首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quartz veins acted as impermeable barriers to regional fluid flow and not as fluid‐flow conduits in Mesoproterozoic rocks of the Mt Painter Block, South Australia. Systematically distributed asymmetric alteration selvedges consisting of a muscovite‐rich zone paired with a biotite‐rich zone are centered on quartz veins in quartz–muscovite–biotite schist. Geometric analysis of the orientation and facing of 126 veins at Nooldoonooldoona Waterhole reveals a single direction along which a maximum of all veins have a muscovite‐rich side, irrespective of their specific individual orientation. This direction represents a Mesoproterozoic fluid‐flow vector and the veins represent permeability barriers to the flow. The pale muscovite‐rich zones formed on the downstream side of the vein and the dark biotite‐rich zones mark the upstream side. The alteration couplets formed from mica schist at constant Zr, Ga, Sc, and involved increases in Si, Na, Al and decreases in K, Fe, Mg for pale alteration zones, and inverse alteration within dark zones. The asymmetry of the alteration couplets is best explained by the pressure dependence of mineral–fluid equilibria. These equilibria, in combination with a Darcian flow model for coupled advection and diffusion, and with permeability barriers imposed by the quartz veins, simulate the pattern of both fluid flow and differential, asymmetric metasomatism. The determined vector of fluid flow lies along the regional foliation and is consistent with the known distribution of regional alteration products. The presence of asymmetric alteration zones in rock containing abundant pre‐alteration veins suggests that vein‐rich material may have generally retarded regional fluid flow.  相似文献   

2.
Potassic alteration of rocks adjacent to, and within the Ernest Henry Fe‐oxide–Cu–Au deposit is used here as a test case to investigate fluid–rock interactions using various equilibrium dynamic geochemical modelling approaches available in the HCh code. Reaction of a simple K–Fe–(Na,Ca) brine (constrained by published fluid inclusion analysis) with an albite‐bearing felsic volcanic rock, resulted in predicted assemblages defined by (i) K‐feldspar–muscovite–magnetite, (ii) biotite–K‐feldspar–magnetite, (iii) biotite–quartz–albite and (iv) albite–biotite–actinolite–pyroxene with increasing rock buffering (decreasing log w/r). Models for isothermal–isobaric conditions (450°C and 2500 bars) were compared with models run over a TP gradient (450 to 200°C and 2500 to 500 bars). Three principal equilibrium dynamic simulation methods have been used: (i) static closed system, where individual steps are independent of all others, (ii) flow‐through and flush, where a part of the result is passed as input further along the flow line, and (iii) fluid infiltration models that simulate fluid moving through a rock column. Each type is best suited to a specific geological fluid–rock scenario, with increasing complexity, computation requirements and approximation to different parts of the natural system. Static closed system models can be used to quickly ascertain the broad alteration assemblages related to changes in the water/rock ratio, while flow‐through models are better suited to simulating outflow of reacted fluid into fresh rock. The fluid infiltration model can be used to simulate spatially controlled fluid metasomatism of rock, and we show that, given assumptions of porosity relationships and spatial dimensions, this model is a first‐order approximation to full reactive transport, without requiring significant computational time. This work presents an overview of the current state of equilibrium dynamic modelling technology using the HCh code with a view to applying these techniques to predictive modelling in exploration for mineral deposits. Application to the Ernest Henry Fe‐oxide–Cu–Au deposit demonstrates that isothermal fluid–rock reaction can account for some of the alteration zonation around the deposit.  相似文献   

3.
J. HARA  N. TSUCHIYA 《Geofluids》2005,5(4):251-263
Sodic alteration assemblages including clinoptilolite, mordenite, analcime and Na‐montmorillonite were locally observed in sediments in the eastern part of the Hachimantai geothermal region, northeast Japan. This study investigated the mechanisms of sodic enrichment in the sediments during alteration. Kinetic results for water/rock interaction experiments are reported here. Batch‐type experiments were conducted at 150–250°C under saturated vapor pressure. Pyroclastic rocks dissolved incongruently in these experiments, and the solubility and dissolution rates among elements varied as follows: the apparent steady‐state concentrations of major elements are Si > Na ? K > Ca > Al and the order of the dissolution rates is Si > Al > Na ? K > Ca. Na had the highest steady‐state concentration and fastest dissolution rate of the alkali and alkali earth metal ions. Based on surface analysis of plagioclase, dissolution was effected via a reaction layer of Na‐montmorillonite on the mineral surface. Additionally, a reaction model constructed based on the experimentally observed reaction mechanism quantitatively explains the dissolution behavior. These results show that Na‐montmorillonite can be precipitated by pyroclastic rock/meteoric water interactions without seawater involvement: the Na is derived from the host rocks.  相似文献   

