首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methane soil flux measurements have been made in 38 sites at the geothermal system of Sousaki (Greece) with the closed chamber method. Fluxes range from ?47.6 to 29 150 mg m?2 day?1, and the diffuse CH4 output of the system has been estimated at 19 t a?1. Contemporaneous CO2 flux measurements showed a moderate positive correlation between CO2 and CH4 fluxes. Comparison of the CO2/CH4 soil flux ratios with the CO2/CH4 ratio of the gases of the main gas manifestations provided evidence for methanotrophic activity within the soil. Laboratory CH4 consumption experiments confirmed the presence of methanotrophic microorganisms in soil samples collected at Sousaki. Consumption was generally in the range from ?4.9 to ?38.9 pmolCH4 h?1 g?1 but could sometimes reach extremely high values (?33 000 pmolCH4 h?1 g?1). These results are consistent with recent studies on other geothermal systems that revealed the existence of thermoacidophilic bacteria exerting methanotrophic activity in hot, acid soils, thereby reducing methane emissions to the atmosphere.  相似文献   

2.
A. SAEEDI  R. REZAEE  B. EVANS 《Geofluids》2012,12(3):228-235
During a geo‐sequestration process, CO2 injection causes an increase in reservoir pore pressure, which in turn decreases the reservoir net effective stress. Changes in effective stress can change all the reservoir and cap‐rock properties including residual saturations. This article presents the results of an experimental work carried out to understand the potential change in the volumes of residually trapped CO2, while the porous medium tested underwent change in the net effective stress under in‐situ reservoir conditions of pore pressure and temperature. The experimental results obtained show that an initial 1725 psi (11.9 MPa) decrease in the net effective pressure caused 1.4% reduction in the volumes of residually trapped CO2, while another 1500 psi (10.3 MPa) reduction caused a further 3.2% drop in the residual saturation of CO2.  相似文献   

3.
Sampling of fluids in deep boreholes is challenging because of the necessity of minimizing external contamination and maintaining sample integrity during recovery. The U‐tube sampling methodology was developed to collect large volume, multiphase samples at in situ pressures. As a permanent or semi‐permanent installation, the U‐tube can be used for rapidly acquiring multiple samples or it may be installed for long‐term monitoring applications. The U‐tube was first deployed in Liberty County, TX to monitor crosswell CO2 injection as part of the Frio CO2 sequestration experiment. Analysis of gases (dissolved or separate phase) was performed in the field using a quadrupole mass spectrometer, which served as the basis for determining the arrival of the CO2 plume. The presence of oxygen and argon in elevated concentrations, along with reduced methane concentration, indicates sample alteration caused by the introduction of surface fluids during borehole completion. Despite producing the well to eliminate non‐native fluids, measurements demonstrate that contamination persists until the immiscible CO2 injection swept formation fluid into the observation wellbore.  相似文献   

4.
CO2 injected into rock formations for deep geological storage must not leak to surface, since this would be economically and environmentally unfavourable, and could present a human health hazard. In Italy natural CO2 degassing to the surface via seeps is widespread, providing an insight into the various styles of subsurface ‘plumbing’ as well as surface expression of CO2 fluids. Here we investigate surface controls on the distribution of CO2 seep characteristics (type, flux and temperature) using a large geographical and historical data set. When the locations of documented seeps are compared to a synthetic statistically random data set, we find that the nature of the CO2 seeps is most strongly governed by the flow properties of the outcropping rocks, and local topography. Where low‐permeability rocks outcrop, numerous dry seeps occur and have a range of fluxes. Aqueous fluid flow will be limited in these low‐permeability rocks, and so relative permeability effects may enable preferential CO2 flow. CO2 vents typically occur along faults in rocks that are located above the water table or are low permeability. Diffuse seeps develop where CO2 (laterally supplied by these faults) emerges from the vadose zone and where CO2 degassing from groundwater follows a different flow path due to flow differences for water and CO2 gas. Bubbling water seeps (characterized by water bubbling with CO2) arise where CO2 supply enters the phreatic zone or an aquifer. CO2‐rich springs often emerge where valleys erode into CO2 aquifers, and these are typically high flux seeps. Seep type is known to influence human health risk at CO2 seeps in Italy, as well as the topography surrounding the seep which affects the rate of gas dispersion by wind. Identifying the physical controls on potential seep locations and seep type above engineered CO2 storage operations is therefore crucial to targeted site monitoring strategy and risk assessment. The surface geology and topography above a CO2 store must therefore be characterized in order to design the most effective monitoring strategy.  相似文献   

