首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A combined clay mineralogical, fluid inclusion, and K‐Ar study of Upper Jurassic metasediments at the Gehn (Lower Saxony Basin, Germany) provides evidence for a transient hydrothermal event during Upper Cretaceous basin inversion centered on a prominent gravimetric anomaly. Kaolinite and smectite in Oxfordian pelitic parent rocks that cap a deltaic sandstone unit were locally transformed into pyrophyllite, 2M1 illite, R3 illite–smectite, chlorite, and berthierine at the Ueffeln quarry. The pyrophyllite‐bearing metapelites lack bedding‐parallel preferred orientation of sheet silicates and experienced peak temperatures of about 260–270°C consistent with microthermometric data on quartz veins in the underlying silicified sandstones. The presence of expandable layers in illite–smectite and high Kübler Index values indicate that the thermal event was rather short‐lived. K‐Ar dating of the <0.2 μm fraction of the pyrophyllite‐bearing Ueffeln metapelite yields a maximum illitization age of 117 ± 2 Ma. Lower trapping temperatures of aqueous fluid inclusions in quartz veins and the absence of pyrophyllite in metapelites of the Frettberg quarry in a distance of about 2.5 km from the Ueffeln quarry infer maximum paleotemperatures of only 220°C. The highly localized thermal anomaly at Ueffeln suggests fault‐controlled fluid migration and heat transfer that provided a thermal aureole for pyrophyllite formation in the metapelites rather than metamorphism due to deep burial. A pH neutral hydrothermal fluid that formed by devolatilization reactions or less likely by mixing of meteoric and marine waters that interacted at depth with shales is indicated by the low salinity (3–5 wt. % NaCl equiv.) of aqueous inclusions, their coexistence with methane–carbon dioxide‐dominated gas inclusions as well as carbon, hydrogen, and oxygen isotope data. The upwelling zone of hydrothermal fluids and the thermal maximum is centered on a gravimetric anomaly interpreted as an igneous intrusion (‘Bramsche Massif’) providing the heat source for the intrabasinal hydrothermal system.  相似文献   

2.
The calc‐alkaline plutonic complex from Charroux‐Civray (north‐western part of the French Massif Central) displays multiphase hydrothermal alteration. Plutonic rocks, as well as early retrograde Ca–Al silicate assemblages, which have crystallized during cooling and uplifting of the plutonic series, are affected by multiphase chlorite–phengite–illite–carbonate alteration linked to intense pervasive fluid circulation through microfractures. The petrographic study of alteration sequences and their associated fluid inclusions in microfissures of the plutonic rocks, as well as in mineral fillings of the veins, yields a reconstruction of the PTX evolution of the Hercynian basement after the crystallization of the main calc‐alkaline plutonic bodies. This reconstruction covers the uplift of the basement to its exposure and the subsequent burial by Mesozoic sediments. Cooling of the calc‐alkaline plutonic series started at solidus temperatures (~650°C), at a pressure of about 4 kbar (1 bar = 105 N m?2), as indicated by magmatic epidote stability, hornblende barometry and fluid inclusion data. Cooling continued under slightly decreasing pressure during uplift down to 2–3 kbar at 200–280°C (prehnite–pumpellyite paragenesis). Then, a hot geothermal circulation of CO2‐bearing fluids was induced within the calc‐alkaline rocks leading to the formation of greisen‐like mineralizations. During this stage, temperatures around 400–450°C were still high for the inferred depths (~2 kbar). They imply abnormal heat flows and thermal gradients of 60–80°C km?1. The hypothesis of the existence of one large or a succession of smaller peraluminous plutons at depth, supported by geophysical data, suggests that localized heat flows were linked to concealed leucogranite intrusions. As uplift continued, greisen mineralization was subsequently affected by the chlorite–phengite–dolomite assemblage, correlated with aqueous and nitrogen‐bearing fluid circulations in the temperature range of 400–450°C. In a later stage, a continuous temperature decrease at constant pressure (~0.5 kbar) led to the alteration of the dolomite–illite–chlorite type in the 130–250°C temperature range.  相似文献   

