首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of ion and electron energetics on the propagation speeds of stable Parley Buneman waves which are excited by E × B drifts in the auroral E-region is studied theoretically in the fluid limit, with the effects of anomalous collisions on electron thermal conduction included for the first time. In particular, the ratio of the phase speed of waves, stabilized by enhanced diffusion effects, to the isothermal ion-acoustic speed are calculated for realistically modelled E-region ion and electron temperatures, as functions of altitude, flow velocity and wavelength. It is found that the phase speeds of these stabilized waves begin to increase above isothermal ion-acoustic speeds as wave frequencies increase to values where they are comparable with the electron inelastic collision frequency. However, at still higher frequencies their phase speeds tend to fall back towards their isothermal values due to the increasing effects, with increasing wavenumber, of electron thermal conductivity. It is also found that the phase speeds are not always isotropic with respect to flow angle. The relationship between the predictions of the present fluid theory and a previous kinetic theory calculation is also briefly discussed.  相似文献   

2.
Characteristic scales associated with auroral precipitation are investigated on the basis of quasistatic magnetotail models, resistive MHD simulations of magnetotail dynamics, and a general relation between parallel electric fields and velocity shear. Since the inverted-V precipitation region of discrete auroras (on the dusk side) is associated with upward flowing, region 1, currents, we investigate the distribution of these currents first. The overall distribution of region 1 type field-aligned currents and their dynamic changes can be explained by characteristic scales in the magnetotail and their mapping to the ionosphere. The quiet time region 1 currents are associated with the decrease of tail flaring. Their overall extent in the north-south direction is closely related to the scale height of the cross-tail current. Dynamic region 1 currents are related to the velocity shear of earthward flow, which can be generated by a tail instability. In that case the peaks of the enhanced region 1 currents are found to map closer to midnight and to lower latitudes than the quiet region 1 currents, consistent with average observations [Iijima and Potemra (1976a), J. geophys. Res.81, 2165]. On the basis of a general relation between parallel electric fields and ‘slippage’ in the plasma transport [Hesse and Schindler (1988), J. geophys. Res.93, 5559; Schindleret al. (1991), Astrophys. J.380, 293], we make estimates of the spatial extent of nonideal regions, where parallel electric fields may exist. For a plausible model of substorm reconfiguration, we find a latitudinal extent of about 7 km for a time scale of 1 min and a integrated parallel electric field of 5 kV. The length scale is proportional to the time scale. The sign of this parallel electric field is consistent with downward acceleration of electrons on the dusk side. The spatial extent of the parallel electric field region is independent of the microscopic generation mechanism if the time scale and the characteristic parallel potential difference (i.e. the integrated parallel electric field) are independent of this mechanism.  相似文献   

3.
The penetration of the quasi-DC electric fields, E due to electrified clouds, into the middle- and high-latitude ionosphere is theoretically studied during the initial stage of cloud charge separation. The electrification process is characterized by a source function S(t), whose variations are on the time scale of the relaxation process in the cloud. A first-order approximation solution for the time variation of E is obtained as an explicit function of the electric field in the steady-state case. Some features of the time variations of E at different altitudes (in the ionosphere and also in the atmosphere) are investigated, depending on the source function and the relaxation time constants. This result can also be applied for slowly electrifying clouds which do not produce lightning.  相似文献   

4.
This paper presents simulated ionograms calculated for a parabolic ionospheric layer containing irregularities in the form of small amplitude waves. With small amplitudes, perturbation techniques can be used enabling results for the irregular ionospheres to be calculated from the results for smooth ionospheres. This approach is relatively straightforward and avoids having to ray trace new paths each time the irregularity parameters are changed. It is, however, restricted to irregularities which do not cause multiple echoes. Irregularities with vertical wavelengths of up to a few kilometres can produce significant changes in the ionosphere over height intervals smaller than those involved in reflecting a single pulse. Consequently, in the simulation procedure, it is essential to consider not just the carrier frequency but the complete frequency spectrum of the pulse. Irregularities with vertical wavelengths of the order of 10 km or more can produce ripples in an ionogram trace. These will, of course, be more evident on ionograms with high frequency resolution. Irregularities with vertical wavelengths of up to several kilometres and amplitudes up to a few per cent can produce significant pulse spreading and splitting. The actual effects depend not just on the irregularity properties but also on the ionosonde pulse width, gain and frequency and height resolutions. Some simulations show trace splitting and quasi-horizontal traces similar in many respects to effects observed by Bowman (1987, J. atmos. terr. Phys. 49, 1007) and Bowmanet al. (1988, J. atmos. terr. Phys. 50, 797). Consequently it is suggested that, at least in some cases, small amplitude (≤3%) and small scale (≤4 km) irregularities produce the spread-ifF reported by these authors.  相似文献   