5.
Numerical simulations of multiphase CO2 behavior within faulted sandstone reservoirs examine the impact of fractures and faults on CO2 migration in potential subsurface injection systems. In southeastern Utah, some natural CO2 reservoirs are breached and CO2‐charged water flows to the surface along permeable damage zones adjacent to faults; in other sites, faulted sandstones form barriers to flow and large CO2‐filled reservoirs result. These end‐members serve as the guides for our modeling, both at sites where nature offers ‘successful’ storage and at sites where leakage has occurred. We consider two end‐member fault types: low‐permeability faults dominated by deformation‐band networks and high‐permeability faults dominated by fracture networks in damage zones adjacent to clay‐rich gouge. Equivalent permeability (k) values for the fault zones can range from <10?14 m2 for deformation‐band‐dominated faults to >10?12 m2 for fracture‐dominated faults regardless of the permeability of unfaulted sandstone. Water–CO2 fluid‐flow simulations model the injection of CO2 into high‐k sandstone (5 × 10?13 m2) with low‐k (5 × 10?17 m2) or high‐k (5 × 10?12 m2) fault zones that correspond to deformation‐band‐ or fracture‐dominated faults, respectively. After 500 days, CO2 rises to produce an inverted cone of free and dissolved CO2 that spreads laterally away from the injection well. Free CO2 fills no more than 41% of the pore space behind the advancing CO2 front, where dissolved CO2 is at or near geochemical saturation. The low‐k fault zone exerts the greatest impact on the shape of the advancing CO2 front and restricts the bulk of the dissolved and free CO2 to the region upstream of the fault barrier. In the high‐k aquifer, the high‐k fault zone exerts a small influence on the shape of the advancing CO2 front. We also model stacked reservoir seal pairs, and the fracture‐dominated fault acts as a vertical bypass, allowing upward movement of CO2 into overlying strata. High‐permeability fault zones are important pathways for CO2 to bypass unfaulted sandstone, which leads to reduce sequestration efficiency. Aquifer compartmentalization by low‐permeability fault barriers leads to improved storativity because the barriers restrict lateral CO2 migration and maximize the volume and pressure of CO2 that might be emplaced in each fault‐bound compartment. As much as a 3.5‐MPa pressure increase may develop in the injected reservoir in this model domain, which under certain conditions may lead to pressures close to the fracture pressure of the top seal.  相似文献   

6.
The elemental fluxes and heat flow associated with large aquifer systems can be significant both at local and at regional scales. In fact, large amounts of heat transported by regional groundwater flow can affect the subsurface thermal regime, and the amount of matter discharged towards the surface by large spring systems can be significant relative to the elemental fluxes of surface waters. The Narni‐Amelia regional aquifer system (Central Italy) discharges more than 13 m3 sec?1 of groundwater characterised by a slight thermal anomaly, high salinity and high pCO2. During circulation in the regional aquifer, groundwater reacts with the host rocks (dolostones, limestones and evaporites) and mixes with deep CO2‐rich fluids of mantle origin. These processes transfer large amounts of dissolved substances, in particular carbon dioxide, and a considerable amount of heat towards the surface. Because practically all the water circulating in the Narni‐Amelia system is discharged by few large springs (Stifone‐Montoro), the mass and energy balance of these springs can give a good estimation of the mass and heat transported from the entire system towards the surface. By means of a detailed mass and balance of the aquifer and considering the soil CO2 fluxes measured from the main gas emission of the region, we computed a total CO2 discharge of about 7.8 × 109 mol a?1 for the whole Narni‐Amelia system. Finally, considering the enthalpy difference between infiltrating water and water discharged by the springs, we computed an advective heat transfer related to groundwater flow of 410 ± 50 MW.  相似文献   

