at outcrop in the Mesozoic, oil‐bearing Wessex Basin, UK, have been studied using field characterization, petrography, fluid inclusions and stable isotopes to help address the extent, timing and spatial and stratigraphic variability of basin‐scale fluid flow. The absence of quartz shows that veins formed at low temperature without an influence of hydrothermal fluids. Carbon isotopes suggest that the majority of vein calcite was derived locally from the host rock but up to one quarter of the carbon in the vein calcite came from CO2 from petroleum source rocks. Veins become progressively enriched in source‐rock‐derived CO2 from the outer margin towards the middle, indicating a growing influence of external CO2. The carbon isotope data suggest large‐scale migration of substantial amounts of CO2 around the whole basin. Fluid inclusion salinity data and interpreted water‐δ18O data show that meteoric water penetrated deep into the western part of the basin after interacting with halite‐rich evaporites in the Triassic section before entering fractured Lower and Middle Jurassic rocks. This large‐scale meteoric invasion of the basin probably happened during early Cenozoic uplift. A similar approach was used to reveal that, in the eastern part of the basin close to the area that underwent most uplift, uppermost Jurassic and Cretaceous rocks underwent vein formation in the presence of marine connate water suggesting a closed system. Stratigraphically underlying Upper Jurassic mudstone and Lower Cretaceous sandstone, in the most uplifted part of the basin, contain veins that resulted from intermediate behaviour with input from saline meteoric water and marine connate waters. Thus, while source‐rock‐derived CO2 seems to have permeated the entire section, water movement has been more restricted. Oil‐filled inclusions in vein calcite have been found within dominant E‐W trending normal faults, suggesting that these may have facilitated oil migration.  相似文献   

15.
Structural, petrographic, and isotopic data for calcite veins and carbonate host‐rocks from the Sevier thrust front of SW Montana record syntectonic infiltration by H2O‐rich fluids with meteoric oxygen isotope compositions. Multiple generations of calcite veins record protracted fluid flow associated with regional Cretaceous contraction and subsequent Eocene extension. Vein mineralization occurred during single and multiple mineralization events, at times under elevated fluid pressures. Low salinity (Tm = ?0.6°C to +3.6°C, as NaCl equivalent salinities) and low temperature (estimated 50–80°C for Cretaceous veins, 60–80°C for Eocene veins) fluids interacted with wall‐rock carbonates at shallow depths (3–4 km in the Cretaceous, 2–3 km in the Eocene) during deformation. Shear and extensional veins of all ages show significant intra‐ and inter‐vein variation in δ18O and δ13C. Carbonate host‐rocks have a mean δ18OV‐SMOW value of +22.2 ± 3‰ (1σ), and both the Cretaceous veins and Eocene veins have δ18O ranging from values similar to those of the host‐rocks to as low as +5 to +6‰. The variation in vein δ13CV‐PDB of ?1 to approximately +6‰ is attributed to original stratigraphic variation and C isotope exchange with hydrocarbons. Using the estimated temperature ranges for vein formation, fluid (as H2O) δ18O calculated from Cretaceous vein compositions for the Tendoy and Four Eyes Canyon thrust sheets are ?18.5 to ?12.5‰. For the Eocene veins within the Four Eyes Canyon thrust sheet, calculated H2O δ18O values are ?16.3 to ?13.5‰. Fluid–rock exchange was localized along fractures and was likely coincident with hydrocarbon migration. Paleotemperature determinations and stable isotope data for veins are consistent with the infiltration of the foreland thrust sheets by meteoric waters, throughout both Sevier orogenesis and subsequent orogenic collapse. The cessation of the Sevier orogeny was coincident with an evolving paleogeographic landscape associated with the retreat of the Western Interior Seaway and the emergence of the thrust front and foreland basin. Meteoric waters penetrated the foreland carbonate thrust sheets of the Sevier orogeny utilizing an evolving mesoscopic fracture network, which was kinematically related to regional thrust structures. The uncertainty in the temperature estimates for the Cretaceous and Eocene vein formation prevents a more detailed assessment of the temporal evolution in meteoric water δ18O related to changing paleogeography. Meteoric water‐influenced δ18O values calculated here for Cretaceous to Eocene vein‐forming fluids are similar to those previously proposed for surface waters in the Eocene, and those observed for modern‐day precipitation, in this part of the Idaho‐Montana thrust belt.  相似文献   