4.
We present a structural, microstructural, and stable isotope study of a calcite vein mesh within the Cretaceous Natih Formation in the Oman Mountains to explore changes in fluid pathways during vein formation. Stage 1 veins form a mesh of steeply dipping crack‐seal extension veins confined to a 3.5‐m‐thick stratigraphic interval. Different strike orientations of Stage 1 veins show mutually crosscutting relationships. Stage 2 veins occur in the dilatant parts of a younger normal fault interpreted to penetrate the stratigraphy below. The δ18O composition of the host rock ranges from 21.8‰ to 23.7‰. The δ13C composition ranges from 1.5‰ to 2.3‰. This range is consistent with regionally developed diagenetic alteration at top of the Natih Formation. The δ18O composition of vein calcite varies from 22.5‰ to 26.2‰, whereas δ13C composition ranges from ?0.8‰ to 2.1‰. A first trend observed in Stage 1 veins involves a decrease of δ13C to compositions nearly 1.3‰ lower than the host rock, whereas δ18O remains constant. A second trend observed in Stage 2 calcite has δ18O values up to 3.3‰ higher than the host rock, whereas the δ13C composition is similar. Stable isotope data and microstructures indicate an episodic flow regime for both stages. During Stage 1, formation of a stratabound vein mesh involved bedding‐parallel flow, under near‐lithostatic fluid pressures. The 18O fluid composition was host rock‐buffered, whereas 13C composition was relatively depleted. This may reflect reaction of low 13C CO2 derived by fluid interaction with organic matter in the limestones. Stage 2 vein formation is associated with fault‐controlled fluid flow accessing fluids in equilibrium with limestones about 50 m beneath. We highlight how evolution of effective stress states and the growth of faults influence the hydraulic connectivity in fracture networks and we demonstrate the value of stable isotopes in tracking changes in fluid pathways.  相似文献   

5.
Apatite grain boundaries on fractured rock surfaces have been examined in an amphibolite facies regional metamorphic granite gneiss from the central Swiss Alps. The morphology of apatite has been characterized using a scanning electron microscope and matched to surface textures in adjoining silicates. Apatites show a wide variety of different surface features ranging from planar crystal faces, to small-scale ridges and dimples, to extensive irregular pitting. Many of these features form in response to the periodic infiltration of fluids along open grain boundaries during the cooling history of the gneiss. Apatite shows evidence of both dissolution and re-precipitation that is controlled by the nature of the grain boundary, the structure of the adjoining silicate phase and the alteration of the host rock. Fracturing occurs in a range of retrograde conditions and is common both within the apatite and along grain boundaries. This coupled to the evidence of fluid interaction with mineral surfaces suggests that extensive permeable networks may be typical of cooling crystalline basement rocks. Grain boundary textures have the potential to reveal a unique record of fluid infiltration in the crust that would be very difficult to decipher using traditional petrographic methods.  相似文献   