7.
A geochemical study was carried out on the CO2‐rich water occurring in granite areas of Chungcheong Province, Korea. In this area, very dilute and acidic CO2‐rich waters [62–242 mg l?1 in total dissolved solid (TDS), 4.0–5.3 in pH; group I) occur together with normal CO2‐rich waters (317–988 mg l?1 in TDS, 5.5–6.0 in pH; group II). The concentration levels and ages of group I water are similar to those of recently recharged and low‐mineralized groundwater (group III). Calculation of reaction pathways suggests that group I waters are produced by direct influx of CO2 gas into group III type waters. When the groundwater is injected with CO2, it develops the capacity to accept dissolved solids and it can evolve into water with very high solute concentrations. Whether the water is open or closed to the CO2 gases becomes less important in controlling the reaction pathway of the CO2‐rich groundwater when the initial pco 2 is high. Our data show that most of the solutes are dissolved in the CO2‐rich groundwater at pH > 5 where the weathering rates of silicates are very slow or independent of pH. Thus, groundwater age is likely more important in developing high solute concentrations in the CO2‐rich groundwaters than accelerated weathering kinetics because of acidic pH caused by high pco 2.  相似文献   

8.
The Upper Triassic Mercia Mudstone is the caprock to potential carbon capture and storage (CCS) sites in porous and permeable Lower Triassic Sherwood Sandstone reservoirs and aquifers in the UK (primarily offshore). This study presents direct measurements of vertical (kv) and horizontal (kh) permeability of core samples from the Mercia Mudstone across a range of effective stress conditions to test their caprock quality and to assess how they will respond to changing effective stress conditions that may occur during CO2 injection and storage. The Mercia samples analysed were either clay‐rich (muddy) siltstones or relatively clean siltstones cemented by carbonate and gypsum. Porosity is fairly uniform (between 7.4 and 10.7%). Porosity is low either due to abundant depositional illite or abundant diagenetic carbonate and gypsum cements. Permeability values are as low as 10?20 m2 (10nD), and therefore, the Mercia has high sealing capacity. These rocks have similar horizontal and vertical permeabilities with the highest kh/kv ratio of 2.03 but an upscaled kh/kv ratio is 39, using the arithmetic mean of kh and the harmonic mean of kv. Permeability is inversely related to the illite clay content; the most clay‐rich (illite‐rich) samples represent very good caprock quality; the cleaner Mercia Mudstone samples, with pore‐filling carbonate and gypsum cements, represent fair to good caprock quality. Pressure sensitivity of permeability increases with increasing clay mineral content. As pore pressure increases during CO2 injection, the permeability of the most clay‐rich rocks will increase more than carbonate‐ and gypsum‐rich rocks, thus decreasing permeability heterogeneity. The best quality Mercia Mudstone caprock is probably not geochemically sensitive to CO2 injection as illite, the cause of the lowest permeability, is relatively stable in the presence of CO2–water mixtures.  相似文献   

9.
A recent advancement in petroleum geochemistry is to model fossil oil composition using microthermometric and volumetric data acquired from individual fluid inclusion analysis. Fourier transform infrared (FT‐IR) microspectroscopy can record compositional information related to gas (CH4 and CO2) and alkane contents of petroleum inclusions. In this study, a quantitative procedure for FT‐IR microspectrometry has been developed to obtain, from individual fluid inclusions, mol percentage concentrations of methane, alkanes and carbon dioxide as constraints to thermodynamic modelling. A petroleum inclusion in a sample from the Québec City Promontory nappe area was used as standard to record a reference spectrum of methane. The analytical procedure is based on the measurement of CH4/alkane and CH4/CO2 band area ratios. CH4/alkane infrared band area ratio is obtained after spectral subtraction of the reference methane spectrum. This area ratio, affected by absolute absorption intensities of methane, methyl and methylene, provides a molar CH4/alkane ratio. Methyl/methylene ratio (CH2/CH3) ratio is obtained following procedures established in previous work. CO2/CH4 concentration ratio is estimated from relative absolute absorption intensities. Application to natural inclusions from different environments shows good correlation between FT‐IR quantification and PIT (petroleum inclusion thermodynamic) modelling.  相似文献   

10.
Geochemical and isotopic studies have been undertaken to assess the origin of CO2‐rich waters issuing in the northern part of Portugal. These solutions are hot (76°C) to cold (17°C) Na–HCO3 mineral waters. The δ2H and δ18O signatures of the mineral waters reflect the influence of altitude on meteoric recharge. The lack of an 18O‐shift indicates there has been no high temperature water–rock interaction at depth, corroborating the results of several chemical geothermometers (reservoir temperature of about 120°C). The low 14C activity (up to 9.9 pmC) measured in some of the cold CO2‐rich mineral waters (total dissolved inorganic carbon) is incompatible with the presence of 3H (from 1.7 to 4.1 TU) in those waters, which indicates relatively short subsurface circulation times. The δ13C values of CO2 gas and dissolved inorganic carbon range between ?6‰ and ?1‰ versus Vienna‐Peedee Belemnite, indicating that the total carbon in the recharge waters is being diluted by larger quantities of CO2 (14C‐free) introduced from deep‐seated (upper mantle) sources, masking the 14C‐dating values. The differences in the 87Sr/86Sr ratios of the studied thermal and mineral waters seem to be caused by water–rock interaction with different granitic rocks. Chlorine isotope signatures (?0.4‰ < δ37Cl < +0.4‰ versus standard mean ocean chloride) indicate that Cl in these waters could be derived from mixing of a small amount of igneous Cl from leaching of granitic rocks.  相似文献   