3.
Uranium/thorium (U/Th)‐rich bitumen has been discovered within both Palaeoproterozoic black pelites and the Archean granitic basement of the Rum Jungle Mineral Field, Northern Territory, Australia. Granite‐hosted bitumen occurs as small (up to 400‐µm diameter) discrete individual nodules, which exhibit many morphological similarities to those observed in Phanerozoic siliciclastic rocks. Thorium, the dominant radioelement, occurs primarily as a hydrated Th–Y–Si–P phase. Uranium‐rich inclusions are rare, and correspond to a hydrated U–Th–Y–Si–P phase, identified as coffinite–thorogummite. Metasediment‐hosted bitumen is more variable in morphology, occurring as massive (<2 cm in width) veins that cross‐cut all foliations, as discrete individual nodules or as elongate seams (up to 500 µm in length), interpreted to represent a series of coalesced individual nodules. In all examples, uranium, the dominant radioelement in the metasediment‐hosted bitumen, is present as Th‐poor uraninite, with variable Y2O3 contents (up to 3.21 wt.%). Raman investigation of all types of bitumen indicates that it is a poorly organized carbonaceous matter, which has not been subjected to metamorphism. Consequently, a post‐metamorphic timing for hydrocarbon emplacement can be inferred and a magmatic origin can be precluded. Potential source rocks for the bitumen are black shales of the Whites Formation (up to 8 wt.% total organic carbon (TOC)) and the Koolpin Formation (approximately 13 wt.% TOC). Post‐metamorphic sericitization of rocks within the Whites Formation is accompanied by a near‐complete removal of organic matter. Alteration was possibly the catalyst for hydrocarbon generation. The Th–Y–Si–P phase within the granite‐hosted nodules is interpreted to be the result of the alteration of antecedent monazite. During this alteration, U, LREE and P were fractionated and removed, while Th, Y and Si remained immobile, and recombined to form a hydrated Th–Y–Si phase. This pervasive alteration within the basement U/Th‐rich granites is proposed as a genetic model for the formation of uranium deposits in the Rum Jungle Mineral Field and possibly unconformity associated uranium deposits on a global scale.  相似文献   

4.
Quartz veins acted as impermeable barriers to regional fluid flow and not as fluid‐flow conduits in Mesoproterozoic rocks of the Mt Painter Block, South Australia. Systematically distributed asymmetric alteration selvedges consisting of a muscovite‐rich zone paired with a biotite‐rich zone are centered on quartz veins in quartz–muscovite–biotite schist. Geometric analysis of the orientation and facing of 126 veins at Nooldoonooldoona Waterhole reveals a single direction along which a maximum of all veins have a muscovite‐rich side, irrespective of their specific individual orientation. This direction represents a Mesoproterozoic fluid‐flow vector and the veins represent permeability barriers to the flow. The pale muscovite‐rich zones formed on the downstream side of the vein and the dark biotite‐rich zones mark the upstream side. The alteration couplets formed from mica schist at constant Zr, Ga, Sc, and involved increases in Si, Na, Al and decreases in K, Fe, Mg for pale alteration zones, and inverse alteration within dark zones. The asymmetry of the alteration couplets is best explained by the pressure dependence of mineral–fluid equilibria. These equilibria, in combination with a Darcian flow model for coupled advection and diffusion, and with permeability barriers imposed by the quartz veins, simulate the pattern of both fluid flow and differential, asymmetric metasomatism. The determined vector of fluid flow lies along the regional foliation and is consistent with the known distribution of regional alteration products. The presence of asymmetric alteration zones in rock containing abundant pre‐alteration veins suggests that vein‐rich material may have generally retarded regional fluid flow.  相似文献   

5.
We documented the porosity, permeability, pore geometry, pore type, textural anisotropy, and capillary pressure of carbonate rock samples collected along basin‐bounding normal faults in central Italy. The study samples consist of one Mesozoic platform carbonate host rock with low porosity and permeability, four fractured host rocks of the damage zones, and four fault rocks of the fault cores. The four fractured samples have high secondary porosity, due to elongated, connected, soft pores that provide fluid pathways in the damage zone. We modeled this zone as an elastic cracked medium, and used the Budiansky–O'Connell correlation to compute its permeability from the measured elastic moduli. This correlation can be applied only to fractured rocks with large secondary porosity and high‐aspect ratio pores. The four fault rock samples are made up of survivor clasts embedded in fine carbonate matrices and cements with sub‐spherical, stiff pores. The low porosity and permeability of these rocks, and their high values of capillary pressure, are consistent with the fault core sealing as much as 77 and 140 m of gas and oil columns, respectively. We modeled the fault core as a granular medium, and used the Kozeny–Carmen correlation, assigning the value of 5 to the Kozeny constant, to compute its permeability from the measured porosities and pore radii. The permeability structure of the normal faults is composed of two main units with unique hydraulic characteristics: a granular fault core that acts as a seal to cross‐fault fluid flow, and an elastic cracked damage zone that surrounds the core and forms a conduit for fluid flow. Transient pathways for along‐fault fluid flow may form in the fault core during seismic faulting due to the formation of opening‐mode fractures within the cemented fault rocks.  相似文献   

