首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water acidification follows CO2 injection and leads to reactive fluid transport through pores and rock fractures, with potential implications to reservoirs and wells in CO2 geologic storage and enhanced oil recovery. Kinetic rate laws for dissolution reactions in calcite and anorthite are combined with the Navier‐Stokes law and advection–diffusion transport to perform geometry‐coupled numerical simulations in order to study the evolution of chemical reactions, species concentration, and fracture morphology. Results are summarized as a function of two dimensionless parameters: the Damköhler number Da which is the ratio between advection and reaction times, and the transverse Peclet number Pe defined as the ratio between the time for diffusion across the fracture and the time for advection along the fracture. Reactant species are readily consumed near the inlet in a carbonate reservoir when the flow velocity is low (low transverse Peclet number and Da > 10?1). At high flow velocities, diffusion fails to homogenize the concentration field across the fracture (high transverse Peclet number Pe > 10?1). When the reaction rate is low as in anorthite reservoirs (Da < 10?1), reactant species are more readily transported toward the outlet. At a given Peclet number, a lower Damköhler number causes the flow channel to experience a more uniform aperture enlargement along the length of the fracture. When the length‐to‐aperture ratio is sufficiently large, say l/d > 30, the system response resembles the solution for 1D reactive fluid transport. A decreased length‐to‐aperture ratio slows the diffusive transport of reactant species to the mineral fracture surface, and analyses of fracture networks must take into consideration both the length and slenderness of individual fractures in addition to Pe and Da numbers.  相似文献   

2.
This paper is concerned with the morphological evolution of three‐dimensional chemical dissolution fronts that occur in fluid‐saturated porous media. A fully coupled system between porosity, pore‐fluid flow and reactive chemical species transport is considered to describe this phenomenon. Using the newly presented concept of the generalized dimensionless pore fluid pressure‐gradient, which can be used to represent the interaction between solute advection, solute diffusion, chemical kinetics and the shape factor of the soluble mineral, a theoretical criterion has been established to assess the likelihood of instability at a chemical dissolution front in the reactive transport system. To simulate the chemical dissolution front evolution in a three‐dimensional fluid‐saturated porous medium, a numerical procedure combining both the finite difference method and the finite element method has been proposed. As the problem belongs to a complex system science problem, a small randomly generated perturbation of porosity is added to the initial porosity of a three‐dimensional homogeneous domain to trigger instability of a planar chemical dissolution front during its propagation within the fluid‐saturated porous medium. To test the correctness and accuracy of the proposed numerical procedure, a three‐dimensional benchmark problem has been constructed and the related analytical solution has been derived. This enables using the proposed numerical procedure for simulating the morphological evolution of a three‐dimensional chemical dissolution front from a stable, planar state into an unstable, fingering state. The related numerical results demonstrate that the proposed numerical procedure is useful for, and capable of, simulating the morphological instability of a three‐dimensional chemical dissolution front within a fluid‐saturated porous medium.  相似文献   

3.
The currently active fluid regime within the outboard region of the Southern Alps, New Zealand was investigated using a combination of field observations, carbon‐ and oxygen‐stable isotopes from fault‐hosted calcites and interpretation of magnetotelluric (MT) data. Active faulting in the region is dominated by NE striking and N striking, oppositely dipping thrust fault pairs. Stable isotopic analyses of calcites hosted within these fault zones range from 10 to 25‰δ18O and from ?33 to 0‰δ13C. These values reflect mixing of three parent fluids: meteoric water, carbon‐exchanged groundwater and minor deeper rock‐exchanged fluids, at temperatures of 10–90°C in the upper 3–4 km of the crust. A broad, ‘U‐shaped’ zone of high electrical conductivity (maximum depth c. 28 km) underlies the central Southern Alps. In the ductile region of the crust, the high‐conductivity zone is subhorizontal. Near‐vertical zones of high conductivity extend upward to the surface on both sides of the conductive zone. On the outboard side of the orogen, the conductive zone reaches the surface coincident with the trace of the active Forest Creek Faults. Near‐surface flow is shown to dominate the outboard region. Topographically driven meteoric water interacts, on a kilometre scale, with either carbon‐exchanged groundwater or directly with organic material within Pliocene gravels, resulting in a distinctive low 13C signal within fault‐hosted calcites of the outboard region. The high‐strain zone in the lower crust focuses the migration of deeply sourced fluids upward to the base of the brittle–ductile transition. Interconnected fluid is imaged as a narrow vertical zone of high conductivity in the upper crust, implying continuous permeability and possibly buoyancy‐driven flow of deeply sourced fluids to higher levels of the crust where they are detected by the isotopic analysis of the fault‐hosted calcites.  相似文献   