11.
The Jian copper deposit, located on the eastern edge of the Sanandaj–Sirjan metamorphic zone, southwest of Iran, is contained within the Surian Permo‐Triassic volcano‐sedimentary complex. Retrograde metamorphism resulted in three stages of mineralization (quartz ± sulfide veins) during exhumation of the Surian metamorphic complex (Middle Jurassic time; 159–167 Ma), and after the peak of the metamorphism (Middle to Late Triassic time; approximately 187 Ma). The early stage of mineralization (stage 1) is related to a homogeneous H2O–CO2 (XCO2 > 0.1) fluid characterized by moderate salinity (<10 wt.% NaCl equivalent) at high temperature and pressure (>370°C, >3 kbar). Early quartz was followed by small amounts of disseminated fine‐grained pyrite and chalcopyrite. Most of the main‐ore‐stage (stage 2) minerals, including chalcopyrite, pyrite and minor sphalerite, pyrrhotite, and galena, precipitated from an aqueous‐carbonic fluid (8–18 wt.% NaCl equivalent) at temperatures ranging between 241 and 388°C during fluid unmixing process (CO2 effervescence). Fluid unmixing in the primary carbonaceous fluid at pressures of 1.5–3 kbar produced a high XCO2 (>0.05) and a low XCO2 (<0.01) aqueous fluid in ore‐bearing quartz veins. Oxygen and hydrogen isotope compositions suggest mineralization by fluids derived from metamorphic dehydration (δ18Ofluid = +7.6 to +10.7‰ and δD = ?33.1 to ?38.5‰) during stage 2. The late stage (stage 3) is related to a distinct low salinity (1.5–8 wt.% NaCl equivalent) and temperatures of (120–230°C) aqueous fluid at pressures below 1.5 kbar and the deposition of post‐ore barren quartz veins. These fluids probably derived from meteoric waters, which circulated through the metamorphic pile at sufficiently high temperatures and acquire the characteristics of metamorphic fluids (δ18Ofluid = +4.7 to +5.1‰ and δD = ?52.3 to ?53.9‰) during waning stages of the postearly Cimmerian orogeny in Surian complex. The sulfide‐bearing quartz veins are interpreted as a small‐scale example of redistribution of mineral deposits by metamorphic fluids. This study suggests that mineralization at the Jian deposit is metamorphogenic in style, probably related to a deep‐seated mesothermal system.  相似文献   

12.
The quantitative assessment of COH fluids is crucial in modeling geological processes. The composition of fluids, and in particular their H2O/CO2 ratio, can influence the melting temperatures, the location of hydration or carbonation reactions, and the solute transport capability in several rock systems. In the scientific literature, COH fluids speciation has been generally assumed on the basis of thermodynamic calculations using equations of state of simple H2O–nonpolar gas systems (e.g., H2O–CO2–CH4). Only few authors dealt with the experimental determination of high‐pressure COH fluid species at different conditions, using diverse experimental and analytical approaches (e.g., piston cylinder + capsule piercing + gas chromatography/mass spectrometry; cold seal + silica glass capsules + Raman). In this contribution, we present a new methodology for the synthesis and the analysis of COH fluids in experimental capsules, which allows the quantitative determination of volatiles in the fluid by means of a capsule‐piercing device connected to a quadrupole mass spectrometer. COH fluids are synthesized starting from oxalic acid dihydrate at = amb and = 250°C in single capsules heated in a furnace, and at = 1 GPa and = 800°C using a piston‐cylinder apparatus and the double‐capsule technique to control the redox conditions employing the rhenium–rhenium oxide oxygen buffer. A quantitative analysis of H2O, CO2, CH4, CO, H2, O2, and N2 along with associated statistical errors is obtained by linear regression of the m/z data of the sample and of standard gas mixtures of known composition. The estimated uncertainties are typically <1% for H2O and CO2, and <5% for CO. Our results suggest that the COH fluid speciation is preserved during and after quench, as the experimental data closely mimic the thermodynamic model both in terms of bulk composition and fluid speciation.  相似文献   

