首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The traditional radiocarbon method widely used in archaeology and geology for chronological purposes can also be used in environmental studies. Combustion of fossil fuels like coal, natural gas, petroleum, etc., in industrial and/or heavily urbanized areas, has increased the concentration of carbon dioxide in the atmosphere. The addition of fossil carbon caused changes of carbon isotopic composition, in particular, a definite decrease of 14C concentration in atmospheric CO2 and other carbon reservoirs (ocean and terrestrial biosphere), known as the Suess effect. Tree rings, leaves, as well as other annual growing plants reflected the changes of radiocarbon concentration in the atmosphere due to processes of photosynthesis and assimilation of carbon from the air. By measuring radiocarbon concentration directly in atmospheric CO2 samples and/or biospheric material growing in industrial and/or highly urbanized areas where high emission of dead carbon is expected, it is possible to estimate the total emission of dead CO2. Based on equations of mass balance for CO2 concentration, stable isotopic composition of carbon and radiocarbon concentration it is possible to calculate CO2 con-centration associated with fossil fuel emission into the atmosphere. The procedure use differences between the radiocarbon concentration and stable isotope composition of carbon observed in clean areas and industrial or/and highly urbanized areas.  相似文献   

2.
G. Etiope  A. Ionescu 《Geofluids》2015,15(3):438-452
Metal‐catalysed CO2 hydrogenation is considered a source of methane in serpentinized (hydrated) igneous rocks and a fundamental abiotic process germane to the origin of life. Iron, nickel, chromium and cobalt are the catalysts typically employed in hydrothermal simulation experiments to obtain methane at temperatures >200°C. However, land‐based present‐day serpentinization and abiotic gas apparently develop below 100°C, down to approximately 40–50°C. Here, we document considerable methane production in thirteen CO2 hydrogenation experiments performed in a closed dry system, from 20 to 90°C and atmospheric pressure, over 0.9–122 days, using concentrations of non‐pretreated ruthenium equivalent to those occurring in chromitites in ophiolites or igneous complexes (from 0.4 to 76 mg of Ru, equivalent to the amount occurring approximately in 0.4–760 kg of chromitite). Methane production increased with time and temperature, reaching approximately 87 mg CH4 per gram of Ru after 30 days (2.9 mgCH4/gru/day) at 90°C. At room temperature, CH4 production rate was approximately three orders of magnitude lower (0.003 mgCH4/gru/day). We report the first stable carbon and hydrogen isotope ratios of abiotic CH4 generated below 100°C. Using initial δ13CCO2 of ‐40‰, we obtained room temperature δ13CCH4 values as 13C depleted as ?142‰. With time and temperature, the C‐isotope separation between CO2 and CH4 decreased significantly and the final δ13CCH4 values approached that of initial δ13CCO2. The presence of minor amounts of C2‐C6 hydrocarbons is consistent with observations in natural settings. Comparative experiments at the same temperatures with iron and nichel catalysts did not generate CH4. Ru‐enriched chromitites could potentially generate methane at low temperatures on Earth and on other planets.  相似文献   

3.
Geochemical and isotopic studies have been undertaken to assess the origin of CO2‐rich waters issuing in the northern part of Portugal. These solutions are hot (76°C) to cold (17°C) Na–HCO3 mineral waters. The δ2H and δ18O signatures of the mineral waters reflect the influence of altitude on meteoric recharge. The lack of an 18O‐shift indicates there has been no high temperature water–rock interaction at depth, corroborating the results of several chemical geothermometers (reservoir temperature of about 120°C). The low 14C activity (up to 9.9 pmC) measured in some of the cold CO2‐rich mineral waters (total dissolved inorganic carbon) is incompatible with the presence of 3H (from 1.7 to 4.1 TU) in those waters, which indicates relatively short subsurface circulation times. The δ13C values of CO2 gas and dissolved inorganic carbon range between ?6‰ and ?1‰ versus Vienna‐Peedee Belemnite, indicating that the total carbon in the recharge waters is being diluted by larger quantities of CO2 (14C‐free) introduced from deep‐seated (upper mantle) sources, masking the 14C‐dating values. The differences in the 87Sr/86Sr ratios of the studied thermal and mineral waters seem to be caused by water–rock interaction with different granitic rocks. Chlorine isotope signatures (?0.4‰ < δ37Cl < +0.4‰ versus standard mean ocean chloride) indicate that Cl in these waters could be derived from mixing of a small amount of igneous Cl from leaching of granitic rocks.  相似文献   