4.
To investigate the kinetics of interfacial energy‐driven fluid infiltration, experiments were carried out in a quartzite–water system at 621–925°C and 0.8 GPa. Infiltration couples were made by juxtaposing presynthesized dry quartzite cylinders and fluid reservoirs. The infiltration process was confirmed by the presence of pores at the quartzite grain edges. As predicted from theoretical considerations and previous experiments, wetting fluids such as pure water and NaCl aqueous solution infiltrated into quartzite, whereas nonwetting CO2‐rich fluids did not. Newly precipitated quartz layers at the surfaces of the infiltrated sample proved that infiltration took place by a dissolution–precipitation mechanism. The enhancement of grain growth by fluid infiltration was observed over the entire range of experimental temperatures. The fluid fraction, gauged by the porosity of the run products, increases at the infiltration front and then decreases towards the fluid reservoir to form a high‐porosity zone with a maximum porosity of 2.3–2.9%. As infiltration proceeds, the high‐porosity zone advances like a travelling wave. This porosity wave is probably caused by a grain curvature gradient resulting from preferential grain growth in the infiltrated part of the quartzite, perhaps combined with other factors. The infiltration kinetics were modelled with a steady‐state diffusion model over the high‐porosity zone. The solubility difference between dissolving and precipitating grains was deduced to be 2 × 10?2?3 × 10?1 wt %. The experimentally obtained infiltration rate of aqueous fluid in the steady‐state diffusion regime (2 ± 0.5 × 10?8 m sec?1 at 823°C) is much faster than the estimated metamorphic fluid flux rates, so that interfacial energy‐driven fluid redistribution in quartz‐rich layers could significantly contribute to the fluid flux in high‐grade metamorphism, at least over a short distance. Cathodoluminescence observations of the run products revealed that the grain growth of quartzite in the presence of fluid proceeds extensively, which would promote the chemical equilibration between fluid and rock more effectively than would volume diffusion in quartz crystals.  相似文献   

5.
Uni‐axial compaction creep experiments were performed on crushed limestone and analytical grade calcite powders at 150°C, a pore fluid pressure of 20 MPa, and effective axial stresses of 30 and 40 MPa. Previous experiments have shown that compaction under these conditions is dominated by intergranular pressure solution (IPS). The aim of the present tests was to determine the inter‐relationship between pore fluid chemistry, compaction rate and the rate‐controlling process of IPS. Intermittent flow‐through runs conducted using CaCO3 solution showed no effect on creep rate at low strains (<4–5%) but a major acceleration at high strains (5–10%). Measurements of the Ca concentration present in fluid samples revealed the build‐up of a high super‐saturation of CaCO3 during compaction under zero flow conditions, especially at high strains. Active flow‐through led to a drop in Ca concentration, which corresponded with creep acceleration. Addition of NaCl to the pore fluid, at a concentration of 0.5 m , increased the creep rate of the analytical grade calcite samples roughly in proportion to the enhancement of calcite solubility. Addition of Mg2+ and to the pore fluid, in concentrations of 0.05 and 0.001 m, respectively, caused major retardation of compaction creep. Integrating our mechanical, flow‐through and chemical data points strongly to diffusion‐controlled IPS being the dominant deformation mechanism in the calcite‐water system under closed‐system (zero flow) conditions at low strains (<4–5%), giving way to precipitation control at higher strains. Our fluid composition data suggest that this transition is because of accumulation of impurities in the pore fluid. As Mg2+ and phosphate ions are common in natural pore fluids, it is likely that retarded precipitation will be the rate‐limiting step of IPS in carbonates in nature. To quantify diagenetic compaction and porosity‐permeability reduction rates by IPS in carbonates needs to account for this.  相似文献   