13.
High mole fraction CO2 gases pose a significant risk to hydrocarbon exploration in some areas. The generation and movement of CO2 are also of scientific interest, particularly because CO2 is an important greenhouse gas. We have developed a model of CO2 generation, migration, and titration in basins in which a high mole fraction CO2 gas is generated by the breakdown of siderite (FeCO3) and magnesite (MgCO3) where parts of the basin are being heated above approximately 330°C. The CO2 reacts with Fe‐, Mg‐, and Ca‐silicates as it migrates upward and away from the generation zone (CO2‐kitchen). Near the kitchen, where the Fe‐, Mg‐, and Ca‐silicates have been titrated and destroyed by previous packets of migrating CO2, gas moves upward without lowering its CO2 mole fraction. Further on, where Fe‐ and Mg‐silicates are still present but Ca‐silicates are absent in the sediments, the partial pressure of CO2 is constrained to 0.1–30 bars and reservoirs contain a few mole percent CO2 as described by Smith & Ehrenberg (1989) . Still further from the source, where Ca‐silicates have not been titrated, partial pressure of CO2 in migrating methane gas are orders of magnitude lower. A 2D numerical model of CO2 generation, migration, and titration quantifies these buffer relations and makes predictions of CO2 risk in the South China Sea that are compatible with exploration experience. Reactive CO2 transport models of the kind described could prove useful in determining how gases migrate in faulted sedimentary basins.  相似文献   

14.
L. Wang  Y. Cheng  W. Li 《Geofluids》2014,14(4):379-390
This study assesses the displacement of coalbed methane by CO2 migration along a fault into the coal seam in the Yaojie coalfield. Coal and gas samples were collected continuously at various distances in NO.2 coal seam from F19 fault. Vitrinite reflectance, maceral, and pore distributions and proximate analysis of fourteen coal samples were performed. Gas components, concentrations, carbon isotopes of 28 gas samples were determined. We examined the coal–gas trace characteristics of coalbed methane displaced away from the fault by CO2 injection after geological ages. From east to west, away from the F19 fault, the CO2 concentration decreased, whereas the CH4 concentration increased gradually. The δ13C values for CO2 varied between ?9.94‰ and 1.12‰, suggesting a metamorphic origin. A wider range of values (from ?9.94‰ to 20‰) was associated with the mixing of microbial carbon dioxide, isotopic fractionation during CO2 migration through the microporous structures of coals, and/or carbon isotope fractionation during gas–water exchange and dissolution of CO2. Away from the F19 fault, the volumes of micropores, mesopores and macropores decrease gradually. The Dubinin–Radushkevich (DR) micropore volume decreased from 0.0059 to 0.0037 cmg‐1, and the mesopore and macropore volumes decreased from 0.066 to 0.026 cmg‐1. The CO2 injection can mobilize aromatic hydrocarbons and mineral matter from coal matrix, resulting in the decrease in the absorption peak intensity for coal samples after supercritical CO2 treatment, which indicates that chemical reactions occur between coal and CO2, not only physical adsorption.  相似文献   