16.
Stylolites and the interfaces to the host limestone have been investigated by means of a multidisciplinary analytical approach (thin section microscopy, FIB‐TEM, organic geochemistry and petrography). Carbonate dissolution assuming different boundary conditions was simulated by applying a generic hydrogeochemical modelling approach. It is the conceptual approach to characterize and quantify traceable organic–inorganic interactions in stylolites dependent on organic matter type and its thermal maturity, and to follow stylolite formation in carbonates as result of organic matter reactivity rather than pressure solution as a main control. The investigated stylolite samples are of Upper Permian (Lopingian, Zechstein), Middle Triassic (Muschelkalk) and Late Cretaceous (Maastrichtian) age and always contain marine organic matter. The thermal maturity of the organic matter ranges from the pre‐oil generation zone (0.4–0.5% Rr) to the stage of dry gas generation (>1.3% Rr). The results of the generic hydrogeochemical modelling indicate a sharp increase of calcite dissolution and the beginning of stylolite formation at approximately 40°C, which is equivalent to a depth of less than 800 m under hydrostatic conditions considering a geothermal gradient of 30°C and a surface mean temperature of 20°C. This temperature corresponds to the pre‐oil window when kerogens release an aqueous fluid enriched in carbon dioxide and organic acids. This aqueous fluid may change the existing pore water pH or alkalinity and causes dissolution of carbonate, feldspar and quartz, and clay mineral precipitation along the stylolite. Dissolution of limestone and dolostone leads to reprecipitation of calcite or dolomite opposite of the dissolution side, which indicates only localized mass redistribution. All these integrated hydrogeochemical processes are coupled to the generation of water during organic matter maturation. In all of the calculated hydrogeochemical scenarios, H2O is a reaction product and its formation supports the suggested hypothesis.  相似文献   

17.
Y. Song  Z. Hou  Y. Cheng  T. Yang  C. Xue 《Geofluids》2016,16(1):56-77
Extensive quartz–carbonate–Cu sulfide veins occur in clastic rocks and are spatially related to Paleocene granites in the western border of the Lanping Basin, western Yunnan, China. Abundant aqueous‐carbonic fluid inclusions occur in these veins but their origin is debated. In the Jinman–Liancheng deposit, individual primary inclusion groups contain either exclusively liquid‐rich inclusions (Gl), or coexisting liquid‐rich and vapor‐rich inclusions (Glv). Microthermometry and estimate of CO2 content indicate that type Gl inclusions either have homogenization temperatures (Th) 238–263°C and contain c. 3.9–5.5 mole % CO2, or have Th 178–222°C and contain c. 1.6–3.2 mole % CO2. Type Glv inclusions are thought to represent samples of fluid unmixing that occurred at 183–218°C. At that time, the liquid phase in the unmixing fluid may contain c. 2.0–3.3 mole % CO2. As such, the correlation of CO2 content with Th for type Gl inclusions is thought to be caused by fluid unmixing with decreasing temperature and subsequent CO2 escape. δ18O and δD values of the parent water mainly fall in the field below that of primary magmatic water, indicative of fluid derivation from degassed (in open system) magmatic water, with no contributions from basinal or meteoric water. Initial Sr isotopic compositions of hydrothermal carbonates suggest that the fluid was magmatic, probably derived from the Paleogene granites. δ13CPDB values (?4‰ to ?7‰) of the hydrothermal carbonates and δ34SVCDT values of sulfides (mainly ?11‰ to +5‰) indicate that the carbon and sulfur can be derived from (degassed) magma and/or nonmagmatic sources. The CO2‐rich and magmatic‐water‐derived fluid at Jinman–Liancheng differs from the CO2‐poor and basinally derived fluid in sediment‐hosted stratiform Cu (SSC) deposits, which suggests that there are no genetic linkages between the vein Cu and SSC deposits in the Lanping Basin.  相似文献   