6.
C. HILGERS  S. SINDERN 《Geofluids》2005,5(4):239-250
The source of fluid‐forming veins is of great importance in order to understand the hydraulic system acting in the earth's crust. The study of syntectonic antitaxial veins is one of the few methods by which the opening history can be deduced from rocks, and thus these veins are of primary importance in determining rock kinematics. Antitaxial veins were taken from black shales in two different tectonic settings in the Helvetic Alps, Switzerland, and the Taconic Appalachians, New York State. These syntectonic extension veins are regularly spaced and are oriented sub‐normal to bedding. The vein microstructure displays a symmetry around the median line in the centre of the vein, and a symmetry in cathodoluminescence banding parallel to the vein–wall interface, which suggests transport along bedding‐parallel dissolution planes from both vein‐walls. Antitaxial veins nucleated in transgranular fractures, but evidence for ongoing multiple crack‐seal increments is lacking; rather, veins grew continuously keeping close contact to the vein‐wall. Radiogenic 87Sr/86Sr ratios are higher in the surrounding matrix than in the vein, and higher than the corresponding seawater data in all samples. Variations are small and calcite in both the vein and the host rock were derived from the same source of fluid in the Helvetic samples. Mass balance of Sr suggests that the amount of calcite is too small in the surrounding host rock to be derived locally. Stable oxygen compositions are heavier in the host rock than in the veins, with overall low variation in both δ18O and δ13C values in the Mesozoic Helvetic samples. Data point to a rock‐buffered system, the precipitate most likely derived from an external source. The lower Palaeozoic Appalachian veins have lesser δ18O values than the host rock, similar to the Helvetic veins. Radiogenic 87Sr/86Sr data and a large heterogeneity in stable isotope values indicate an open system. Microstructural and isotopic evidence suggests that the antitaxial veins were formed by pervasive fluid flow, with the solute at least partly derived from an external source.  相似文献   

7.
The chemical evolution of fluids in Alpine fissure veins (open cavities with large free‐standing crystals) has been studied by combination of fluid inclusion petrography, microthermometry, LA‐ICPMS microanalysis, and thermodynamic modeling. The quartz vein systems cover a metamorphic cross section through the Central Alps (Switzerland), ranging from subgreenschist‐ to amphibolite‐facies conditions. Fluid compositions change from aqueous inclusions in subgreenschist‐ and greenschist‐facies rocks to aqueous–carbonic inclusions in amphibolite‐facies rocks. The fluid composition is constant for each vein, across several fluid inclusion generations that record the growth history of the quartz crystals. Chemical solute geothermometry, fluid inclusion isochores, and constraints from fluid–mineral equilibria modeling were used to reconstruct the pressure–temperature conditions of the Alpine fissure veins and to compare them with the metamorphic path of their host rocks. The data demonstrate that fluids in the Aar massif were trapped close to the metamorphic peak whereas the fluids in the Penninic nappes record early cooling, consistent with retrograde alteration. The good agreement between the fluid–mineral equilibria modeling and observed fluid compositions and host‐rock mineralogy suggests that the fluid inclusions were entrapped under rock‐buffered conditions. The molar Cl/Br ratios of the fluid inclusions are below the seawater value and would require unrealistically high degrees of evaporation and subsequent dilution if they were derived from seawater. The halogen data may thus be better explained by interaction between metamorphic fluids and organic matter or graphite in metasedimentary rocks. The volatile content (CO2, sulfur) in the fluid inclusions increases systematically as function of the metamorphic grade, suggesting that the fluids have been produced by prograde devolatilization reactions. Only the fluids in the highest grade rocks were partly modified by retrograde fluid–rock interactions, and all major element compositions reflect equilibration with the local host rocks during the earliest stages of postmetamorphic uplift.  相似文献   

8.
Quartz veins in the early Variscan Monts d’Arrée slate belt (Central Armorican Terrane, Western France), have been used to determine fluid‐flow characteristics. A combination of a detailed structural analysis, fluid inclusion microthermometry and stable isotope analyses provides insights in the scale of fluid flow and the water–rock interactions. This research suggests that fluids were expelled during progressive deformation and underwent an evolution in fluid chemistry because of changing redox conditions. Seven quartz‐vein generations were identified in the metasedimentary multilayer sequence of the Upper Silurian to Lower Devonian Plougastel Formation, and placed within the time frame of the deformation history. Fluid inclusion data of primary inclusions in syn‐ to post‐tectonic vein generations indicate a gradual increase in methane content of the aqueous–gaseous H2O–CO2–NaCl–CH4–N2 fluid during similar P–T conditions (350–400°C and 2–3.5 kbar). The heterogeneous centimetre‐ to metre‐scale multilayer sequence of quartzites and phyllites has a range of oxygen‐isotope values (8.0–14.1‰ Vienna Standard Mean Ocean Water), which is comparable with the range in the crosscutting quartz veins (10.5–14.7‰ V‐SMOW). Significant differences between oxygen‐isotope values of veins and adjacent host rock (Δ = ?2.8‰ to +4.9‰ V‐SMOW) suggest an absence of host‐rock buffering on a centimetre scale, but based on the similar range of isotope values in the Plougastel Formation, an intraformational buffering and an intermediate‐scale fluid‐flow system could be inferred. The abundance of veins, their well‐distributed and isolated occurrence, and their direct relationship with the progressive deformation suggests that the intermediate‐scale fluid‐flow system primarily occurred in a dynamically generated network of temporarily open fractures.  相似文献   