4.
Paleogeographic reconstructions and forecasts of climatic change have been based largely on the impact of cosmic and astronomic factors and have tended to ignore the impact of the geochemical activity of living organisms. Yet the CO2 cycle in the biosphere (volcanic emissions on the income side and photosynthesis and burial of dead organic matter on the outgo side) can have a significant impact on climatic change because of the greenhouse effect. The CO2 theory is used to explain the sequence of glacial and interglacial stages of the Pleistocene. Active volcanism during the Alpine mountain-building period resulted in a high CO2 content in the atmosphere fostering the building up of a large phytomass. The continued absorption of CO2 produced a cooling trend that led to the Ice Age. The spread of the ice sheet reduced the terrestrial biomass and thus the rate of CO2 absorption, resulting in an increase of CO2 in the atmosphere and a warming trend. In the interglacial stage that followed, the build-up of biomass again reduced atmospheric CO2, producing a new cooling trend. This natural glacial-interglacial rhythm has been modified in the last 5,000 years by human activity. Maninduced reduction of phytomass (through deforestation) and, more recently, the intensive combustion of fossil fuels tend to increase the CO2 content of the atmosphere (in contrast to the natural interglacial process) and make the advent of a new glacial stage unlikely. (The article was contributed by Victor L. Mote, University of Houston.)  相似文献   

5.
Values of δ13C are frequently reported with radiocarbon dates from organic materials. In C3 plants δ13C values have been linked to changes in water use efficiency as a response to arid conditions. By calculating 13C discrimination (Δ13C) from 13C isotopic composition (δ13C), archaeologists can gain potentially valuable inference into past climate conditions. Values of Δ13C reflect the process of discrimination against heavier 13C isotopes of carbon by comparing the δ13C of samples to that of the atmosphere, and can be calculated when records of atmospheric δ13CO2 are available. The present study examines a 1300 year history of radiocarbon-derived Δ13C from the Lower Alentejo of Portugal using charcoal recovered from excavations of a series of medieval habitation sites in the study area. To calculate Δ13C, the posterior means generated from Bayesian change-point analysis of δ13CO2 records were used. Archaeological data were then compared to contemporary ecological studies of Δ13C of the same taxa against instrumental records of climate. Values of Δ13C fell within mean ranges for the taxa through a period of population growth between the 7th and 10th centuries AD. During the height of the Medieval Warm Period in the 11th century AD Δ13C values frequently fell to low levels associated with arid conditions. At this time environmental degradation and erosion were documented. Values of Δ13C increased for a brief period in the early 12th century AD before the rural Lower Alentejo was largely abandoned for nearly two centuries. Another period of aridity occurred in the 16th and 17th centuries AD. Radiocarbon-derived Δ13C is a potentially useful paleoclimate proxy for archaeologists provided that results can be paired with observed Δ13C variation in studies that pair these data with instrumental climate records.  相似文献   

6.
Methane soil flux measurements have been made in 38 sites at the geothermal system of Sousaki (Greece) with the closed chamber method. Fluxes range from ?47.6 to 29 150 mg m?2 day?1, and the diffuse CH4 output of the system has been estimated at 19 t a?1. Contemporaneous CO2 flux measurements showed a moderate positive correlation between CO2 and CH4 fluxes. Comparison of the CO2/CH4 soil flux ratios with the CO2/CH4 ratio of the gases of the main gas manifestations provided evidence for methanotrophic activity within the soil. Laboratory CH4 consumption experiments confirmed the presence of methanotrophic microorganisms in soil samples collected at Sousaki. Consumption was generally in the range from ?4.9 to ?38.9 pmolCH4 h?1 g?1 but could sometimes reach extremely high values (?33 000 pmolCH4 h?1 g?1). These results are consistent with recent studies on other geothermal systems that revealed the existence of thermoacidophilic bacteria exerting methanotrophic activity in hot, acid soils, thereby reducing methane emissions to the atmosphere.  相似文献   