6.
G. R. OSINSKI 《Geofluids》2005,5(3):202-220
Combined field studies, optical and scanning electron microscopy, and electron microprobe studies of impactites from the Ries impact structure, Germany, have allowed a clearer picture of the hydrothermal system associated with the Ries impact event to be made. Hydrothermal alteration is concentrated within impact‐generated suevites in the interior of the crater (crater suevites) and around the periphery (surficial suevites), with minor alteration in the overlying sedimentary crater‐fill deposits. The major heat source for the Ries hydrothermal system was the suevite units themselves. Hydrothermal alteration of crater‐fill suevites is pervasive in nature and comprises several distinct alteration phases that vary with depth. An early phase of K‐metasomatism accompanied by minor albitization of crystalline basement clasts and minor chloritization, was followed by pervasive intermediate argillic alteration (predominantly montmorillonite, saponite, and illite) and zeolitization (predominantly analcite, erionite, and clinoptilolite). Hydrothermal fluids were typically weakly alkaline during the main stage of alteration. In contrast to the crater‐fill suevites, alteration within surficial suevites was typically restricted to montmorillonite and phillipsite deposition within cavities and fractures. The pervasive nature of the alteration within the crater‐fill suevites was likely due to the presence of an overlying crater lake; whereas alteration within surficial suevites typically occurred under undersaturated conditions with the main source of water being from precipitation. There are exceptional outcrops of more pervasively altered surficial suevites, which can be explained as locations where water pooled for longer periods of time. Hydrothermal fluids were likely a combination of meteoric waters that percolated down from the overlying crater lake and groundwaters that flowed in from the surrounding country rocks.  相似文献   

7.
The chemical evolution of fluids in Alpine fissure veins (open cavities with large free‐standing crystals) has been studied by combination of fluid inclusion petrography, microthermometry, LA‐ICPMS microanalysis, and thermodynamic modeling. The quartz vein systems cover a metamorphic cross section through the Central Alps (Switzerland), ranging from subgreenschist‐ to amphibolite‐facies conditions. Fluid compositions change from aqueous inclusions in subgreenschist‐ and greenschist‐facies rocks to aqueous–carbonic inclusions in amphibolite‐facies rocks. The fluid composition is constant for each vein, across several fluid inclusion generations that record the growth history of the quartz crystals. Chemical solute geothermometry, fluid inclusion isochores, and constraints from fluid–mineral equilibria modeling were used to reconstruct the pressure–temperature conditions of the Alpine fissure veins and to compare them with the metamorphic path of their host rocks. The data demonstrate that fluids in the Aar massif were trapped close to the metamorphic peak whereas the fluids in the Penninic nappes record early cooling, consistent with retrograde alteration. The good agreement between the fluid–mineral equilibria modeling and observed fluid compositions and host‐rock mineralogy suggests that the fluid inclusions were entrapped under rock‐buffered conditions. The molar Cl/Br ratios of the fluid inclusions are below the seawater value and would require unrealistically high degrees of evaporation and subsequent dilution if they were derived from seawater. The halogen data may thus be better explained by interaction between metamorphic fluids and organic matter or graphite in metasedimentary rocks. The volatile content (CO2, sulfur) in the fluid inclusions increases systematically as function of the metamorphic grade, suggesting that the fluids have been produced by prograde devolatilization reactions. Only the fluids in the highest grade rocks were partly modified by retrograde fluid–rock interactions, and all major element compositions reflect equilibration with the local host rocks during the earliest stages of postmetamorphic uplift.  相似文献   