9.
Metalliferous (Fe–Cu–Pb–Zn) quartz–carbonate–sulphide veins cut greenschist to epidote–amphibolite facies metamorphic rocks of the Dalradian, SW Scottish Highlands, with NE–SW to NW–SE trends, approximately parallel or perpendicular to regional structures. Early quartz was followed by pyrite, chalcopyrite, sphalerite, galena, barite, late dolomite–ankerite and clays. Both quartz–sulphide and carbonate vein mineralisation is associated with brecciation, indicating rapid release of fluid overpressure and hydraulic fracturing. Two distinct mineralising fluids were identified from fluid inclusion and stable isotope studies. High temperature (>350°C) quartz‐precipitating fluids were moderately saline (4.0–12.7 wt.% NaCl equivalent) with low (approximately 0.05). Quartz δ18O (+11.7 to +16.5‰) and sulphide δ34S (?13.6 to ?1.1‰) indicate isotopic equilibrium with host metasediments (rock buffering) and a local metasedimentary source of sulphur. Later, low‐temperature (TH = 120–200°C) fluids, probably associated with secondary carbonate, barite and clay formation, were also moderately saline (3.8–9.1 wt.% NaCl equivalent), but were strongly enriched in 18O relative to host Dalradian lithologies, as indicated by secondary dolomite–ankerite (δ18O = +17.0 to +29.0‰, δ13C = ?1.0 to ?3.0‰). Compositions of carbonate–forming fluids were externally buffered. The veins record the fluid–rock interaction history of metamorphic host rocks during cooling, uplift and later extension. Early vein quartz precipitated under retrograde greenschist facies conditions from fluids probably derived by syn‐metamorphic dehydration of deeper, higher‐grade rocks during uplift and cooling of the Caledonian metamorphic complex. Veins are similar to those of mesothermal veins in younger Phanerozoic metamorphic belts, but are rare in the Scottish Dalradian. Early quartz veins were reactivated by deep penetration of low‐temperature basin fluids that precipitated carbonate and clays in veins and adjacent Dalradian metasediments throughout the SW Highlands, probably in the Permo‐Carboniferous. This event is consistent with paragenetically ambiguous barite with δ34S characteristic of late Palaeozoic basinal brines.  相似文献   

10.
D. Reeves  D. H. Rothman 《Geofluids》2014,14(2):128-142
The formation of porous weathering rinds (layers of chemical alteration) on the exterior of rocks is a consequence of dissolution and precipitation of minerals occurring at the mineral–fluid interface within the pores. The speed at which the developed rind advances is controlled by both kinetic reaction rates and the transport of reaction products away from the pore spaces into the outside fluid. We show, using both reaction‐diffusion theory and numerics, that under diffusion limitations, the weathering rate depends on the size and curvature of the sample. This leads to a relationship between rind thickness, δ, and age, t. As the rind thickens, the result in three dimensions differs substantially from the one‐dimensional result of . We describe the conditions under which the one‐dimensional and diffusion‐limited approximations apply and how they evolve as the rock weathers. Under chemical kinetic limitations, the rind advances at a constant rate, /dt = v. We defend the application of a spherical approximation to irregular non‐spherical rocks and apply our results to field observations reported in the literature to show consistency with established methods. Finally, we argue that the variability in size, as well as in mineralogy, over ensembles of grains contributes to heterogeneous weathering rates. We demonstrate that this heterogeneity can contribute to the aging, or gradual decrease with time, of weathering rates previously observed in laboratory and field measurements.  相似文献   