6.
The province of Burdur (SW Turkey) is seismically an active region. A structural, geochronological, petrographical, geochemical and fluid inclusion study of extension veins and fault‐related calcite precipitates has been undertaken to reconstruct the palaeofluid flow pattern in this normal fault setting in the Aegean region. A palaeostress analysis and U/Th dating of the precipitates reveals the neotectonic significance of the sampled calcites. Fluid inclusion microthermometry of calcites‐filling extension veins shows final melting temperatures (Tm ice) of 0°C. This indicates pure water, most likely of meteoric origin. The oxygen isotope values (?9.8‰ to ?6.5‰ VPDB) and the carbon isotopic composition (?10.4‰ to ?2.9‰ VPDB) of these calcites also show a near‐surface meteoric origin of the fluid responsible for precipitation. The microstructural characteristics of fault‐related calcites indicate that calcite precipitation was linked with fault activity. Final melting temperature of fault‐related calcites ranges between 0 and ?1.9°C. The oxygen isotope values show a broad range between ?15.0‰ and ?2.2‰ VPDB. Several of these calcites have a δ18O composition that is higher or lower than the oxygen isotopic composition of meteoric calcites in the area (i.e. between ?10‰ and ?6‰ VPDB). The δ13C composition largely falls within the range of the host limestones and reflects a rock‐buffered system. Microthermometry and stable isotopic study indicate a meteoric origin of the fluids with some degree of water–rock interaction or mixing with another fluid. Temperatures deduced from microthermometry and stable isotope analyses indicate precipitation temperatures around 50°C. These higher temperatures and the evidence for water–rock interaction indicate a flow path long enough to equilibrate with the host–rock limestone and to increase the temperature. The combined study of extension vein‐ and fault‐related calcite precipitates enables determining the origin of the fluids responsible for precipitation in a normal fault setting. Meteoric water infiltrated in the limestones to a depth of at least 1 km and underwent water–rock interaction or mixing with a residual fluid. This fluid was, moreover, tapped during fault activity. The extension veins, on the contrary, were passively filled with calcites precipitating from the downwards‐migrating meteoric water.  相似文献   

7.
Quartz veins acted as impermeable barriers to regional fluid flow and not as fluid‐flow conduits in Mesoproterozoic rocks of the Mt Painter Block, South Australia. Systematically distributed asymmetric alteration selvedges consisting of a muscovite‐rich zone paired with a biotite‐rich zone are centered on quartz veins in quartz–muscovite–biotite schist. Geometric analysis of the orientation and facing of 126 veins at Nooldoonooldoona Waterhole reveals a single direction along which a maximum of all veins have a muscovite‐rich side, irrespective of their specific individual orientation. This direction represents a Mesoproterozoic fluid‐flow vector and the veins represent permeability barriers to the flow. The pale muscovite‐rich zones formed on the downstream side of the vein and the dark biotite‐rich zones mark the upstream side. The alteration couplets formed from mica schist at constant Zr, Ga, Sc, and involved increases in Si, Na, Al and decreases in K, Fe, Mg for pale alteration zones, and inverse alteration within dark zones. The asymmetry of the alteration couplets is best explained by the pressure dependence of mineral–fluid equilibria. These equilibria, in combination with a Darcian flow model for coupled advection and diffusion, and with permeability barriers imposed by the quartz veins, simulate the pattern of both fluid flow and differential, asymmetric metasomatism. The determined vector of fluid flow lies along the regional foliation and is consistent with the known distribution of regional alteration products. The presence of asymmetric alteration zones in rock containing abundant pre‐alteration veins suggests that vein‐rich material may have generally retarded regional fluid flow.  相似文献   