5.
Radars can be used to obtain turbulence parameters by measuring the width of the Doppler spectrum of returned power. Other effects can contribute to the Doppler-spectrum width, including short-period gravity waves, making turbulence parameter measurements more difficult. In this paper, an experimental study of the effect of gravity waves on the width of the Doppler spectrum is presented. The data were obtained using the Poker Flat 50 MHz VHP radar. A parameter Yi is used to describe the discrepancy between the width of spectra sampled over a long period of time and that taken over a shorter time. If Yi is not significantly different from 1.0, no contamination is present. The experimental data considered were of a time resolution that allowed the period and amplitude of the contaminating gravity wave to be determined. A theoretical expression for gravity wave contamination proposed by Hocking [(1988) J. geophys. Res.93, 2475–2491] was tested and found to agree with measurements. It was also found that non-unity values of Yi occurred in some cases. This suggests that, at commonly used sampling times, short-period gravity waves can contaminate spectral width estimates.  相似文献   

6.
The Arecibo Initiative in Dynamics of the Atmosphere (AIDA) '89 was a multi-instrument campaign designed to compare various mesospheric wind measurement techniques. Our emphasis here is the comparison of the incoherent scatter radar (ISR) measurements with those of a 3.175 MHz radar operating a s an imaging Doppler interferometer (1131). We have performed further analyses in order to justify the interpretation of the long term IDI measurements in terms of prevailing winds and tides. Initial comparison of 14 profiles by Hines et al., 1993, J. atmos. terr. Phys. 55, 241–288, showed good agreement between the ISR and IDI measurements up to about 80 km, with fair to poor agreement above that altitude. We have compiled statistics from 208 profiles which show that the prevailing wind and diurnal and semidiurnal tides deduced from the IDI data provide a background wind about which both the IDI and ISR winds are normally distributed over the height range from 70 to 97 km. The 3.175 MHz radar data have also been processed using an interferometry (INT) technique [Van Baelen and Richmond 1991, Radio Sts. 26, 1209–1218] and two spaced antenna (SA) techniques [Meek, 1980, J. atmos. terr. Phys. 42, 837–839; Briggs. 1984, MAP Handbook, Vol. 13, pp. 166–186] to determine the three dimensional wind vector. These are then compared with the IDI results. Tidal amplitudes and phases were calculated using the generalized analysis of Groves, 1959, S. atmos. terr. Phys. 16, 344–356, historically used on meteor wind radar data. Results show a predominance of the diurnal S11 tidal mode in the altitude range 70–110 km, reaching a maximum amplitude 45 ms−1 at 95 km, with semidiurnal amplitudes being about 10–15 ms−1 throughout the height range considered. There is evidence of the two day wave in data from 86–120 km, with amplitudes on the order of 20 ms−1.  相似文献   