11.
Among hydrogeological processes, free convection in faults has been cited as a possible cause of gold mineralization along major fault zones. Here, we investigate the effects of free convection to determine whether it can cause giant orogenic gold deposits and their regular spatial distribution along major fault/shear zones. The approach comprises: (i) coupled two- and three-dimensional numerical heat- and fluid-flow simulations of simplified geological models; and (ii) calculation of the rock alteration index (RAI) to delineate regions where precipitation/dissolution can occur. Then, comparing the deduced alteration patterns with temperature distribution, potential areas of gold mineralization, defined by T  > 200°C and RAI < 0, are predicted. The models are based on the orogenic Paleoproterozoic ore deposits of the Ashanti belt in western Africa. These deposits occur in the most permeable parts of the fault zone, where the lateral permeability contrast is the highest. For a simple geometry, with a fault zone adjacent to a sedimentary basin half as permeable, we note a transition from three-dimensional circulation within the fault to a two-dimensional convective pattern in the basin far from the fault. Moreover, whereas two-dimensional undulated isotherms dominate in the basin, three-dimensional corrugated isotherms result from the preferred convective pattern within the fault, thus enhancing a periodic distribution of thermal highs and lows. In our most elaborate three-dimensional model with an imposed lateral permeability gradient, the RAI distribution indicates that fluid circulation in fault zones gives rise to a spatial periodicity of alteration patterns consistent with field data.  相似文献   

12.
Comparison of mass transfer patterns, geometry and microstructures developed within and around veins allows the interpretation of processes of fluid flow during deformation, metamorphism and mineralization. A classification of vein types based on the degree of interaction with wallrock (using petrological, geochemical or isotopic indicators) can be used to identify a range of processes, from closed system behaviour in which the vein mass is derived from local wallrock, through to open system behaviour in which the vein mass is derived externally. Microstructural characteristics, such as wallrock selvages, multiple growth events recorded by vein seams and vein crystal morphology, also help to constrain mass transfer patterns during vein formation. We present a range of processes for vein formation, including: (i) the formation of closed system fibrous veins by dissolution–precipitation creep, including varieties in which tensile failure is not required; (ii) pressure‐ or kinetically dependent closed system segregation veins in which transfer of soluble components from wallrock to vein leaves behind a residual selvage; (iii) similar vein–selvage patterning, but with mass imbalances between vein and wallrock requiring fluid advection through both interconnected fracture networks and in the surrounding permeable rock; and (iv) the proposed formation of veins by fluid ascent in mobile hydrofractures, in which isotopic or chemical disequilibrium within and around the vein suggests that the crack and fluid within it moved essentially as one. The postulate of rapid fluid and mass transfer via such mobile hydrofractures has implications for the release of volatiles from metamorphic terrains. Also, consideration of a broad range of possible vein‐forming mechanisms is highly desirable when dealing with mineral deposits found in deformed, metamorphosed rocks, because closed system veining may produce patterns that, if erroneously recognized as being open systems, could lead to false interpretations of the role of tectonic fracturing in ore genesis.  相似文献   

13.
Seven vein types are recognized in three continental Devonian molasse basins (the Hornelen, Kvamshesten and Solund basins) in western Norway. These include calcite‐, quartz‐ and epidote‐dominated veins. The salinities of fluid inclusions from quartz‐dominated veins in the Hornelen and Kvamshesten basins are close to or slightly higher than those for modern seawater, whereas the fluids from quartz‐ and calcite‐dominated veins in the Solund basin range from seawater values to 20 wt % NaCl equivalent. Minerals such as biotite, amphibole, titanite, chlorite and epidote are abundant in the latter veins, and are important constituents of the authigenic mineral assemblages. A combination of fluid inclusion and petrological data suggest that at least some of the veins formed at depths around 12–14 km. The Cl/Br ratios and the salinity of the fluid inclusions can be explained by interactions with evaporites, implying that the sedimentary environment forming the basin fill had the strongest influence upon low‐grade metamorphic fluid Cl and Br contents. Differences in the Cl/I and Na/Br ratios between the Solund basin and the Hornelen and Kvamshesten basins are best explained by local mass transfer between pore fluids and the surrounding rock matrix during burial and increasing temperatures.  相似文献   

14.
Wool fibre measurements defining fleece type are described from the cloth in the Bocksten costume dated about 1350 and kept in the Varbergs Museum, Sweden. Over 80% belonged to hairy types, the remainder coming from the modern true medium or primitive generalised medium types. Three quarters of the wools had natural pigment giving a grey colour.The findings accord with the fleece of the native Swedish Landrace sheep, but fibre diameter measurements were closer to those of the 17th century Wasa textiles, than to fleece measurements of the surviving Goth remnant of the Swedish Landrace.  相似文献   