8.
The Upper Triassic Mercia Mudstone is the caprock to potential carbon capture and storage (CCS) sites in porous and permeable Lower Triassic Sherwood Sandstone reservoirs and aquifers in the UK (primarily offshore). This study presents direct measurements of vertical (kv) and horizontal (kh) permeability of core samples from the Mercia Mudstone across a range of effective stress conditions to test their caprock quality and to assess how they will respond to changing effective stress conditions that may occur during CO2 injection and storage. The Mercia samples analysed were either clay‐rich (muddy) siltstones or relatively clean siltstones cemented by carbonate and gypsum. Porosity is fairly uniform (between 7.4 and 10.7%). Porosity is low either due to abundant depositional illite or abundant diagenetic carbonate and gypsum cements. Permeability values are as low as 10?20 m2 (10nD), and therefore, the Mercia has high sealing capacity. These rocks have similar horizontal and vertical permeabilities with the highest kh/kv ratio of 2.03 but an upscaled kh/kv ratio is 39, using the arithmetic mean of kh and the harmonic mean of kv. Permeability is inversely related to the illite clay content; the most clay‐rich (illite‐rich) samples represent very good caprock quality; the cleaner Mercia Mudstone samples, with pore‐filling carbonate and gypsum cements, represent fair to good caprock quality. Pressure sensitivity of permeability increases with increasing clay mineral content. As pore pressure increases during CO2 injection, the permeability of the most clay‐rich rocks will increase more than carbonate‐ and gypsum‐rich rocks, thus decreasing permeability heterogeneity. The best quality Mercia Mudstone caprock is probably not geochemically sensitive to CO2 injection as illite, the cause of the lowest permeability, is relatively stable in the presence of CO2–water mixtures.  相似文献   

9.
Hydrothermal polymetallic veins of the Gemeric unit of the Western Carpathians are oriented coherently with the foliation of their low‐grade Variscan basement host. Early siderite precipitated from homogeneous NaCl‐KCl‐CaCl2‐H2O brines with minor CO2, while immiscible gas–brine mixtures are indicative of the superimposed barite, quartz–tourmaline and quartz–sulphide stages. The high‐salinity aqueous fluid (18–35 wt%) found in all mineralization stages corresponds to formation water modified by interaction with crystalline basement rocks at temperatures between 140 and 300°C. High brominity (around 1000 ppm in average) resulted from evaporation and anhydrite precipitation in a Permo‐Triassic marine basin, and from secondary enrichment by dissolution of organic matter in the marine sediments at diagenetic temperatures. Sulphate depletion reflects thermogenic reduction during infiltration of the formation waters into the Variscan crystalline basement. Crystallization temperatures of the siderite fill (140–300°C) and oxygen isotope ratios of the parental fluids (4–10‰) increase towards the centre of the Gemeric cleavage fan, probably as a consequence of decreasing water/rock ratios in rock‐buffered hydrothermal systems operating during the initial stages of vein evolution. In contrast, buoyant gas–water mixtures, variable salinities and strongly fluctuating P–T parameters in the successive mineralization stages reflect transition from a closed to an open hydrothermal system and mixing of fluids from various sources. Depths of burial were 6–14 km (1.7–4.4 kbar, in a predominantly lithostatic fluid regime) during the siderite and barite sub‐stages of the north‐Gemeric veins, and up to 16 km (1.6–4.5 kbar, in a hydrostatic to lithostatic fluid regime) in the quartz–tourmaline stage of the south‐Gemeric veins. The fluid pressure decreased down to approximately 0.6 kbar during crystallization of sulphides. U‐Pb‐Th, 40Ar/39Ar and K/Ar geochronology applied to hydrothermal muscovite–phengite and monazite, as well as cleavage phyllosilicates in the adjacent basement rocks and deformed Permian conglomerates corroborated the opening of hydrothermal veins during Lower Cretaceous thrusting and their rejuvenation during Late Cretaceous sinistral transpressive shearing and extension.  相似文献   

10.
We measure the fluid transport properties of microfractures and macrofractures in low‐porosity polyphase sandstone and investigate the controls of in situ stress state on fluid flow conduits in fractured rock. For this study, the permeability and porosity of the Punchbowl Formation sandstone, a hydrothermally altered arkosic sandstone, were measured and mapped in stress space under intact, microfractured, and macrofractured deformation states. In contrast to crystalline and other sedimentary rocks, the distributed intragranular and grain‐boundary microfracturing that precedes macroscopic fracture formation has little effect on the fluid transport properties. The permeability and porosity of microfractured and intact sandstone depend strongly on mean stress and are relatively insensitive to differential stress and proximity to the frictional sliding envelope. Porosity variations occur by elastic pore closure with intergranular sliding and pore collapse caused by microfracturing along weakly cemented grain contacts. The macroscopic fractured samples are best described as a two‐component system consisting (i) a tabular fracture with a 0.5‐mm‐thick gouge zone bounded by 1 mm thick zones of concentrated transgranular and intragranular microfractures and (ii) damaged sandstone. Using bulk porosity and permeability measurements and finite element methods models, we show that the tabular fracture is at least two orders of magnitude more permeable than the host rock at mean stresses up to 90 MPa. Further, we show that the tabular fracture zone dilates as the stress state approaches the friction envelope resulting in up to a three order of magnitude increase in fracture permeability. These results indicate that the enhanced and stress‐sensitive permeability in fault damage zones and sedimentary basins composed of arkosic sandstones will be controlled by the distribution of macroscopic fractures rather than microfractures.  相似文献   

