首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Results of a General Circulation Model simulation of the dynamics of the middle atmosphere are shown focusing our attention to the tidal wave mean flow interaction and propagation of migrating diurnal and semidiurnal tides in the model. It is shown that migrating tidal waves are well simulated and the amplitude growth with height is effectively suppressed by the convective adjustment in the model. It is also shown that the dissipating solar diurnal tide plays an important role in inducing mean zonal winds in the low latitude region of the lower thermosphere. The behavior of non-migrating diurnal tides is also analyzed to show that non-migrating diurnal tides have significant amplitudes in the lower thermosphere. It is suggested that the non-migrating diurnal tide, which propagates against background mean zonal winds, has the possibility to propagate into the middle to high latitude region due to the Doppler effect.  相似文献   

2.
A simplified middle atmosphere general circulation model is used to investigate the nonlinear behavior of the thermal diurnal tidal waves. In the model, only a westward moving diurnal tide generated by heating with zonal wavenumber 1 is considered. The tidal wave propagation is simulated by a full nonlinear calculation with a convective adjustment scheme and a Richardson number dependent vertical eddy diffusion.The numerical results show that the growth of the diurnal tide due to the density stratification is effectively suppressed and a relatively constant amplitude distribution with height is realized by the convective adjustment in the lower thermosphere. It is also shown that mean zonal winds and mean meridional circulations are induced by the diurnal tidal waves in the region where the tidal waves are breaking by convective instability, in accordance with the wave-mean flow interaction theorem.  相似文献   

3.
Although having a much smaller amplitude than solar tides, lunar tides are also present in the atmosphere. Lunar tides are attractive for theoretical and observational studies because their frequencies and forcing are better determined than for any other atmospheric waves. Lunar tides are generated by the lunar tidal potential which itself is very well determined. However, this potential also affects the Earth and oceans, modifying their mass distributions and elevations, and creating secondary tidal potentials as well as periodic movements of their interfaces with the atmosphere. The periodic load of ocean over the Earth crust due to the tides also induces a secondary modification of tidal potential as well as movement of the atmosphere interface. In our present work we seek to provide a comprehensive model of atmospheric M2 lunar tidal oscillations from the surface to the lower thermosphere (c. 105 km), taking account of the above-mentioned effects i.e. Earth, ocean and load tides. This study is motivated by two facts. First, we now have good determinations of ocean tides using satellite altimetry whereas previous studies of lunar tides were based only on numerical simulations of these ocean tides. Second, some reliable analyses of lunar tides in the lower thermosphere are now available as radars are now operating over a sufficiently long period. Their number should increase in the near future leading to a need for a theoretical study of lunar tides. In this paper, we develop a numerical model and analyse the effects of the different primary and secondary forcings on the lunar tide. Monthly simulations are discussed, and some comparisons with available data (at ground level as well as in the lower thermosphere) are presented.  相似文献   

4.
Monthly simulations of the solar semidiurnal tide in the 80–100 km height regime are presented. These calculations benefit from the recent heating rates provided by Groves G. V. (1982a,b) (J. atmos. terr. Phys. 44, 111; 44, 281), the zonally-averaged wind, temperature and pressure fields developed for the new COSPAR international reference atmosphere [Labitzke K., Barnett J. J. and Edwards B. (1985) Handbook for MAP 16, 318], and eddy diffusivities determined from gravity wave saturation climatologies and used by Garcia R. R. and Solomon S. (1985) (J. geophys. Res. 90, 3850) to simulate oxygen photochemistry and transport in the mesosphere and lower thermosphere. Some of the main characteristics of the observed semidiurnal tide at middle and high latitudes are reproduced in our simulations: larger amplitudes in winter months than in summer months, and the bi-modal behavior of the phase with summer-like and winter-like months separated by a quick transition around the two equinoxes. The phase transition is also more rapid in the spring, consistent with observations. The wavelengths are also longer in summer than in winter, at least below 95 km (whereas in July and August the simulations exhibit some discrepancies above this altitude), similar to the observational data. Semidiurnal amplitudes are generally smaller and the phases more seasonally symmetric at middle and low latitudes, as compared with the tidal structures above about 50° latitude. In addition, hemispheric differences in the mean zonal wind result in marked asymmetries in tidal behavior between the Arctic and Antarctic regions, and suggest that a comparative study of tide, gravity wave and mean flow interactions in the Arctic and Antarctic mesosphere and lower thermosphere would be fruitful.  相似文献   

5.
Absorption of solar radiation is taken as the cause of atmospheric tides, which are simulated by a global, 3-D primitive equation model for the altitude region 0 km–120 km. To investigate non-linear effects, two model versions are used, one with the complete non-linear equation set, the other with the linear equation set. Tide simulations are then performed under the same conditions (background atmosphere and radiation for solstice) with both model versions and directly compared. The diurnal tide can be regarded as a linear phenomenon, whereas the semi-diurnal tide is modified in lower latitudes above 65 km by non-linear effects. Due to the interaction of the tidal components with the background wind, a strong westward zonal flow is generated in the non-linear model above 70 km.  相似文献   