7.
L. Wang  Y. Cheng  W. Li 《Geofluids》2014,14(4):379-390
This study assesses the displacement of coalbed methane by CO2 migration along a fault into the coal seam in the Yaojie coalfield. Coal and gas samples were collected continuously at various distances in NO.2 coal seam from F19 fault. Vitrinite reflectance, maceral, and pore distributions and proximate analysis of fourteen coal samples were performed. Gas components, concentrations, carbon isotopes of 28 gas samples were determined. We examined the coal–gas trace characteristics of coalbed methane displaced away from the fault by CO2 injection after geological ages. From east to west, away from the F19 fault, the CO2 concentration decreased, whereas the CH4 concentration increased gradually. The δ13C values for CO2 varied between ?9.94‰ and 1.12‰, suggesting a metamorphic origin. A wider range of values (from ?9.94‰ to 20‰) was associated with the mixing of microbial carbon dioxide, isotopic fractionation during CO2 migration through the microporous structures of coals, and/or carbon isotope fractionation during gas–water exchange and dissolution of CO2. Away from the F19 fault, the volumes of micropores, mesopores and macropores decrease gradually. The Dubinin–Radushkevich (DR) micropore volume decreased from 0.0059 to 0.0037 cmg‐1, and the mesopore and macropore volumes decreased from 0.066 to 0.026 cmg‐1. The CO2 injection can mobilize aromatic hydrocarbons and mineral matter from coal matrix, resulting in the decrease in the absorption peak intensity for coal samples after supercritical CO2 treatment, which indicates that chemical reactions occur between coal and CO2, not only physical adsorption.  相似文献   

8.
P. Birkle 《Geofluids》2016,16(3):565-584
Provenance studies of produced water are essential to trace flow dynamics and reservoir compartmentalization in petroleum systems and to quantify fluid recovery rates from unconventional fracturing. Produced water from a hydraulically fractured well in the Qusaiba Hot Shale in the Northern Exploration Area, Saudi Arabia, was daily monitored and analyzed for water chemistry, and environmental (δ2H, δ13C, δ18OH2O, δ18OSO4, δ34SSO4, δ37Cl, 87Sr/86Sr) and cosmogenic isotopes (3H, 14C, 36Cl), to differentiate from reference fluids of supply water, fracturing fluids, and formation water from adjacent Paleozoic units. Initially, recovered water is composed of fracturing fluids and subsequently replaced by a homogeneous cut of pristine formation water. Formation water is composed of dominant meteoric water (approximately 84 vol%) and minor fossil evaporated seawater. The young 14C‐apparent age between 6000 and 6700 years BP and depleted δ18O/δ2H values for the meteoric component confirm the infiltration of surface water into the Qusaiba Hot Shale interval or adjacent units during the Early Holocene Pluvial Period under cooler and wetter climatic conditions than present, which suggest the presence of a very recent, dynamic hydraulic flow system. 36Cl/Cl ratios between 102 × 10?15 and 31 × 10?15 are ambiguous and can be attributed to atmospheric recharge close to the coast, mixing of 36Cl‐enriched Quaternary meteoric recharge with 36Cl‐depleted fossil seawater, and/or hypogene production by U‐Th‐enriched host rock. Produced waters from Qusaiba Hot Shale are within the compositional range of Na‐Cl‐type formation water from Paleozoic reservoir units in northern Saudi Arabia with salinities from 30 000 to 130 000 mg l?1. As a novel technological approach for exploration wells in Northern Saudi Arabia, multi‐isotopic methods were successfully implemented to quantify flowback volumes from hydraulic fracturing, and to fingerprint pristine formation water or pore water in Paleozoic systems on their provenance, residence time, migration pathways, and secondary alteration processes.  相似文献   