11.
H. A. SHELDON  A. ORD 《Geofluids》2005,5(4):272-288
Mineralization of brittle fault zones is associated with sudden dilation, and the corresponding changes in porosity, permeability and fluid pressure, that occur during fault slip events. The resulting fluid pressure gradients cause fluid to flow into and along the fault until it is sealed. The volume of fluid that can pass through the deforming region depends on the degree of dilation, the porosity and permeability of the fault and wall rocks, and the rate of fault sealing. A numerical model representing a steep fault cutting through a horizontal seal is used to investigate patterns of fluid flow following a dilatant fault slip event. The model is initialized with porosity, permeability and fluid pressure representing the static mechanical state of the system immediately after such an event. Fault sealing is represented by a specified evolution of porosity, coupled to changes in permeability and fluid pressure, with the rate of porosity reduction being constrained by independent estimates of the rate of fault sealing by pressure solution. The general pattern of fluid flow predicted by the model is of initial flow into the fault from all directions, followed by upward flow driven by overpressure beneath the seal. The integrated fluid flux through the fault after a single failure event is insufficient to account for observed mineralization in faults; mineralization would require multiple fault slip events. Downward flow is predicted if the wall rocks below the seal are less permeable than those above. This phenomenon could at least partially explain the occurrence of uranium deposits in reactivated basement faults that cross an unconformity between relatively impermeable basement and overlying sedimentary rocks.  相似文献   

12.
The juxtaposition of fault‐bounded sedimentary basins, above crustal‐scale detachments, with warmer exhumed footwalls can lead to thermal convection of the fluids in the sediments. The Devonian basins of western Norway are examples of supradetachment basins that formed in the hanging wall of the Nordfjord‐Sogn Detachment Zone. In the central part of the Hornelen and Kvamshesten basins, the basin‐fill is chiefly represented by fluvial sandstones and minor lacustrine siltstones, whereas the fault margins are dominated by fanglomerates along the detachment contact. Prominent alteration and low‐greenschist facies metamorphic conditions are associated with the peak temperature estimates of the sediments close to the detachment shear zone. Fluid circulation may have been active during the burial of the sediments, and we quantify the potential role played by thermal convection in redistributing heat within the basins. Different models are tested with homogeneous and layered basin‐fill and with material transport properties corresponding to sandstones and siltstones. We found that thermally driven fluid flow is expected in supradetachment basins as a transient process during the exhumation of warmer footwalls. We demonstrate that the fluid flow may have significantly affected the temperature distribution in the upper five kilometers of the Devonian basins of western Norway. The temperature anomaly induced by the flow may locally reach about 80°C. The sedimentary layering formed by sand‐ and siltstones strata does not inhibit fluid circulation at the scale of the basin. The presence of fluid pathways along the detachment has an important impact on the flow and allows an efficient drainage of the basin by channelizing fluids upward along the detachment.  相似文献   

13.
Most researchers in the Proterozoic eastern Mt Isa Block, NW Queensland, Australia, favour magmatic fluid and salt sources for sodic‐(calcic) alteration and iron oxide–copper–gold mineralization. Here we compare spatial, mineralogic and stable isotope data from regional alteration assemblages with magmatic and magmatic‐hydrothermal interface rocks in order to track chemical and isotopic variations in fluid composition away from inferred fluid sources. Tightly clustered δ18O values for magnetite, quartz, feldspar and actinolite for igneous‐hosted samples reflect high temperature equilibration in the magmatic‐hydrothermal environment. In contrast, these minerals record predominantly higher δ18O values in regional alteration and Cu–Au mineralization. This dichotomy reflects partial equilibration with isotopically heavier wallrocks and slightly lower temperatures. Increases in Si concentrations of metasomatic amphiboles relative to igneous amphiboles in part reflect cooling of metasomatic fluids away from igneous rocks. Variations in XMg for metasomatic amphiboles indicate local wallrock controls on amphibole chemistry, while variations in XCl/XOH ratios for amphiboles (at constant XMg) indicate variable aH2O/aHCl ratios for metasomatic fluids. Biotite geochemistry also reflects cooling and both increases and decreases in aH2O/aHCl for fluids away from plutonic rocks. Decreased aH2O/aHCl ratios for metasomatic fluids reflect in part scavenging of chlorine out of meta‐evaporite sequences, although this process requires already saline fluids. Local increases in aH2O/aHCl ratios, as well as local decreases in δ18O values for some minerals (most notably haematite and epithermal‐textured quartz), may indicate ingress of low salinity, low δ18O fluids of possible meteoric origin late in the hydrothermal history of the region. Taken together, our observations are most consistent with predominantly magmatic sources for metasomatic fluids in the eastern Mt Isa Block, but record chemical and isotopic variations along fluid flow paths that may be important in explaining some of the diversity in alteration and mineralization styles in the district.  相似文献   