6.
Forty-one days of measurements of the upward flux of zonal momentum associated with internal atmospheric gravity waves propagating in the upper mesosphere and lower thermosphere, made in thirteen 2–5 day periods, in each season, for the years 1981 and 1982 are presented, and the zonal mean flow acceleration is calculated for each period. For five periods of observation the upward fluxes of both zonal and meridional momentum are presented and for these, the total mean flow acceleration is calculated. When averaged over periods of 2–5 days, the magnitude of the upward flux of zonal momentum is typically less than about 3 m2 s−1, with the largest values tending to occur in the summer and winter months, suggesting a semi-annual variation with minima at the equinoxes, although large fluctuations in magnitude and sign are possible. About 70% of the upward flux of horizontal momentum appears to be due to motions with periods less than 1 h and their contribution to the mean flow acceleration is comparable. The zonal mean flow acceleration is often in the correct sense, and of sufficient magnitude, to decelerate the zonal wind component and to balance the Coriolis torque due to the mean meridional wind, when experimental uncertainties are taken into account. When averaged over periods of around 3 days, zonal mean flow accelerations with magnitudes of up to 190 m s−1 day−1 were calculated, but more typical values are between 50 and 80 m s−1 day−1. Magnitudes of the meridional and zonal mean flow accelerations were found to be similar, so that the total mean flow acceleration is not aligned with the zonal direction in general.  相似文献   

7.
Recent progress in the study of middle atmosphere tides is reviewed. Specific areas where recent progress has occurred include: development of more realistic thermal excitation and numerical simulation models; the role of tides in accelerating and heating the mean flow at the base of the thermosphere; observational efforts which delineate average seasonal, latitudinal and vertical structures of tides, and shorterterm variations of tides about these values; theoretical and observational studies concerning the importance of non-migrating tidal components; the effects of tides on minor constituent concentrations in the upper mesosphere and lower thermosphere. The review concludes with a summary of key problems to be addressed in the future.  相似文献   

8.
The evidence for the existence of tidal variability as observed in the meridional thermospheric wind (approx. 300 km height) is presented for a set of eight ionosonde locations (three in the northern hemisphere and five in the southern hemisphere). The data set corresponds to a full year (1984) of hourly values. The detected variability can be seen in the tidal components of the meridional wind. The diurnal and semidiurnal components are spectrally analysed. The quarterly spectra show that the tidal amplitudes oscillate with periods between 2 and 60 days. The more important oscillations have periods from 15 to 3 days. No direct link between solar and magnetic activity indices was detected. Possible reasons for the observed tidal variability are discussed in the light of the current theory developed for the mesosphere and lower thermosphere.  相似文献   

9.
The thermosphere is primarily energised by the combination of three sources of energy and momentum. Solar UV and EUV energy is absorbed globally on the dayside within the middle and upper thermosphere. There is a persistent, but highly variable, inflow of energy and momentum from the magnetosphere. These magnetospheric inputs are usually confined to high latitudes, except at times of very large geomagnetic disturbances. Tides and gravity waves upwell from their sources in the troposphere and stratosphere to deposit energy and momentum at levels from the middle mesosphere to the upper thermosphere. Solar EUV radiation between 120 ran and 250 nm photo-dissociates the molecules which dominate the composition of the lower thermosphere, in particular producing atomic oxygen which dominates the composition of the upper thermosphere. The combination of solar EUV radiation at wavelengths shorter than 120 nm, plus energetic (mainly) charged particles from the magnetosphere, also ionise the neutral constituents of the thermosphere, creating the ionosphere. Particularly at high latitudes, within the geomagnetic polar caps and auroral ovals, the energetic, dynamical and chemical coupling and interactions between the thermosphere and ionosphere dominate the structural and dynamical response of both the thermosphere and ionosphere to solar and geomagnetic inputs of energy and momentum.Comparisons between predictions using global thermosphere-ionosphere coupled models and comparable observational sets have shown encouraging agreement during periods of relatively quiet geomagnetic activity. This indicates that the major energetic, ionisation, chemical and dynamical processes and interactions can be described in models with reasonable accuracy. During periods of high geomagnetic activity, and particularly during major geomagnetic storms, large rapid disturbances of the thermosphere occur with extremely rapid variations. These disturbances are observed as large increases of temperature, density, major changes of neutral composition, and with the development of high speed wind flows and large amplitude waves which may propagate to affect the entire globe. Since the ionosphere is formed from thermospheric constituents and affected by thermospherc dynamics, the gross disturbances of the ionosphere during highly disturbed periods are related to contemporary changes of density, composition and flows of the thermosphere, as well as changes of ionisation sources and electric fields. Observations which describe the nature and scale of disturbances of the thermosphere during geomagnetic storms will be used, in combination with appropriate global numerical simulations, to aid interpretation of storm-time ionospheric phenomena. The role of energetic, dynamical and chemical coupling between the thermosphere and ionosphere is emphasised.  相似文献   