15.
Mineral deposits in the Cupp‐Coutunn/Promeszutochnaya cave system (Turkmenia, central Asia) record a phase of hydrothermal activity within a pre‐existing karstic groundwater conduit system. Hydrothermal fluids entered the caves through fault zones and deposited sulphate, sulphide and carbonate minerals under phreatic conditions. Locally, intense alteration of limestone wall rocks also occurred at this stage. Elsewhere in the region, similar faults contain economic quantities of galena and elemental sulphur mineralization. Comparisons between the Pb and S isotope compositions of minerals found in cave and ore deposits confirm the link between economic mineralization and hydrothermal activity at Cupp‐Coutunn. The predominance of sulphate mineralization in Cupp‐Coutunn implies that the fluids were more oxidized in the higher permeability zone associated with the karst aquifer. A slight increase in the δ34S of sulphate minerals and a corresponding δ34S decrease in sulphides suggest that partial isotopic equilibration occurred during oxidation. Carbonate minerals indicate that the hydrothermal fluid was enriched in 18O (δ18OSMOW ~ + 10‰) relative to meteoric groundwater and seawater. Estimated values for δ13CDIC (δ13CPDB ~ ? 13‰) are consistent with compositions expected for dissolved inorganic carbon (DIC) derived from the products of thermal decomposition of organic matter and dissolution of marine carbonate. Values derived for δ13CDIC and δ18Owater indicate that the hydrothermal fluid was of basinal brine origin, generated by extensive water–rock interaction. Following the hydrothermal phase, speleothemic minerals were precipitated under vadose conditions. Speleothemic sulphates show a bimodal sulphur isotope distribution. One group has compositions similar to the hydrothermal sulphates, whilst the second group is characterized by higher δ34S values. This latter group may either record the effects of microbial sulphate reduction, or reflect the introduction of sulphate‐rich groundwater generated by the dissolution of overlying evaporites. Oxygen isotope compositions show that calcite speleothems were precipitated from nonthermal groundwater of meteoric origin. Carbonate speleothems are relatively enriched in 13C compared to most cave deposits, but can be explained by normal speleothem‐forming processes under thin, arid‐zone soils dominated by C4 vegetation. However, the presence of sulphate speleothems, with isotopic compositions indicative of the oxidation of hydrothermal sulphide, implies that CO2 derived by reaction of limestone with sulphuric acid (‘condensation corrosion’) contributed to the formation of 13C‐enriched speleothem deposits.  相似文献   

16.
D. BROSETA  N. TONNET  V. SHAH 《Geofluids》2012,12(4):280-294
The various modes of acid gas storage in aquifers, namely structural, residual, and local capillary trapping, are effective only if the rock remains water‐wet. This paper reports an evaluation, by means of the captive‐bubble method, of the water‐wet character in presence of dense acid gases (CO2, H2S) of typical rock‐forming minerals such as mica, quartz, calcite, and of a carbonate‐rich rock sampled from the caprock of a CO2 storage reservoir in the South‐West of France. The method, which is improved from that previously implemented with similar systems by Chiquet et al. (Geofluids 2007; 7 : 112), allows the advancing and receding contact angles, as well as the adhesion behavior of the acid gas on the mineral substrate, to be evaluated over a large range of temperatures (up to 140°C), pressures (up to 150 bar), and brine salinities (up to NaCl saturation) representative of various geological storage conditions. The water‐receding (or gas‐advancing) angle that controls structural and local capillary trapping is observed to be not significantly altered in the presence of dense CO2 or H2S. In contrast, some alteration of the water‐advancing (or gas‐receding) angle involved in residual trapping is observed, along with acid gas adhesion, particularly on mica. A spectacular wettability reversal is even observed with mica and liquid H2S. These results complement other recent observations on similar systems and present analogies with the wetting behavior of crude oil/brine/mineral systems, which has been thoroughly studied over the past decades. An insight is given into the interfacial forces that govern wettability in acid gas‐bearing aquifers, and the consequences for acid gas geological storage are discussed along with open questions for future work.  相似文献   

17.
The capillary‐sealing efficiency of intermediate‐ to low‐permeable sedimentary rocks has been investigated by N2, CO2 and CH4 breakthrough experiments on initially fully water‐saturated rocks of different lithological compositions. Differential gas pressures up to 20 MPa were imposed across samples of 10–20 mm thickness, and the decline of the differential pressures was monitored over time. Absolute (single‐phase) permeability coefficients (kabs), determined by steady‐state fluid flow tests, ranged between 10?22 and 10?15 m2. Maximum effective permeabilities to the gas phase keff(max), measured after gas breakthrough at maximum gas saturation, extended from 10?26 to 10?18 m2. Because of re‐imbibition of water into the interconnected gas‐conducting pore system, the effective permeability to the gas phase decreases with decreasing differential (capillary) pressure. At the end of the breakthrough experiments, a residual pressure difference persists, indicating the shut‐off of the gas‐conducting pore system. These pressures, referred to as the ‘minimum capillary displacement pressures’ (Pd), ranged from 0.1 up to 6.7 MPa. Correlations were established between (i) absolute and effective permeability coefficients and (ii) effective or absolute permeability and capillary displacement pressure. Results indicate systematic differences in gas breakthrough behaviour of N2, CO2 and CH4, reflecting differences in wettability and interfacial tension. Additionally, a simple dynamic model for gas leakage through a capillary seal is presented, taking into account the variation of effective permeability as a function of buoyancy pressure exerted by a gas column underneath the seal.  相似文献   