8.
M. A. Simms  G. Garven 《Geofluids》2004,4(2):109-130
Thermal convection has the potential to be a significant and widespread mechanism of fluid flow, mass transport, and heat transport in rift and other extensional basins. Based on numerical simulation results, large‐scale convection can occur on the scale of the basin thickness, depending on the Rayleigh number for the basin. Our analysis indicates that for syn‐rift and early post‐rift settings with a basin thickness of 5 km, thermal convection can occur for basal heat flows ranging from 80 to 150 mW m?2, when the vertical hydraulic conductivity is on the order of 1.5 m year?1 and lower. The convection cells have characteristic wavelengths and flow patterns depending on the thermal and hydraulic boundary conditions. Steeply dipping extensional faults can provide pathways for vertical fluid flow across large thicknesses of basin sediments and can modify the dynamics of thermal convection. The presence of faults perturbs the thermal convective flow pattern and can constrain the size and locations of convection cells. Depending on the spacing of the faults and the hydraulic properties of the faults and basin sediments, the convection cells can be spatially organized to align with adjacent faults. A fault‐bounded cell occurs when one convection cell is constrained to occupy a fault block so that the up‐flow zone converges into one fault zone and the down‐flow zone is centred on the adjacent fault. A fault‐bounded cell pair occurs when two convection cells occupy a fault block with the up‐flow zone located between the faults and the down‐flow zones centred on the adjacent faults or with the reverse pattern of flow. Fault‐bounded cells and cell pairs can be referred to collectively as fault‐bounded convective flow. The flow paths in fault‐bounded convective flow can be lengthened significantly with respect to those of convection cells unperturbed by the presence of faults. The cell pattern and sense of circulation depend on the fault spacing, sediment and fault permeabilities, lithologic heterogeneity, and the basal heat flow. The presence of fault zones also extends the range of conditions for which thermal convection can occur to basin settings with Rayleigh numbers below the critical value for large‐scale convection to occur in a basin without faults. The widespread potential for the occurrence of thermal convection suggests that it may play a role in controlling geological processes in rift basins including the acquisition and deposition of metals by basin fluids, the distribution of diagenetic processes, the temperature field and heat flow, petroleum generation and migration, and the geochemical evolution of basin fluids. Fault‐bounded cells and cell pairs can focus mass and heat transport from longer flow paths into fault zones, and their discharge zones are a particularly favourable setting for the formation of sediment‐hosted ore deposits near the sea floor.  相似文献   

9.
We report overprinting stable isotope evidence of fluid–rock interaction below two detachment faults along which mantle rocks were exhumed to the seafloor, between the respective landward and seaward limits of oceanic and continental crust, at a Tethyan ocean–continent transition (OCT). This OCT, which is presently exposed in the Tasna nappe (south‐eastern Switzerland) is considered an on‐land analogue of the well‐studied Iberian OCT. We compare our results with the fault architecture (fault core–damage zone–protolith) described by Caine et al. [Geology (1996) Vol. 24, pp. 1025–1028]. We confirm the existence of a sharp boundary between the fault core and damage zone based on isotopic data, but the boundary between the damage zone and protolith is gradational. We identify evidence for: (1) pervasive isotopic modification to 8.4 ± 0.1‰ which accompanied or post‐dated serpentinization of these mantle rocks at an estimated temperature of 67–109°C, (2) either (i) partial isolation of some highly strained regions [fault core(s) and mylonite] from this pervasive isotopic modification, because of permeability reduction (Caine et al.) or (ii) subsequent isotopic modification caused by structurally channelled flow of warm fluids within these highly strained regions, because of permeability enhancement, and (3) isotopic modification, which is associated with extensive calcification at T = 54–100°C, primarily beneath the younger of the two detachment faults and post‐dating initial serpentinization. By comparing the volumetric extent of calcification with an experimentally verified model for calcite precipitation in veins, we conclude that calcification could have occurred in response to seawater infiltration, with a calculated flux rate of 0.1–0.2 m year?1 and a minimum duration of 0.2–4.0 × 104 years. The associated time‐averaged uptake flux of carbon during this period was 8–120 mol m?2 year?1. By comparison with the estimated area of exhumed mantle rocks at the Iberian OCT, we calculate a maximum annual uptake flux for carbon of 2–30 Tg year?1. This is an order of magnitude greater than that for carbon exchange at the mid‐ocean ridges and 0.1–1.4% of the global oceanic uptake flux for carbon.  相似文献   