9.
We present a structural, microstructural, and stable isotope study of a calcite vein mesh within the Cretaceous Natih Formation in the Oman Mountains to explore changes in fluid pathways during vein formation. Stage 1 veins form a mesh of steeply dipping crack‐seal extension veins confined to a 3.5‐m‐thick stratigraphic interval. Different strike orientations of Stage 1 veins show mutually crosscutting relationships. Stage 2 veins occur in the dilatant parts of a younger normal fault interpreted to penetrate the stratigraphy below. The δ18O composition of the host rock ranges from 21.8‰ to 23.7‰. The δ13C composition ranges from 1.5‰ to 2.3‰. This range is consistent with regionally developed diagenetic alteration at top of the Natih Formation. The δ18O composition of vein calcite varies from 22.5‰ to 26.2‰, whereas δ13C composition ranges from ?0.8‰ to 2.1‰. A first trend observed in Stage 1 veins involves a decrease of δ13C to compositions nearly 1.3‰ lower than the host rock, whereas δ18O remains constant. A second trend observed in Stage 2 calcite has δ18O values up to 3.3‰ higher than the host rock, whereas the δ13C composition is similar. Stable isotope data and microstructures indicate an episodic flow regime for both stages. During Stage 1, formation of a stratabound vein mesh involved bedding‐parallel flow, under near‐lithostatic fluid pressures. The 18O fluid composition was host rock‐buffered, whereas 13C composition was relatively depleted. This may reflect reaction of low 13C CO2 derived by fluid interaction with organic matter in the limestones. Stage 2 vein formation is associated with fault‐controlled fluid flow accessing fluids in equilibrium with limestones about 50 m beneath. We highlight how evolution of effective stress states and the growth of faults influence the hydraulic connectivity in fracture networks and we demonstrate the value of stable isotopes in tracking changes in fluid pathways.  相似文献   

10.
Wood ash, composed mainly of the mineral calcite, is an important component in many archaeological sites. Identification of wood ash in the archaeological record is often difficult due to mixing of ash with other calcitic components of geogenic origin and/or due to diagenetic changes. A recent empirical study using the stable isotope compositions of carbon (δ13C) and oxygen (δ18O) in wood ash enabled the identification of mixtures of wood ash with geogenic calcite and to follow diagenetic changes due to partial dissolution and re-precipitation of ash in two prehistoric cave sites in Israel. Little however is known about the processes responsible for the isotopic compositions of wood ash in relation to formation at various temperatures and the influence on isotopic composition of ash from a variety of plant species. Here we present an experimental study of wood ash formed by burning three C3 tree species and one C4 desert bush at different temperatures. The results indicate that there are significant differences in the isotopic compositions of carbon and oxygen between wood ash that forms by combustion at a relatively low temperature (500 °C) and at a higher temperature (900 °C). In addition, we show that the isotopic composition of carbon and oxygen in high temperature wood ash approaches equilibrium over a period of several months and that the carbon isotopic composition of low temperature wood ash may reflect the photosynthetic pathway of the burnt woody species. Lastly, we show that the isotopic compositions obtained from wood ash prepared at different temperatures do not reflect a temperature dependent fractionation process, but a mixing line between calcite that formed by low temperature combustion and calcite formed by high temperature combustion which later underwent re-carbonation with atmospheric CO2. In addition, we suggest that exchange processes may possibly occur during combustion between decomposing calcium-oxalate and atmospheric O2, CO2 and CO. The archaeological implications of this study are discussed in relation to identification of wood ash in the archaeological record, identification of fuel sources and burning temperatures, and diagenetic changes expected in karstic cave environments. The method presented here can be applied at any archaeological site.  相似文献   

11.
High mole fraction CO2 gases pose a significant risk to hydrocarbon exploration in some areas. The generation and movement of CO2 are also of scientific interest, particularly because CO2 is an important greenhouse gas. We have developed a model of CO2 generation, migration, and titration in basins in which a high mole fraction CO2 gas is generated by the breakdown of siderite (FeCO3) and magnesite (MgCO3) where parts of the basin are being heated above approximately 330°C. The CO2 reacts with Fe‐, Mg‐, and Ca‐silicates as it migrates upward and away from the generation zone (CO2‐kitchen). Near the kitchen, where the Fe‐, Mg‐, and Ca‐silicates have been titrated and destroyed by previous packets of migrating CO2, gas moves upward without lowering its CO2 mole fraction. Further on, where Fe‐ and Mg‐silicates are still present but Ca‐silicates are absent in the sediments, the partial pressure of CO2 is constrained to 0.1–30 bars and reservoirs contain a few mole percent CO2 as described by Smith & Ehrenberg (1989) . Still further from the source, where Ca‐silicates have not been titrated, partial pressure of CO2 in migrating methane gas are orders of magnitude lower. A 2D numerical model of CO2 generation, migration, and titration quantifies these buffer relations and makes predictions of CO2 risk in the South China Sea that are compatible with exploration experience. Reactive CO2 transport models of the kind described could prove useful in determining how gases migrate in faulted sedimentary basins.  相似文献   