10.
Saskatoon (52 N, 107 W) medium frequency (MF) radar data from 1979 to 1990 have been analyzed to investigate the solar activity effects on upper middle atmospheric winds and tidal amplitudes. The period of study covers two solar maxima and a solar minimum; the continuous data allow a systematic analysis of solar cycle dependence on mean winds and tides. The height region of 79–97 km sampled in the study shows an apparent but very weak dependence of mean winds and tidal amplitudes on solar activity variation. The observed features are fairly consistent with the early results reported by Sprenger and Schmindkr [(1969) J. atmos. terr. Phy. 31, 217). The mean zonal wind and the semidiurnal tidal amplitudes appear to exhibit positive and negative correlations with the solar activity, respectively; the statistical significances of these correlations are generally low. There is a biennial periodicity evident in the zonal wind oscillations but this docs not have a consistent phase relationship with the equatorial stratospheric wind oscillations (QBO). The meridional winds and the tidal amplitudes are characterized with different and quite irregular periods of oscillations (2–5 yr). The diurnal tidal variations over the solar cycle are small and irregular, although amplitudes are slightly larger during the solar minimum years.  相似文献   

11.
The middle and upper atmosphere and the ionosphere at high latitudes are studied with the EISCAT incoherent scatter radars in northern Scandinavia. We describe here the investigations of the lower thermosphere and the E-region, and the mesosphere and the D-region. In the auroral zone both these altitude regions are influenced by magnetospheric processes, such as charged particle precipitation and electric fields, which are measured with the incoherent scatter technique. Electron density, neutral density, temperature and composition are determined from the EISCAT data. By measuring the ion drifts, electric fields, mean winds, tides and gravity waves are deduced. Sporadic E-layers and their relation to gravity waves, electric fields and sudden sodium layers are also investigated with EISCAT. In the mesosphere coherent scatter occurs from unique ionization irregularities. This scatter causes the polar mesosphere summer echoes (PMSE), which are examined in detail with the EISCAT radars. We describe the dynamics of the PMSE, as well as the combination with aeronomical processes, which could give rise to the irregularities. We finally outline the future direction which is to construct the EISCAT Svalbard Radar for studying the ionosphere and the upper, middle and lower atmosphere in the polar cap region.  相似文献   

12.
Wind measurements which were carried out during the MAP/WINE Campaign in northern Scandinavia between 2 December 1983 and 24 February 1984 are used to derive background winds and monthly as well as winter mean values from the ground up to 90 km altitude. These mean winds compare favourably to the wind field proposed for the revised CIRA 86, which is deduced from satellite measurements. The vertical structure of the zonal monthly means is similar in both data sets during January and February. The winter mean zonal winds are observed to be slightly stronger in the stratosphere and lower mesosphere during the MAP/WINE winter than the satellite winds proposed for CIRA 86. The long term mean meridional winds are in good agreement up to 60 km. They indicate a dominant influence of quasistationary planetary waves up to 90 km and an ageostrophic poleward flow between 60 km and 85 km over northern Scandinavia, which maximizes at 76 km at about 8 m s−1. The observed short term variability of the wind is discussed with respect to a possible impact of saturating gravity waves on the momentum budget of the middle atmosphere.  相似文献   

13.
This paper examines the feasibility of deriving a climatology of the diurnal variations of the wind in the 85–120 km region from the tidal components of temperature, density, and composition contained in the new COSPAR International Reference Atmosphere, CIRA-1986, Part I: Thermosphere Models [(1988), Adv. Space Res.8, 9]. To derive the wind field, we used the zonal and meridional momentum equations which have been modified from the characteristic scales of the tidal components observed in the 85–120 km region. The CIRA temperature and density model was used to derive the eastward (westerly) and northward (southerly) pressure gradient forces which serve as the forcing functions in the coupled momentum equations. Ground-based wind data from the Mesosphere-Lower Thermosphere (MLT) radar network is used as an independent data set to check the accuracy of the derived tidal wind model. At midlatitudes, the model reproduces some of the general features observed in the radar tidal data, such as the dominant semidiurnal tide with increasing amplitude with height and clockwise (counterclockwise) rotation of the velocity vector observed in the northern (southern) hemisphere. The model overestimates the semidiurnal amplitudes observed by radar by 50–75% during most seasons with the best agreement found during the equinoctial months. The model exhibits little phase variation with height or season, whereas the radar data exhibit a downward phase progression during most seasons (other than summer) characteristic of upward propagating tidal waves, and large seasonal phase variations associated with seasonal changes in vertical wavelengths. The diurnal tidal amplitudes, which are generally 5–20 m s−1 at mid-latitude radar stations and are dominant over the semidiurnal amplitudes at lower latitudes, are less than 5 m s−1 at all latitudes in the model.  相似文献   