10.
Numerical simulations of multiphase CO2 behavior within faulted sandstone reservoirs examine the impact of fractures and faults on CO2 migration in potential subsurface injection systems. In southeastern Utah, some natural CO2 reservoirs are breached and CO2‐charged water flows to the surface along permeable damage zones adjacent to faults; in other sites, faulted sandstones form barriers to flow and large CO2‐filled reservoirs result. These end‐members serve as the guides for our modeling, both at sites where nature offers ‘successful’ storage and at sites where leakage has occurred. We consider two end‐member fault types: low‐permeability faults dominated by deformation‐band networks and high‐permeability faults dominated by fracture networks in damage zones adjacent to clay‐rich gouge. Equivalent permeability (k) values for the fault zones can range from <10?14 m2 for deformation‐band‐dominated faults to >10?12 m2 for fracture‐dominated faults regardless of the permeability of unfaulted sandstone. Water–CO2 fluid‐flow simulations model the injection of CO2 into high‐k sandstone (5 × 10?13 m2) with low‐k (5 × 10?17 m2) or high‐k (5 × 10?12 m2) fault zones that correspond to deformation‐band‐ or fracture‐dominated faults, respectively. After 500 days, CO2 rises to produce an inverted cone of free and dissolved CO2 that spreads laterally away from the injection well. Free CO2 fills no more than 41% of the pore space behind the advancing CO2 front, where dissolved CO2 is at or near geochemical saturation. The low‐k fault zone exerts the greatest impact on the shape of the advancing CO2 front and restricts the bulk of the dissolved and free CO2 to the region upstream of the fault barrier. In the high‐k aquifer, the high‐k fault zone exerts a small influence on the shape of the advancing CO2 front. We also model stacked reservoir seal pairs, and the fracture‐dominated fault acts as a vertical bypass, allowing upward movement of CO2 into overlying strata. High‐permeability fault zones are important pathways for CO2 to bypass unfaulted sandstone, which leads to reduce sequestration efficiency. Aquifer compartmentalization by low‐permeability fault barriers leads to improved storativity because the barriers restrict lateral CO2 migration and maximize the volume and pressure of CO2 that might be emplaced in each fault‐bound compartment. As much as a 3.5‐MPa pressure increase may develop in the injected reservoir in this model domain, which under certain conditions may lead to pressures close to the fracture pressure of the top seal.  相似文献   

11.
F. H. Weinlich 《Geofluids》2014,14(2):143-159
The ascent of magmatic carbon dioxide in the western Eger (Oh?e) Rift is interlinked with the fault systems of the Variscian basement. In the Cheb Basin, the minimum CO2 flux is about 160 m3 h?1, with a diminishing trend towards the north and ceasing in the main epicentral area of the Northwest Bohemian swarm earthquakes. The ascending CO2 forms Ca‐Mg‐HCO3 type waters by leaching of cations from the fault planes and creates clay minerals, such as kaolinite, as alteration products on affected fault planes. These mineral reactions result in fault weakness and in hydraulically interconnected fault network. This leads to a decrease in the friction coefficient of the Coulomb failure stress (CFS) and to fault creep as stress build‐up cannot occur in the weak segments. At the transition zone in the north of the Cheb Basin, between areas of weak, fluid conductive faults and areas of locked faults with frictional strength, fluid pressure can increase resulting in stress build‐up. This can trigger strike‐slip swarm earthquakes. Fault creep or movements in weak segments may support a stress build‐up in the transition area by transmitting fluid pressure pulses. Additionally to fluid‐driven triggering models, it is important to consider that fluids ascending along faults are CO2‐supersaturated thus intensifying the effect of fluid flow. The enforced flow of CO2‐supersaturated fluids in the transitional zone from high to low permeability segments through narrowings triggers gas exsolution and may generate pressure fluctuations. Phase separation starts according to the phase behaviour of CO2‐H2O systems in the seismically active depths of NW Bohemia and may explain the vertical distribution of the seismicity. Changes in the size of the fluid transport channels in the fault systems caused, or superimposed, by fault movements, can produce fluid pressure increases or pulses, which are the precondition for triggering fluid‐induced swarm earthquakes.  相似文献   

12.
D. Reeves  D. H. Rothman 《Geofluids》2014,14(2):128-142
The formation of porous weathering rinds (layers of chemical alteration) on the exterior of rocks is a consequence of dissolution and precipitation of minerals occurring at the mineral–fluid interface within the pores. The speed at which the developed rind advances is controlled by both kinetic reaction rates and the transport of reaction products away from the pore spaces into the outside fluid. We show, using both reaction‐diffusion theory and numerics, that under diffusion limitations, the weathering rate depends on the size and curvature of the sample. This leads to a relationship between rind thickness, δ, and age, t. As the rind thickens, the result in three dimensions differs substantially from the one‐dimensional result of . We describe the conditions under which the one‐dimensional and diffusion‐limited approximations apply and how they evolve as the rock weathers. Under chemical kinetic limitations, the rind advances at a constant rate, /dt = v. We defend the application of a spherical approximation to irregular non‐spherical rocks and apply our results to field observations reported in the literature to show consistency with established methods. Finally, we argue that the variability in size, as well as in mineralogy, over ensembles of grains contributes to heterogeneous weathering rates. We demonstrate that this heterogeneity can contribute to the aging, or gradual decrease with time, of weathering rates previously observed in laboratory and field measurements.  相似文献   