12.
Stable carbon and oxygen isotope values (δ13C, δ18O) were obtained for structural carbonate in the bioapatite of archaeological bones from Guatemala and Sudan using several common analytical methods. For the Sudan samples, the different methods produced δ13C values within ±0.1‰ and δ18O values within ±0.7‰, on average. The isotopic results for the Guatemala samples were similar in reproducibility to the Sudan samples when obtained using methods that employed lower reaction temperatures and reactions in sealed vessels. However, many Guatemala samples had highly variable and extremely low δ18O values when reacted at higher temperatures in vessels that remained open to cryogenic traps. The latter arrangement caused reaction products to be removed immediately upon their production. The anomalously low δ18O values are related to the production of a contaminant gas that causes the m/z 46/44 ratio to be lowered, either by adding to the m/z 44 peak or subtracting from the m/z 46 peak. That said, potential contaminant materials were not detectable in “anomalous” bones using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, or inductively-coupled plasma atomic emission spectroscopy. However, subtle structural and chemical differences between “normal” and “anomalous” samples were observed, most notably in the FTIR ν2 CO3 domain. We suggest that these changes promote volatilization of an oxyphosphorus compound and oxygen isotope fractionation between PO derived from this compound and CO2 derived from bone carbonate. Production of the contaminant gas and the related “anomalous” δ18O values is reversible if the reaction occurs within a sealed vessel for a sufficient period of time, which allows a “back-reaction” to occur.  相似文献   

13.
The Jian copper deposit, located on the eastern edge of the Sanandaj–Sirjan metamorphic zone, southwest of Iran, is contained within the Surian Permo‐Triassic volcano‐sedimentary complex. Retrograde metamorphism resulted in three stages of mineralization (quartz ± sulfide veins) during exhumation of the Surian metamorphic complex (Middle Jurassic time; 159–167 Ma), and after the peak of the metamorphism (Middle to Late Triassic time; approximately 187 Ma). The early stage of mineralization (stage 1) is related to a homogeneous H2O–CO2 (XCO2 > 0.1) fluid characterized by moderate salinity (<10 wt.% NaCl equivalent) at high temperature and pressure (>370°C, >3 kbar). Early quartz was followed by small amounts of disseminated fine‐grained pyrite and chalcopyrite. Most of the main‐ore‐stage (stage 2) minerals, including chalcopyrite, pyrite and minor sphalerite, pyrrhotite, and galena, precipitated from an aqueous‐carbonic fluid (8–18 wt.% NaCl equivalent) at temperatures ranging between 241 and 388°C during fluid unmixing process (CO2 effervescence). Fluid unmixing in the primary carbonaceous fluid at pressures of 1.5–3 kbar produced a high XCO2 (>0.05) and a low XCO2 (<0.01) aqueous fluid in ore‐bearing quartz veins. Oxygen and hydrogen isotope compositions suggest mineralization by fluids derived from metamorphic dehydration (δ18Ofluid = +7.6 to +10.7‰ and δD = ?33.1 to ?38.5‰) during stage 2. The late stage (stage 3) is related to a distinct low salinity (1.5–8 wt.% NaCl equivalent) and temperatures of (120–230°C) aqueous fluid at pressures below 1.5 kbar and the deposition of post‐ore barren quartz veins. These fluids probably derived from meteoric waters, which circulated through the metamorphic pile at sufficiently high temperatures and acquire the characteristics of metamorphic fluids (δ18Ofluid = +4.7 to +5.1‰ and δD = ?52.3 to ?53.9‰) during waning stages of the postearly Cimmerian orogeny in Surian complex. The sulfide‐bearing quartz veins are interpreted as a small‐scale example of redistribution of mineral deposits by metamorphic fluids. This study suggests that mineralization at the Jian deposit is metamorphogenic in style, probably related to a deep‐seated mesothermal system.  相似文献   