14.
Layered low permeability rock units, like shales, represent seals or ‘cap‐rocks’ in a variety of geological settings. A continuous increase in the fluid pressure gradients across a virtually impermeable rock layer will ultimately lead to hydro‐fracturing. Depending on the boundary conditions, such fracturing may lead to the formation of a set of sub‐parallel cracks oriented more or less perpendicular to the cap‐rock layer. In this article, we propose a new numerical model that describes interactions between multiple cross‐cutting fractures in an elastic low permeability rock layer. The width of each fracture and the spacing between them are modeled as a force balance between the fluid pressure and the elastic forces in the cap‐rock and between each fracture. The model indicates that the system of fractures evolves toward a spatially periodic steady‐state distribution with a fixed fracture spacing and aperture. The results are similar for incompressible and compressible fluids. The steady‐state conditions depend on only two dimensionless parameters, and the fracture spacing is only weakly dependent on the cap‐rock thickness. This is in contrast to fracturing produced by simple extension of an elastic rock layer beyond the fracture strength, in which case fracture spacing is proportional to layer thickness.  相似文献   

15.
Y. Song  Z. Hou  Y. Cheng  T. Yang  C. Xue 《Geofluids》2016,16(1):56-77
Extensive quartz–carbonate–Cu sulfide veins occur in clastic rocks and are spatially related to Paleocene granites in the western border of the Lanping Basin, western Yunnan, China. Abundant aqueous‐carbonic fluid inclusions occur in these veins but their origin is debated. In the Jinman–Liancheng deposit, individual primary inclusion groups contain either exclusively liquid‐rich inclusions (Gl), or coexisting liquid‐rich and vapor‐rich inclusions (Glv). Microthermometry and estimate of CO2 content indicate that type Gl inclusions either have homogenization temperatures (Th) 238–263°C and contain c. 3.9–5.5 mole % CO2, or have Th 178–222°C and contain c. 1.6–3.2 mole % CO2. Type Glv inclusions are thought to represent samples of fluid unmixing that occurred at 183–218°C. At that time, the liquid phase in the unmixing fluid may contain c. 2.0–3.3 mole % CO2. As such, the correlation of CO2 content with Th for type Gl inclusions is thought to be caused by fluid unmixing with decreasing temperature and subsequent CO2 escape. δ18O and δD values of the parent water mainly fall in the field below that of primary magmatic water, indicative of fluid derivation from degassed (in open system) magmatic water, with no contributions from basinal or meteoric water. Initial Sr isotopic compositions of hydrothermal carbonates suggest that the fluid was magmatic, probably derived from the Paleogene granites. δ13CPDB values (?4‰ to ?7‰) of the hydrothermal carbonates and δ34SVCDT values of sulfides (mainly ?11‰ to +5‰) indicate that the carbon and sulfur can be derived from (degassed) magma and/or nonmagmatic sources. The CO2‐rich and magmatic‐water‐derived fluid at Jinman–Liancheng differs from the CO2‐poor and basinally derived fluid in sediment‐hosted stratiform Cu (SSC) deposits, which suggests that there are no genetic linkages between the vein Cu and SSC deposits in the Lanping Basin.  相似文献   