13.
Vertical and lateral variations in lithology, salinity, temperature, and pressure determined from wireline LAS logs, produced water samples, and seismic data on the south flank of a salt structure on the continental shelf, offshore Louisiana indicate three hydrogeologic zones in the study area: a shallow region from 0 to 1.1 km depth with hydrostatically pressured, shale‐dominated Pleistocene age sediments containing pore waters with sea water (35 g l?1) or slightly above sea water salinity; a middle region from 1.1 to 3.2 km depth with near hydrostatically pressured, sand‐dominated Pliocene age sediments that contain pore waters that range from seawater salinity to up to 5 times sea water salinity (180 g l?1); and a deep section below 3.2 km depth with geopressured, shale‐dominated Miocene age sediments containing pore waters that range from sea water salinity to 125 g l?1. Salt dissolution has generated dense, saline waters that appear to be migrating down dip preferentially through the thick Pliocene sandy section. Sand layers that come in contact with salt contain pore waters with high salinity. Isolated sands have near sea water salinity. Salinity information in conjunction with seismic data is used to infer fluid compartmentalization. Both vertical and lateral lithologic barriers to fluid flow at tens to hundreds of meters scale are observed. Fluid compartmentalization is also evident across a supradomal normal fault. Offset of salinity contours are consistent with the throw of the fault, which suggests that saline fluids migrated before fault formation.  相似文献   

14.
An understanding of fluid flow, mass transport and isotopic exchange in fractured rock is required to understand the origin of several geological processes including hydrothermal mineral deposits. The numerical model HydroGeoSphere simulates 3D advection, molecular diffusion, mechanical dispersion and isotopic exchange in a discretely fractured porous media, and can be used to better understand the processes of mass transport and isotopic exchange in fractured rocks. Study of 18O isopleth patterns for different types of fractures and fracture networks with a range of structural complexity and hydraulic properties shows that fracture properties and geometry control mass transport and isotopic exchange. The hydraulic properties, as well as the density, spacing, and connectivity of fractures determine the isotopic patterns. Asymmetries in the geometry of oxygen isotope patterns could be used to determine the direction of hydrothermal fluid flow.  相似文献   

15.
We used seismic velocity as a proxy for serpentinization of the mantle, which occurred beneath thinned but laterally continuous continental crust during continental break up, prior to opening of the Atlantic Ocean. The serpentinized sub‐continental mantle is now exhumed, beneath the Iberia Abyssal Plain and was accessed by scientific drilling on Ocean Drilling Program legs 149 and 173. Chromatographic modelling of kinetically limited transport of the serpentinization front yields a front displacement of 2197 ± 89 m, a time‐integrated fluid flux of 1098 ± 45 m3 m?2 and a Damköhler number of 6.0 ± 0.2. Whether either surface reaction or chemical transport limit the rate of reaction, we calculate timescales for serpentinization of approximately 105–106 years. This yields time‐average fluid flux rates for H2O, entering and reacting with the mantle, of 60–600 mol m?2 a?1 and for CH4, produced as a by‐product of oxidation of Fe++ to magnetite and exiting the mantle, of 0.55–5.5 mol m?2 a?1. This equates to a CH4‐flux of 0.18–1.8 Tg a?1 for coeval serpentinization of the mantle that was exhumed west of Iberia. This represents 0.03–0.3% of the present‐day annual CH4‐flux from all sources and a higher fraction of pre‐anthropogenic (lower) CH4 levels. CH4 released by serpentinization at or beneath the seafloor could provide substrate for biological chemosynthesis and/or promote gas‐hydrate formation. Finally, noting its volumetric extent and rapidity (<106 years), we interpret serpentinization to be a reckonable component of tectonic processes, contributing both diapiric and expansional forces and helping to ‘lubricate’ extensional processes. Given its anisotropic permeability, actively deforming serpentinite might impede melt migration which may be of interest, given the apparent lack of melt in some rifted margins.  相似文献   