14.
Numerical simulations of multiphase CO2 behavior within faulted sandstone reservoirs examine the impact of fractures and faults on CO2 migration in potential subsurface injection systems. In southeastern Utah, some natural CO2 reservoirs are breached and CO2‐charged water flows to the surface along permeable damage zones adjacent to faults; in other sites, faulted sandstones form barriers to flow and large CO2‐filled reservoirs result. These end‐members serve as the guides for our modeling, both at sites where nature offers ‘successful’ storage and at sites where leakage has occurred. We consider two end‐member fault types: low‐permeability faults dominated by deformation‐band networks and high‐permeability faults dominated by fracture networks in damage zones adjacent to clay‐rich gouge. Equivalent permeability (k) values for the fault zones can range from <10?14 m2 for deformation‐band‐dominated faults to >10?12 m2 for fracture‐dominated faults regardless of the permeability of unfaulted sandstone. Water–CO2 fluid‐flow simulations model the injection of CO2 into high‐k sandstone (5 × 10?13 m2) with low‐k (5 × 10?17 m2) or high‐k (5 × 10?12 m2) fault zones that correspond to deformation‐band‐ or fracture‐dominated faults, respectively. After 500 days, CO2 rises to produce an inverted cone of free and dissolved CO2 that spreads laterally away from the injection well. Free CO2 fills no more than 41% of the pore space behind the advancing CO2 front, where dissolved CO2 is at or near geochemical saturation. The low‐k fault zone exerts the greatest impact on the shape of the advancing CO2 front and restricts the bulk of the dissolved and free CO2 to the region upstream of the fault barrier. In the high‐k aquifer, the high‐k fault zone exerts a small influence on the shape of the advancing CO2 front. We also model stacked reservoir seal pairs, and the fracture‐dominated fault acts as a vertical bypass, allowing upward movement of CO2 into overlying strata. High‐permeability fault zones are important pathways for CO2 to bypass unfaulted sandstone, which leads to reduce sequestration efficiency. Aquifer compartmentalization by low‐permeability fault barriers leads to improved storativity because the barriers restrict lateral CO2 migration and maximize the volume and pressure of CO2 that might be emplaced in each fault‐bound compartment. As much as a 3.5‐MPa pressure increase may develop in the injected reservoir in this model domain, which under certain conditions may lead to pressures close to the fracture pressure of the top seal.  相似文献   

15.
Y. Song  Z. Hou  Y. Cheng  T. Yang  C. Xue 《Geofluids》2016,16(1):56-77
Extensive quartz–carbonate–Cu sulfide veins occur in clastic rocks and are spatially related to Paleocene granites in the western border of the Lanping Basin, western Yunnan, China. Abundant aqueous‐carbonic fluid inclusions occur in these veins but their origin is debated. In the Jinman–Liancheng deposit, individual primary inclusion groups contain either exclusively liquid‐rich inclusions (Gl), or coexisting liquid‐rich and vapor‐rich inclusions (Glv). Microthermometry and estimate of CO2 content indicate that type Gl inclusions either have homogenization temperatures (Th) 238–263°C and contain c. 3.9–5.5 mole % CO2, or have Th 178–222°C and contain c. 1.6–3.2 mole % CO2. Type Glv inclusions are thought to represent samples of fluid unmixing that occurred at 183–218°C. At that time, the liquid phase in the unmixing fluid may contain c. 2.0–3.3 mole % CO2. As such, the correlation of CO2 content with Th for type Gl inclusions is thought to be caused by fluid unmixing with decreasing temperature and subsequent CO2 escape. δ18O and δD values of the parent water mainly fall in the field below that of primary magmatic water, indicative of fluid derivation from degassed (in open system) magmatic water, with no contributions from basinal or meteoric water. Initial Sr isotopic compositions of hydrothermal carbonates suggest that the fluid was magmatic, probably derived from the Paleogene granites. δ13CPDB values (?4‰ to ?7‰) of the hydrothermal carbonates and δ34SVCDT values of sulfides (mainly ?11‰ to +5‰) indicate that the carbon and sulfur can be derived from (degassed) magma and/or nonmagmatic sources. The CO2‐rich and magmatic‐water‐derived fluid at Jinman–Liancheng differs from the CO2‐poor and basinally derived fluid in sediment‐hosted stratiform Cu (SSC) deposits, which suggests that there are no genetic linkages between the vein Cu and SSC deposits in the Lanping Basin.  相似文献   