16.
Mineral deposits in the Cupp‐Coutunn/Promeszutochnaya cave system (Turkmenia, central Asia) record a phase of hydrothermal activity within a pre‐existing karstic groundwater conduit system. Hydrothermal fluids entered the caves through fault zones and deposited sulphate, sulphide and carbonate minerals under phreatic conditions. Locally, intense alteration of limestone wall rocks also occurred at this stage. Elsewhere in the region, similar faults contain economic quantities of galena and elemental sulphur mineralization. Comparisons between the Pb and S isotope compositions of minerals found in cave and ore deposits confirm the link between economic mineralization and hydrothermal activity at Cupp‐Coutunn. The predominance of sulphate mineralization in Cupp‐Coutunn implies that the fluids were more oxidized in the higher permeability zone associated with the karst aquifer. A slight increase in the δ34S of sulphate minerals and a corresponding δ34S decrease in sulphides suggest that partial isotopic equilibration occurred during oxidation. Carbonate minerals indicate that the hydrothermal fluid was enriched in 18O (δ18OSMOW ~ + 10‰) relative to meteoric groundwater and seawater. Estimated values for δ13CDIC (δ13CPDB ~ ? 13‰) are consistent with compositions expected for dissolved inorganic carbon (DIC) derived from the products of thermal decomposition of organic matter and dissolution of marine carbonate. Values derived for δ13CDIC and δ18Owater indicate that the hydrothermal fluid was of basinal brine origin, generated by extensive water–rock interaction. Following the hydrothermal phase, speleothemic minerals were precipitated under vadose conditions. Speleothemic sulphates show a bimodal sulphur isotope distribution. One group has compositions similar to the hydrothermal sulphates, whilst the second group is characterized by higher δ34S values. This latter group may either record the effects of microbial sulphate reduction, or reflect the introduction of sulphate‐rich groundwater generated by the dissolution of overlying evaporites. Oxygen isotope compositions show that calcite speleothems were precipitated from nonthermal groundwater of meteoric origin. Carbonate speleothems are relatively enriched in 13C compared to most cave deposits, but can be explained by normal speleothem‐forming processes under thin, arid‐zone soils dominated by C4 vegetation. However, the presence of sulphate speleothems, with isotopic compositions indicative of the oxidation of hydrothermal sulphide, implies that CO2 derived by reaction of limestone with sulphuric acid (‘condensation corrosion’) contributed to the formation of 13C‐enriched speleothem deposits.  相似文献   

17.
The Kahrizak volcanic field, south Tehran, in Iran, is composed dominantly of basalt and basaltic andesite that experienced variable degrees of alteration because of the low‐grade metamorphism (stage I) and hydrothermal activity (stage II). Stage I alteration, which occurred in response to the burial of volcanic rocks and their interaction with heated groundwater, is characterized by the formation of low‐temperature zeolite facies minerals in vesicles consisting mainly of fine‐grained mafic phyllosilicate (smectite, chlorite/smectite mixed layer) and zeolites (thomsonite, chabazite, gonnardite, natrolite, analcime, heulandite, and mordenite). Stage II mineralization occurred because of the activity of hydrothermal fluids that formed large crystals of heulandite, stilbite, mesolite/scolecite, natrolite, and analcime along with quartz and calcite in cavities and fractures. The elements necessary for the formation of alteration minerals (i.e. zeolites and mafic phyllosilicates) in Kahrizak were derived from the hydrolysis of olivine and volcanic glass as well as the alteration of plagioclase. Various mineral assemblages formed during stages I and II reflect changes in temperature, pressure, and fluid composition. The change from mafic phyllosilicates to zeolites species is caused by the decrease in Mg and Fe relative to Ca fluid activities. Zeolite assemblages of stage I, known to be formed at lower temperatures, show the general sequential order from older to younger: chabazite, thomsonite, gonnardite, and natrolite. This sequence is consistent with a hypothetical fluid evolution path with increasing Na+ relative to Ca2+ activity. The change to stage II, which consists of zeolites species (stilbite, scolecite, natrolite, mesolite, analcime, and heulandite) that formed at higher temperatures, can be attributed to a temperature increase and fluid influx caused by hydrothermal activity related to a later magmatic event in the region.  相似文献   

18.
Kuwait–Georgian archaeological work at Failaka Island showed the need for geological study. Analysis of sediments related to drinking water-collecting cisterns was performed on a Late Islamic settlement (NE part of the island) in 2018. Field sedimentological, grain size and XRD analysis of the sediment profiles showed that the shallow (about 1 m deep) cone-shaped wells are dug in the loose, porous, cross-stratified calcareous coarse-grained quartz sandstones. Three upper layers of quartz sandstones in the profile have high infiltration rate and provide a rare yet ideal material for water retention. The fourth dense layer below, composed of very fine sand and silt fraction, tends to hinder water movement and forms a relatively impermeable water-resistant surface. Thus, the distribution patterns of clay content, grain sizes and porosity of the well-hosting sediments are favourable for freshwater infiltration and harvesting. An additional petrographic analysis was conducted on different types of rocks discovered on the archaeological site, used as building material and fragments of stone artifacts to identify their origin. It was established that archaeological building material is of local origin, whereas the source rocks for stone artifacts were imported.  相似文献   