15.
J. X. LI  G. M. LI  K. Z. QIN  B. XIAO 《Geofluids》2011,11(2):134-143
The Duobuza porphyry copper–gold deposit (proven Cu resources of 2.7 Mt, 0.94% Cu and 13 t gold, 0.21 g t?1 Au) is located at the northern margin of the Bangong‐Nujiang suture zone separating the Qiangtang and Lhasa Terranes. The major ore‐bearing porphyry consists of granodiorite. The alteration zone extends from silicification and potassic alteration close to the porphyry stock to moderate argillic alteration and propylitization further out. Phyllic alteration is not well developed. Sericite‐quartz veins only occur locally. High‐temperature, high‐salinity fluid inclusions were observed in quartz phenocrysts and various quartz veins. These fluid inclusions are characterized by sylvite dissolution between 180 and 360°C and halite dissolution between 240 and 540°C, followed by homogenization through vapor disappearance between 620 and 960°C. Daughter minerals were identified by SEM as chalcopyrite, halite, sylvite, rutile, K–feldspar, and Fe–Mn‐chloride. They indicate that the fluid is rich in ore‐forming elements and of high oxidation state. The fluid belongs to a complex hydrothermal system containing H2O – NaCl – KCl ± FeCl2 ± CaCl2 ± MnCl2. With decreasing homogenization temperature, the fluid salinity tends to increase from 34 to 82 wt% NaCl equiv., possibly suggesting a pressure or Cl/H2O increase in the original magma. No coexisting vapor‐rich fluid inclusions with similar homogenization temperatures were found, so the brines are interpreted to have formed by direct exsolution from magma rather than trough boiling off of a low‐salinity vapor. Estimated minimum pressure of 160 MPa imply approximately 7‐km depth. This indicates that the deposit represents an orthomagmatic end member of the porphyry copper deposit continuum. Two key factors are proposed for the fluid evolution responsible for the large size of the gold‐rich porphyry copper deposit of Duobuza: (i) ore‐forming fluids separated early from the magma, and (ii) the hydrothermal fluid system was of magmatic origin and highly oxidized.  相似文献   

16.
The presence of cobbles with activity-related marks in the Mesolithic site of Font del Ros (Berga, Spain), and in particular one group of artefacts – pitted stones – raises problematic issues associated with the characterization of percussion activities. Although these artefacts have generated an extensive bibliography on ethological, ethnographic, ethnoarchaeological and archaeological levels, various questions persist in relation to their possible contextual function. In this paper we present the results of an experimental programme in which three types of activities that could create pitted stones are reproduced: bipolar knapping of vein quartz, hazelnut cracking, and hazelnut grinding. The aim of this experimental programme is to describe marks and use-wear traces related to such activities.  相似文献   

17.
This study reconstructs the palaeohydrogeologic evolution of the shallow‐to‐moderate Mesozoic subsidence history for the Mecsekalja Zone (MZ), a narrow metamorphic belt in the eastern Mecsek Mountains, Hungary. Brittle deformation of the MZ produced a vein system with a cement history consisting of five sequential carbonate generations and one quartz phase. Vein textures suggest different fluid‐flow mechanisms for the parent fluids of subsequent cement generations. Combined microthermometric and stable‐isotope measurements permit reconstruction of the character of subsequent fluid generations with different flow types, as defined by vein textures, yielding new information regarding the hydraulic behaviour of a metamorphic crystalline complex. Textural observations and geochemical data suggest that fracture‐controlled flow pathways and externally derived fluids were typical of some flow events, while percolation through the rock matrix and the relationship to the Cretaceous volcanism and dyke emplacement were typical of others. The difference in the mode of calcite deposition from pervasive fluids (i.e. pervasive carbonatisation along grain boundaries versus deposition in antitaxial veins) between two calcite generations related to the volcanism inspired a stress‐dependent model of antitaxial vein growth. Textural and isotope variations in a vein generation produced by the same parent fluid indicate rock‐dependent hydraulic behaviour for different rock types, distinct action of the contemporaneous fracture systems and different extents of fluid–rock interaction. Cathodoluminescence microscopy and fluid‐inclusion microthermometry shed light on the possible role of hydraulic fracturing in the formation of massive calcite. The time of formation was estimated from the isotope composition of the oldest calcite generation and its presumptive relationship with the sedimentary sequences to the north, whereas microthermometry permitted conciliation of the reconstructed flow sequence with the Mesozoic subsidence history of the Mórágy Block (including the MZ).  相似文献   