16.
Through isotopic investigations of directly dated human remains recovered from the Eton College Rowing Course, we examine changes in diet from the Neolithic to the Roman period. The human isotope signatures point to a diet based on C3 terrestrial resources. A significant correlation is visible between human ??13C values and time, but no such trend is observed in ??15N. The animal isotope data from Eton are unevenly distributed, making it difficult to determine if the human values mirror the animal values. To assess whether the results from Eton are typical, we compare our results to isotope data from other British sites dating from the Neolithic to the Roman period. Across this time period, we see a strong correlation between the mean ??15N of the humans and that of the main domesticated herbivores, with an offset of ??4.5?? between the two. Thus, the changes in the human isotope values are likely linked to changes in the isotopic signatures of the herbivores rather than changes in the protein composition of human diets. By contrast, no clear temporal relationship is observed between the mean ??13C of the humans and that of the main domesticated herbivores, with an offset of ??1.4?? between the two. There is, however, a weak correlation observed between the mean ??13C of the humans and that of the cattle, which may account for some of the variation in human ??13C values between sites. The absence of a strong correlation between mean human and animal ??13C suggests that the primary factor influencing human ??13C values between sites is dietary composition. The lack of co-variation between ??13C and ??15N is likely to reflect the different representation of dietary macronutrients. Given that the nitrogen results suggest that the animal protein consumption patterns are similar across sites, the human ??13C variation between sites is likely to reflect the plant portion of the diet.  相似文献   

17.
Mineral deposits in the Cupp‐Coutunn/Promeszutochnaya cave system (Turkmenia, central Asia) record a phase of hydrothermal activity within a pre‐existing karstic groundwater conduit system. Hydrothermal fluids entered the caves through fault zones and deposited sulphate, sulphide and carbonate minerals under phreatic conditions. Locally, intense alteration of limestone wall rocks also occurred at this stage. Elsewhere in the region, similar faults contain economic quantities of galena and elemental sulphur mineralization. Comparisons between the Pb and S isotope compositions of minerals found in cave and ore deposits confirm the link between economic mineralization and hydrothermal activity at Cupp‐Coutunn. The predominance of sulphate mineralization in Cupp‐Coutunn implies that the fluids were more oxidized in the higher permeability zone associated with the karst aquifer. A slight increase in the δ34S of sulphate minerals and a corresponding δ34S decrease in sulphides suggest that partial isotopic equilibration occurred during oxidation. Carbonate minerals indicate that the hydrothermal fluid was enriched in 18O (δ18OSMOW ~ + 10‰) relative to meteoric groundwater and seawater. Estimated values for δ13CDIC (δ13CPDB ~ ? 13‰) are consistent with compositions expected for dissolved inorganic carbon (DIC) derived from the products of thermal decomposition of organic matter and dissolution of marine carbonate. Values derived for δ13CDIC and δ18Owater indicate that the hydrothermal fluid was of basinal brine origin, generated by extensive water–rock interaction. Following the hydrothermal phase, speleothemic minerals were precipitated under vadose conditions. Speleothemic sulphates show a bimodal sulphur isotope distribution. One group has compositions similar to the hydrothermal sulphates, whilst the second group is characterized by higher δ34S values. This latter group may either record the effects of microbial sulphate reduction, or reflect the introduction of sulphate‐rich groundwater generated by the dissolution of overlying evaporites. Oxygen isotope compositions show that calcite speleothems were precipitated from nonthermal groundwater of meteoric origin. Carbonate speleothems are relatively enriched in 13C compared to most cave deposits, but can be explained by normal speleothem‐forming processes under thin, arid‐zone soils dominated by C4 vegetation. However, the presence of sulphate speleothems, with isotopic compositions indicative of the oxidation of hydrothermal sulphide, implies that CO2 derived by reaction of limestone with sulphuric acid (‘condensation corrosion’) contributed to the formation of 13C‐enriched speleothem deposits.  相似文献   