19.
Vigorous hydrothermal convection transfers 10 times the average continental heat flow through the central Taupo Volcanic Zone (TVZ), a region of active extension (approximately 8 mm year?1) and productive rhyolitic volcanism. Over 20 high‐temperature (>250°C) geothermal fields occur within Quaternary pyroclastic basins, with convective circulation to depths of 7–8 km presumably extending through basement rocks. Parallel‐striking normal faults, fractures and dikes dissect the convective regime, interacting with fluids to either enhance or restrict flow according to the relative permeability of structure and host rock. In the basement, high bulk permeability is maintained by focussed flow through faults and associated fractures well oriented for reactivation in the prevailing stress field. In contrast, distributed flow through fault‐bounded compartments prevails within Quaternary basins, masking any signal of deeper structural control. Exceptions occur where more competent rocks are exposed at the surface. As in narrow magmatic rifts elsewhere, the extensional fabric is partitioned into discrete rift segments linked along strike by accommodation zones. Eighty per cent of TVZ geothermal fields correlate spatially with rift architecture, with 60% located in accommodation zones. We suggest that segmented rift fabrics generate bulk permeability anisotropy that is to some extent predictable, with rift segments characterized by enhanced axial flow, and accommodation zones characterized by locally enhanced vertical permeability that is tectonically maintained. This provides a plausible explanation for the common occurrence of geothermal fields within accommodation zones and their notable absence within densely faulted rift segments. Maintenance of structural permeability in zones of active hydrothermal precipitation necessarily requires repeated brittle failure. Geothermal plumes therefore exploit tectonically maintained permeability within accommodation zones, with rift segments functioning mostly as drawdown regions. The influence of rift architecture on flow paths has important implications for geothermal extraction and epithermal mineral exploration within the TVZ and other structurally segmented hydrothermal systems, both active and extinct.  相似文献   

20.
The Trèves zinc–lead deposit is one of several Mississippi Valley‐type (MVT) deposits in the Cévennes region of southern France. Fluid inclusion studies show that the ore was deposited at temperatures between approximately 80 and 150°C from a brine that derived its salinity mainly from the evaporation of seawater past halite saturation. Lead isotope studies suggest that the metals were extracted from local basement rocks. Sulfur isotope data and studies of organic matter indicate that the reduced sulfur in the ores was derived from the reduction of Mesozoic marine sulfate by thermochemical sulfate reduction or bacterially mediated processes at a different time or place from ore deposition. The large range of δ34S values determined for the minerals in the deposit (12.2–19.2‰ for barite, 3.8–13.8‰ for sphalerite and galena, and 8.7 to ?21.2‰ for pyrite), are best explained by the mixing of fluids containing different sources of sulfur. Geochemical reaction path calculations, based on quantitative fluid inclusion data and constrained by field observations, were used to evaluate possible precipitation mechanisms. The most important precipitation mechanism was probably the mixing of fluids containing different metal and reduced sulfur contents. Cooling, dilution, and changes in pH of the ore fluid probably played a minor role in the precipitation of ores. The optimum results that produced the most metal sulfide deposition with the least amount of fluid was the mixing of a fluid containing low amounts of reduced sulfur with a sulfur‐rich, metal poor fluid. In this scenario, large amounts of sphalerite and galena are precipitated, together with smaller quantities of pyrite precipitated and dolomite dissolved. The relative amounts of metal precipitated and dolomite dissolved in this scenario agree with field observations that show only minor dolomite dissolution during ore deposition. The modeling results demonstrate the important control of the reduced sulfur concentration on the Zn and Pb transport capacity of the ore fluid and the volumes of fluid required to form the deposit. The studies of the Trèves ores provide insights into the ore‐forming processes of a typical MVT deposit in the Cévennes region. However, the extent to which these processes can be extrapolated to other MVT deposits in the Cévennes region is problematic. Nevertheless, the evidence for the extensive migration of fluids in the basement and sedimentary cover rocks in the Cévennes region suggests that the ore forming processes for the Trèves deposit must be considered equally viable possibilities for the numerous fault‐controlled and mineralogically similar MVT deposits in the Cévennes region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号