14.
Vertically propagating gravity waves can transport momentum and energy from the troposphere up to the mesosphere and thus modify the circulation of the middle atmosphere. The effects of regional gravity wave sources, together with temporal changes of gravity wave activity, are studied under solstice conditions in a 3-D circulation model using a simplified parameterization scheme for the gravity momentum deposition. In this way we can reproduce the reversal of the mean zonal wind with height and very low temperatures at the summer mesopause region. Using a stochastic forcing by taking the gravity wave parameters at random, characteristic oscillations are found with periods in the planetary scale range (2, 4 and 5 days) and in the tidal range (1 day, 16 h and 12 h).  相似文献   

15.
Recent progress on interactions between breaking gravity waves and the diurnal tide in the upper mesosphere and lower thermosphere is reviewed, mainly based on the recent results of our numerical models.  相似文献   

16.
A high resolution wind observation of the mesosphere and lower thermosphere (73–95 km) was conducted with the aid of the high power UHF Doppler radar at Arecibo (18.4°N, 66.8°W). Zonal wind velocities were continuously observed during day-time hours on 1–15 August 1980. We discuss here the observed wind fluctuations with periods of 1–4 h in the light of internal gravity waves. The phase propagation associated with these fluctuations is, on average, shown to be downward, indicating an upward energy flux. A space-time spectral analysis shows that waves with vertical wavelengths shorter than 10 km disappear around the mesopause (about 85km), while those with longer vertical wavelengths exist throughout the observational height. This result is explained in terms of wave absorption at a critical layer where the mean zonal wind has a westerly shear with height. This feature is consistent with the behavior expected for internal gravity waves around the summer mesopause in order to explain general circulation models.  相似文献   

17.
This review deals with recent radar studies of gravity waves and tides in the middle atmosphere, roughly over regions of 10–30 and 60–90 km. The techniques are briefly discussed and their limitations are pointed out. In the troposphere-stratosphere region, buoyancy oscillations, gravity-wave critical-layer interactions, and gravity waves excited by cumulus convection have been observed. Pronounced short-period (10–20 min) waves have frequently been detected in the mesosphere, and in some cases these have been identified as evanescent and trapped gravity wave modes. Diurnal and semidiurnal tides have been observed in the stratosphere and mesosphere at low and mid latitudes, but the corresponding tidal modes are not unambiguously resolved. The need for obtaining more comprehensive data bases with the existing radar systems is emphasized for further tidal and wave studies in the middle atmosphere.  相似文献   

18.
19.
The 2-day wave observed in the mesosphere and lower thermosphere has been reproduced in a general circulation model of the atmosphere run for fixed January conditions. The wave was confined to the summer hemisphere between 50 and 100 km, and was most strongly evident in the meridional velocity where it caused a reversal in the direction of this wind approximately every 24 h. Similar but smaller fluctuations could be detected in the zonal wind and temperature. The synoptic distributions from the model confirm that the 2-day wave is a zonal wave number 3 phenomenon and that it progresses westwards. These distributions have maximum amplitudes occurring at higher latitudes than observed, probably owing to the mean wind intensity in the model summer hemisphere being slightly underestimated. Quite marked interactions occurred between the high latitude and tropical features of the synoptic meridional velocity distribution as the wave progressed. The wave had a very small phase variation with altitude, and, except for a region near 70 km, exhibited hardly any sign of baroclinic activity. The formulation of the model eliminates atmospheric tides or orography as forcing agents responsible for the excitation of the 2-day wave.  相似文献   

20.
When simulating the global structure of stationary planetary waves (SPW) the problem of obtaining the numerical solution in the equatorial region appears. It results from the presence of apparent singularities in the operator of the SPW latitudinal structure when the Coriolis parameter is small. The new method based on SPW latitudinal operator inversion is proposed. This method permits the difficulties arising from the simulation of stationary large scale disturbances at low latitudes to be avoided. The global structure of SPW with zonal wave number m = 1 at the mesosphere and lower thermosphere heights has been calculated for the background zonal wind distribution representing a climatic picture of the solstice conditions. In the region of the mean zonal westerlies the SPW penetration across the equator is obtained. The SPW at low latitudes are shown to appear most significantly in the zonal component of the wind velocity. The influence of planetary wave motions on the distribution of longlived species in the ionospheric D-region and at the heights of lower thermosphere are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号