18.
One of the critical factors that control the efficiency of CO2 geological storage process in aquifers and hydrocarbon reservoirs is the capillary‐sealing potential of the caprock. This potential can be expressed in terms of the maximum reservoir overpressure that the brine‐saturated caprock can sustain, i.e. of the CO2 capillary entry pressure. It is controlled by the brine/CO2 interfacial tension, the water‐wettability of caprock minerals, and the pore size distribution within the caprock. By means of contact angle measurements, experimental evidence was obtained showing that the water‐wettability of mica and quartz is altered in the presence of CO2 under pressures typical of geological storage conditions. The alteration is more pronounced in the case of mica. Both minerals are representative of shaly caprocks and are strongly water‐wet in the presence of hydrocarbons. A careful analysis of the available literature data on breakthrough pressure measurements in caprock samples confirms the existence of a wettability alteration by dense CO2, both in shaly and in evaporitic caprocks. The consequences of this effect on the maximum CO2 storage pressure and on CO2 storage capacity in the underground reservoir are discussed. For hydrocarbon reservoirs that were initially close to capillary leakage, the maximum allowable CO2 storage pressure is only a fraction of the initial reservoir pressure.  相似文献   

19.
The aim of this study was to determine the process–structure–property relationships between the pre‐ and post‐CO2 injection pore network geometry and the intrinsic permeability tensor for samples of core from low‐permeability Lower Triassic Sherwood Sandstone, UK. Samples were characterised using SEM‐EDS, XRD, MIP, XRCT and a triaxial permeability cell both before and after a three‐month continuous‐flow experiment using acidic CO2‐rich saline fluid. The change in flow properties was compared to those predicted by pore‐scale numerical modelling using an implicit finite volume solution to the Navier–Stokes equations. Mass loss and increased secondary porosity appeared to occur primarily due to dissolution of intergranular cements and K‐feldspar grains, with some associated loss of clay, carbonate and mudstone clasts. This resulted in a bulk porosity increase from 18 to 25% and caused a reduction in mean diameter of mineral grains with an increase in apparent pore wall roughness, where the fractal dimension, Df, increased from 1.68 to 1.84. All significant dissolution mass loss occurred in pores above c. 100 μm mean diameter. Relative dilation of post‐treatment pore area appeared to increase in relation to initial pore area, suggesting that the rate of dissolution mass loss had a positive relationship with fluid flow velocity; that is, critical flow pathways are preferentially widened. Variation in packing density within sedimentary planes (occurring at cm‐scale along the ‐z plane) caused the intrinsic permeability tensor to vary by more than a factor of ten. The bulk permeability tensor is anisotropic having almost equal value in ‐z and ‐y planes but with a 68% higher value in the ‐x plane (parallel to sedimentary bedding planes) for the pretreated sample, reducing to only 30% higher for the post‐treated sample. The intrinsic permeability of the post‐treatment sample increased by one order of magnitude and showed very close agreement between the modelled and experimental results.  相似文献   

20.
Geological storage of CO2 in depleted oil and gas reservoirs is one of the most promising options to reduce atmospheric CO2 concentrations. Of great importance to CO2 mitigation strategies is maintaining caprock integrity. Worldwide many current injection sites and potential storage sites are overlain by anhydrite‐bearing seal formations. However, little is known about the magnitude of the permeability change accompanying dilatation and failure of anhydrite under reservoir conditions. To this extent, we have performed triaxial compression experiments together with argon gas permeability measurements on Zechstein anhydrite, which caps many potential CO2 storage sites in the Netherlands. Our experiments were performed at room temperature at confining pressures of 3.5–25 MPa. We observed a transition from brittle to semi‐brittle behaviour over the experimental range, and peak strength could be described by a Mogi‐type failure envelope. Dynamic permeability measurements showed a change from ‘impermeable’ (<10?21 m2) to permeable (10?16 to 10?19 m2) as a result of mechanical damage. The onset of measurable permeability was associated with an increase in the rate of dilatation at low pressures (3.5–5 MPa), and with the turning point from compaction to dilatation in the volumetric versus axial strain curve at higher pressures (10–25 MPa). Sample permeability was largely controlled by the permeability of the shear faults developed. Static, postfailure permeability decreased with increasing effective mean stress. Our results demonstrated that caprock integrity will not be compromised by mechanical damage and permeability development. Geofluids (2010) 10 , 369–387  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号