18.
The Kalahari Goldridge deposit is located in the Archaean Kraaipan greenstone belt in the north-west province of South Africa. Gold mineralization in this deposit is hosted within banded iron formation which is flanked by a mafic schist in the footwall and clastic metasedimentary units in the hanging wall. Data from carbonate minerals from mineralized veins and bulk rock from the A and D zone ore bodies have helped to define the ultimate origin of the ore-forming fluids and their migration history. Carbon isotope ratios of carbonates from both the A and D zone ore bodies have tight clustering from −7.6 to −5.3‰ that indicates a unique origin for the ore-forming fluids associated with the mineralization at Kalahari Goldridge. The δ18O values of the carbonates have been influenced by temperature gradients and variable degrees of fluid–rock interaction promoting oxygen isotope exchange between ore fluid and host rocks. Minimum 87Sr/86Sr ratio values of 0.70354 in mineralized veins are most consistent with ore-forming fluids being relatively pristine with a mantle origin. Strontium and the corresponding ore-forming fluids were most likely derived from mantle-derived magmatic rocks probably represented by the meta-basaltic rocks that underlie the ferruginous package in the Kraaipan greenstone belt. Strontium isotopic composition of vein carbonates show considerable variation in 87Sr/86Sr ratios ranging from 0.70354 to 0.73914. This is consistent with an ore fluid composition that has been modified by the addition of radiogenic Sr possibly during passage of fluid through siliciclastic country rock concomitant with the observed hydrothermal alteration.  相似文献   

19.
J. HARA  N. TSUCHIYA 《Geofluids》2009,9(1):24-38
Hydrothermal water–(pyroclastic) rock interactions were examined using flow-through experiments to deduce the effect of mass transport phenomena on the reaction process. A series of experiments were conducted over the temperature range 75–250°C, with a constant temperature for each experiment, and at saturated vapour pressure, to estimate the apparent rate constants as a function of temperature.
Based on the chemistry of analysed solutions, the water–rock interaction in the experiments was controlled by diffusion from the reaction surface and by the existence of a surface layer at the rock–fluid interface, which regulated the chemical reaction rate. The reaction progress depended to a high degree on flow velocity and temperature conditions, with element abundances in the fluid significantly affected by these factors. Mass transport coefficients for diffusion from the rock surface to the bulk solution have been estimated. Ca is selectively depleted under lower temperature conditions ( T  < 150°C), whereas Na is greatly depleted under higher temperature conditions ( T  > 150°C), and K reaction rates are increased when flow velocity increases. Using these conditions, specific alkali and alkali earth cations were selectively leached from mineral surfaces. The 'surface layer' comprised a 0.5–1.8 mm boundary film on the solution side (the thickness of this layer has no dependence on chemical character) and a reaction layer. The reaction layer was composed of a Si, Al-rich cation-leached layer, whose thickness was dependent on temperature, flow velocity and reaction length. The reaction layer varied in thickness from about 10−4 to 10−7 mm under high temperature/low fluid velocity and low temperature/high fluid velocity conditions, respectively.  相似文献   

20.
花山岩画是研究我国百越民族古代社会历史最重要、最直接的资料,岩画颜料脱落和褪色是岩画的主要病害。任何文物发生病害既与其制作材料和工艺有关,也与其保存环境因素相关。本工作在花山岩画制作材料和工艺分析研究以及区域环境特点分析的基础上,分析并讨论了岩画颜料脱落及褪色发生的原因。结果表明,岩画颜料层病害主要是受物理风化(温差变化、高湿度与光辐射)、化学风化-溶蚀作用和胶结材料老化引起;颜料褪色是由于岩画颜料表面覆盖泥质薄膜和颜料胶结材料老化导致颜料颗粒脱落致使颜料色彩饱和度降低,岩画颜色变淡变暗。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号