18.
X. R. Ming  L. Liu  M. Yu  H. G. Bai  L. Yu  X. L. Peng  T. H. Yang 《Geofluids》2016,16(5):1017-1042
This study investigates the Wangfu Depression of the Songliao Basin, China, as a natural analogue site for Fe migration (bleaching) and mineralization (formation of iron concretions) caused by reducing CO2‐bearing fluids that leak along fractures after carbon capture, utilization, and storage. We also examined the origin of fracture‐filling calcite veins, the properties of self‐sealing fluids, the influence of fluids on the compositions of mudstone and established a bleaching model for the study area. Our results show that iron concretions are the oxidative products of precursor minerals (pyrite and siderite) during uplift and are linked to H2S and CO2 present in early stage fluids. The precipitation of calcite veins is the result of CO2 degassing and is related to CO2, CH4, and minor heavy hydrocarbons in the main bleaching fluids. In our model, fluids preferentially enter high‐permeability fracture systems and result in the bleaching of surrounding rocks and precipitation of calcite veins. The infilling of calcite veins significantly decreases the permeability of fractures and forces the fluids to slowly enter and bleach the mudstone rocks. The Fe2+ released during bleaching migrates to elsewhere with the solutions or is reprecipitated in the calcite veins and iron concretions. The formation of calcite veins reduces the fracture space and effectively prevents fluid flow. The fluids have an insignificant effect on minerals within the mudstone. In terms of the chemistry of the mudstone, only the contents of Fe2O3, U, and Mo change significantly, with the content of U increasing in the mudstone and the contents of Fe2O3 and Mo decreasing during bleaching.  相似文献   

19.
The province of Burdur (SW Turkey) is seismically an active region. A structural, geochronological, petrographical, geochemical and fluid inclusion study of extension veins and fault‐related calcite precipitates has been undertaken to reconstruct the palaeofluid flow pattern in this normal fault setting in the Aegean region. A palaeostress analysis and U/Th dating of the precipitates reveals the neotectonic significance of the sampled calcites. Fluid inclusion microthermometry of calcites‐filling extension veins shows final melting temperatures (Tm ice) of 0°C. This indicates pure water, most likely of meteoric origin. The oxygen isotope values (?9.8‰ to ?6.5‰ VPDB) and the carbon isotopic composition (?10.4‰ to ?2.9‰ VPDB) of these calcites also show a near‐surface meteoric origin of the fluid responsible for precipitation. The microstructural characteristics of fault‐related calcites indicate that calcite precipitation was linked with fault activity. Final melting temperature of fault‐related calcites ranges between 0 and ?1.9°C. The oxygen isotope values show a broad range between ?15.0‰ and ?2.2‰ VPDB. Several of these calcites have a δ18O composition that is higher or lower than the oxygen isotopic composition of meteoric calcites in the area (i.e. between ?10‰ and ?6‰ VPDB). The δ13C composition largely falls within the range of the host limestones and reflects a rock‐buffered system. Microthermometry and stable isotopic study indicate a meteoric origin of the fluids with some degree of water–rock interaction or mixing with another fluid. Temperatures deduced from microthermometry and stable isotope analyses indicate precipitation temperatures around 50°C. These higher temperatures and the evidence for water–rock interaction indicate a flow path long enough to equilibrate with the host–rock limestone and to increase the temperature. The combined study of extension vein‐ and fault‐related calcite precipitates enables determining the origin of the fluids responsible for precipitation in a normal fault setting. Meteoric water infiltrated in the limestones to a depth of at least 1 km and underwent water–rock interaction or mixing with a residual fluid. This fluid was, moreover, tapped during fault activity. The extension veins, on the contrary, were passively filled with calcites precipitating from the downwards‐migrating meteoric water.  相似文献   

20.
In the North Aegean Domain, Thassos Island contains a Plio‐Pleistocene basin controlled by a large‐scale flat‐ramp extensional system with a potential décollement located at depth within a marble unit. Numerous mineralizations associated with normal faults of Plio‐Pleistocene age are the sign of fluid circulation during extension. Two main generations of fluid flow are recognized, related to Plio‐Pleistocene extension. A first circulation under high‐temperature conditions (about 100–200°C) resulted in dolomitization of marbles near the base of the Plio‐Pleistocene basin. The dolomites are characterized by low δ18O values (down to 11‰ versus Standard Mean Ocean Water). Some cataclastic deformation affected the dolomites. Hydrothermal quartz that crystallized in extension veins above a blind ramp also has low δ18O values (about 13‰). This shows that high‐temperature fluids moved up from the décollement level toward the surface. A second downward circulation of continental waters at near‐surface temperature is documented by calcite veins in fault zones and at the base of the Plio‐Pleistocene basin. These veins have O isotope values relatively constant at about 23–25‰ and C isotope values intermediate between the high δ13C value of the carbonate host rock (about 1–3‰ versus Peedee Belemnite) and the low δ13C value of soil‐derived carbon (?10‰). The calcites associated with the oxidative remobilization of primary sulphide Zn–Pb mineralization of Thassos carbonates have comparable O and C isotope compositions. Hot fluids, within the 100–200°C temperature range, have likely contributed to the weakening of the lower marble unit of Thassos and, thus, to the process of décollement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号