18.
Geological storage of CO2 in depleted oil and gas reservoirs is one of the most promising options to reduce atmospheric CO2 concentrations. Of great importance to CO2 mitigation strategies is maintaining caprock integrity. Worldwide many current injection sites and potential storage sites are overlain by anhydrite‐bearing seal formations. However, little is known about the magnitude of the permeability change accompanying dilatation and failure of anhydrite under reservoir conditions. To this extent, we have performed triaxial compression experiments together with argon gas permeability measurements on Zechstein anhydrite, which caps many potential CO2 storage sites in the Netherlands. Our experiments were performed at room temperature at confining pressures of 3.5–25 MPa. We observed a transition from brittle to semi‐brittle behaviour over the experimental range, and peak strength could be described by a Mogi‐type failure envelope. Dynamic permeability measurements showed a change from ‘impermeable’ (<10?21 m2) to permeable (10?16 to 10?19 m2) as a result of mechanical damage. The onset of measurable permeability was associated with an increase in the rate of dilatation at low pressures (3.5–5 MPa), and with the turning point from compaction to dilatation in the volumetric versus axial strain curve at higher pressures (10–25 MPa). Sample permeability was largely controlled by the permeability of the shear faults developed. Static, postfailure permeability decreased with increasing effective mean stress. Our results demonstrated that caprock integrity will not be compromised by mechanical damage and permeability development. Geofluids (2010) 10 , 369–387  相似文献   

19.
This paper describes the design features and capabilities of a portable automated in‐situ closed chamber (ISCC) for the quantification of CO2 fluxes in dryland soils where both photosynthetic and respiratory components may be associated with a cyanobacterial crust. The processes of CO2 flux in dryland soils are briefly described in order to clarify the conditions that make quantification of these fluxes problematic. The instrumentation currently available for in‐situ soil CO2 flux measurements is then reviewed demonstrating their inadequacies for the dryland environment. The ISCC described here is a member of the closed or enrichment class of soil respiration chambers. The ISCC, however, features an optical window possessing high (>90%) transmission in the photosynthetic active region (PAR) of the solar irradiance spectrum, permitting observations of photosynthesis. The ISCC possesses automatic venting and purging so that gaseous concentrations inside the chamber do not change from ambient sufficiently to significantly affect diffusion. The ISCC features both active and passive cooling employing internal solid‐state Peltier coolers and external aluminised Mylar respectively. This avoids severe disturbance of the microclimate within the chamber due to admission of high fluxes of PAR and permits in‐situ operation under a wide range of ambient field temperatures (~ ?5 to 40°C). Sensors internal to the chamber monitor temperature, relative humidity, irradiance and pressure. In this implementation the ISCC is coupled to a portable gas chromatograph (Agilent GC‐3000) to sample the chamber atmosphere. Indicative data for Kalahari Sand soils of Botswana are presented as an illustration of the general performance characteristics.  相似文献   

20.
Magnetospheric electrons from hundreds of keV to over 10MeV in energy have been systematically measured at geostationary altitude (6.6 RE) for well over a decade. We find evidence of significant diurnal, solar-rotational (27-day), annual, and solar-cycle (11-yr) variations in the fluxes of the relativistic electron component. We have also used low-altitude satellite data and sounding rocket measurements to characterize the location and strength of the relativistic electron precipitation into the atmosphere. We conclude that the magnetospheric electrons, when dumped into the middle atmosphere, represent a very significant ionization source which affects the pattern of conductivity, electric fields, and atmospheric chemistry. These measurements—when combined with global atmospheric modeling—suggest that relativistic electrons provide a robust coupling mechanism to impose long-term solar wind and magnetospheric variability onto the Earth's deep atmospheric regions. A strong 11-yr cycle of relativistic electron effects is found in available atmospheric data sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号