16.
We present real‐time observations of polycrystal growth experiments in transmitted light in an accurately controlled flow system with the analogue material alum [KAl(SO4)2·12H2O]. The aim of the experiments is to obtain a better insight into the evolution of vein microstructures. A first series of experiments shows the evolution of a polycrystal at supersaturations between 0.095 and 0.263. The average growth rate of the crystals is influenced by growth competition and the depletion of the solute along fracture length. Growth competition is controlled by crystallographic orientation, crystal size and crystal location. In addition, the growth rate of an individual crystal facet also shows variations depending on the facet index, facet size and flow velocity. These variations can influence the morphology of the grain boundaries and the microstructures. The aim of the second series of experiments is to investigate the growth evolution of rough/dissolved facets in detail. The growth distance required for the development of facets is around 15 μm. In all the experiments, we observe that the measured growth rates have a much larger range than predicted by alum single‐crystal growth kinetics. This is due to the combined effect of the facet index and the crystal size. Furthermore, at high supersaturations, the facet growth rate measurements do not fit the same growth rate equation as for the experiments at lower supersaturations (<0.176). This can be explained by a change in the growth mechanism at high supersaturations with more influence of volume diffusion, relative to advection of the bulk solution on the growth rate. This effect can also cause a more homogeneous sealing pattern over fracture length. At high supersaturations, the larger crystals in these experiments incorporate regularly spaced fluid inclusion bands and we propose that these can be used as an indicator for high palaeo‐supersaturation. The final microstructures of the experiments show no asymmetry with respect to the flow direction.  相似文献   

17.
B. Jung  G. Garven  J. R. Boles 《Geofluids》2014,14(2):234-250
Fault permeability may vary through time due to tectonic deformations, transients in pore pressure and effective stress, and mineralization associated with water‐rock reactions. Time‐varying permeability will affect subsurface fluid migration rates and patterns of petroleum accumulation in densely faulted sedimentary basins such as those associated with the borderland basins of Southern California. This study explores the petroleum fluid dynamics of this migration. As a multiphase flow and petroleum migration case study on the role of faults, computational models for both episodic and continuous hydrocarbon migration are constructed to investigate large‐scale fluid flow and petroleum accumulation along a northern section of the Newport‐Inglewood fault zone in the Los Angeles basin, Southern California. The numerical code solves the governing equations for oil, water, and heat transport in heterogeneous and anisotropic geologic cross sections but neglects flow in the third dimension for practical applications. Our numerical results suggest that fault permeability and fluid pressure fluctuations are crucial factors for distributing hydrocarbon accumulations associated with fault zones, and they also play important roles in controlling the geologic timing for reservoir filling. Episodic flow appears to enhance hydrocarbon accumulation more strongly by enabling stepwise build‐up in oil saturation in adjacent sedimentary formations due to temporally high pore pressure and high permeability caused by periodic fault rupture. Under assumptions that fault permeability fluctuate within the range of 1–1000 millidarcys (10?15–10?12 m2) and fault pressures fluctuate within 10–80% of overpressure ratio, the estimated oil volume in the Inglewood oil field (approximately 450 million barrels oil equivalent) can be accumulated in about 24 000 years, assuming a seismically induced fluid flow event occurs every 2000 years. This episodic petroleum migration model could be more geologically important than a continuous‐flow model, when considering the observed patterns of hydrocarbons and seismically active tectonic setting of the Los Angeles basin.  相似文献   

18.
The Monte Perdido thrust fault (southern Pyrenees) consists of a 6‐m‐thick interval of intensely deformed clay‐bearing rocks. The fault zone is affected by a pervasive pressure solution seam and numerous shear surfaces. Calcite extensional‐shear veins are present along the shear surfaces. The angular relationships between the two structures indicate that shear surfaces developed at a high angle (70°) to the local principal maximum stress axis σ1. Two main stages of deformation are present. The first stage corresponds to the development of calcite shear veins by a combination of shear surface reactivation and extensional mode I rupture. The second stage of deformation corresponds to chlorite precipitation along the previously reactivated shear surfaces. The pore fluid factor λ computed for the two deformation episodes indicates high fluid pressures during the Monte Perdido thrust activity. During the first stage of deformation, the reactivation of the shear surface was facilitated by a suprahydrostatic fluid pressure with a pore fluid factor λ equal to 0.89. For the second stage, the fluid pressure remained still high (with a λ value ranging between 0.77 and 0.84) even with the presence of weak chlorite along the shear surfaces. Furthermore, evidence of hydrostatic fluid pressure during calcite cement precipitation supports that incremental shear surface reactivations are correlated with cyclic fluid pressure fluctuations consistent with a fault‐valve model.  相似文献   

19.
Many faults in active and exhumed hydrocarbon‐generating basins are characterized by thick deposits of carbonate fault cement of limited vertical and horizontal extent. Based on fluid inclusion and stable isotope characteristics, these deposits have been attributed to upward flow of formation water and hydrocarbons. The present study sought to test this hypothesis by using numerical reactive transport modeling to investigate the origin of calcite cements in the Refugio‐Carneros fault located on the northern flank of the Santa Barbara Basin of southern California. Previous research has shown this calcite to have low δ13C values of about ?40 to ?30‰PDB, suggesting that methane‐rich fluids ascended the fault and contributed carbon for the mineralization. Fluid inclusion homogenization temperatures of 80–125°C in the calcite indicate that the fluids also transported significant quantities of heat. Fluid inclusion salinities ranging from fresh water to seawater values and the proximity of the Refugio‐Carneros fault to a zone of groundwater recharge in the Santa Ynez Mountains suggest that calcite precipitation in the fault may have been induced by the oxidation of methane‐rich basinal fluids by infiltrating meteoric fluids descending steeply dipping sedimentary layers on the northern basin flank. This oxidation could have occurred via at least two different mixing scenarios. In the first, overpressures in the central part of the basin may have driven methane‐rich formation waters derived from the Monterey Formation northward toward the basin flanks where they mixed with meteoric water descending from the Santa Ynez Mountains and diverted upward through the Refugio‐Carneros fault. In the second scenario, methane‐rich fluids sourced from deeper Paleogene sediments would have been driven upward by overpressures generated in the fault zones because of deformation, pressure solution, and flow, and released during fault rupture, ultimately mixing with meteoric water at shallow depth. The models in the present study were designed to test this second scenario, and show that in order for the observed fluid inclusion temperatures to be reached within 200 m of the surface, moderate overpressures and high permeabilities were required in the fault zone. Sudden release of overpressure may have been triggered by earthquakes and led to transient pulses of accelerated fluid flow and heat transport along faults, most likely on the order of tens to hundreds of years in duration. While the models also showed that methane‐rich fluids ascending the Refugio‐Carneros fault could be oxidized by meteoric water traversing the Vaqueros Sandstone to form calcite, they raised doubts about whether the length of time and the number of fault pulses needed for mineralization by the fault overpressuring mechanism were too high given existing geologic constraints.  相似文献   

20.
M. Wangen 《Geofluids》2001,1(4):273-287
Overpressure build‐up in compartments, and communication between overpressured compartments across faults are studied with simple analytical and numerical models. It is shown that the excess pressure in a (vertical) one‐dimensional, one‐compartment model can be written as the sum of the excess pressure generated in the seal above the compartment, and a second part, which is due to the expulsion of fluid from the compartment and the rocks below. The one‐compartment model is generalized to a two‐compartment model, which accounts for the fluid communication between the compartments through a fault zone. The volume rates of flow through the seals and the fault zone are shown to be the weighted mean of the volume rates of the one‐dimensional, one‐compartment model. The normalized weights are given by dimensionless numbers, called fault–seal numbers, which control the communication between the compartments. A fault–seal number much less than unity implies that the fault is a stronger barrier for the fluid flow than the seal. A fault–seal number larger than unity implies the opposite: that the seal is a stronger barrier than the fault. The conditions for isolated compartments and other regimes are identified in terms of the fault–seal numbers. It is discussed how the compartment fault–seal numbers can be computed when the permeability is given in the fault zone. The results given by the analytical compartment models are demonstrated and validated with two‐dimensional numerical (finite element) simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号