7.
The papers by Winseret al. [(1990) J. atmos. terr. Phys.52, 501] and Häggström and Collis [(1990) J. atmos. terr. Phys.52, 519] used plasma flows and ion temperatures, as measured by the EISCAT tristatic incoherent scatter radar, to investigate changes in the ion composition of the ionospheric F-layer at high latitudes, in response to increases in the speed of plasma convection. These studies reported that the ion composition rapidly changed from mainly O+ to almost completely (>90%) molecular ions, following rapid increases in ion drift speed by >1 km s−1. These changes appeared inconsisent with theoretical considerations of the ion chemistry, which could not account for the large fractions of molecular ions inferred from the obsevations. In this paper, we discuss two causes of this discrepancy. First, we reevaluate the theoretical calculations for chemical equilibrium and show that, if we correct the derived temperatures for the effect of the molecular ions, and if we employ more realistic dependences of the reaction rates on the ion temperature, the composition changes derived for the faster convection speeds can be explained. For the Winser et al. observations with the radar beam at an aspect angle of ϕ = 54.7° to the geomagnetic field, we now compute a change to 89% molecular ions in < 2 min, in response to the 3 km s−1 drift. This is broadly consistent with the observations. But for the two cases considered by Häggström and Collis, looking along the field line (ϕ = 0°), we compute the proportion of molecular ions to be only 4 and 16% for the observed plasma drifts of 1.2 and 1.6 km s−1, respectively. These computed proportions are much smaller than those derived experimentally (70 and 90%). We attribute the differences to the effects of non-Maxwellian, anisotropic ion velocity distribution functions. We also discuss the effect of ion composition changes on the various radar observations that report anisotropies of ion temperature.  相似文献   

8.
9.
The ozone depletion over the Antarctic region is now attributed to processes involving heterogeneous chemistry on polar stratospheric clouds. Similar mechanisms are probably working also in the Northern hemisphere high latitudes [Douglass and Stolarski (1989) Geophys. Res. Lett. 16, 131] and may be important in explaining the secular trend of ozone in the last twenty years above 50° North [Pitari and Visconti (1991) J. geophys. Res. 96, 10,931]. Hofmann and Solomon [(1989) J. geophys. Res. 94, 5029] have shown that the local observed decrease in the ozone amount following the eruption of El Chichón could be explained in terms of heterogeneous chemistry on the volcanic aerosol surface. In this paper we use a two dimensional model to study the effects on ozone introduced by the El Chichón aerosols through a perturbation in the radiation field; both the temperature and the photolysis rates are affected. We show that up to half of the observed decrease may be attributed to radiative effects at mid latitudes.  相似文献   

10.
We examine the extent to which the cross-polar cap potential difference ϕ and the global Joule heating rate, U, both determined by the magnetogram-inversion method (Kamideet al., 1981, J. geophys. Res. 86, 801), depend upon the assumed conductance models. For this purpose two statistically-determined conductance models developed by Siroet al. (1982, J. geophys. Res. 87, 8215) and ahn et al. (1983b, Planet. Space Sci. 31, 641), and a realistic conductance distribution estimated from bremsstrahlung X-ray image data (Ahnet al., 1989, J. geophys. Res. 94, 2565) have been used. As expected from earlier studies, U is less affected by the choice of conductance models than is ϕ. This is because U is a globally integrated quantity, and thus the local structures of the electric potential pattern do not affect it appreciably, whereas they are crucial in determining ϕ, which is defined as the difference between the maximum and minimum potential values usually found in the dawn and dusk sectors, respectively. A comparison between Uand ϕ based on the statistical conductance models and U and ϕ based on a realistic conductance distribution shows that there are considerable similarities, thus enabling us to use statistical conductance models as a first approximation in deriving such global quantities as the cross-polar cap potential difference and the global Joule heating rate in the study of solar wind-magnetosphere coupling. Several suggestions are made for improving the present available conductance models and some limitations (possibly intrinsic ones) are also discussed.  相似文献   

11.
In early 1990 a modified JMR-1 satellite receiver system was installed at Casey Station, Antarctica (g.g. 66.28°S, 110.54° E, -80.4°A, magnetic midnight 1816UT, L = 37.8), in order to monitor the differential phase between the 150 and 400 MHz signals from polar orbiting NNSS satellites. Total electron content (TEC) was calculated using the differential phase and Casey ionosonde foF2 data, and is presented here for near sunspot maximum in August 1990 and exactly one year later. The data are used to investigate long-lived ionization enhancements at invariant latitudes polewards of − 80° A, and the ‘polar hole’, a region from −70 to − 80° A on the nightside of the polar cap where reduced electron densitiy exists because of the long transport time of plasma from the dayside across the polar cap. A comparison is made between the Casey TEC data and the Utah State University Time Dependent Ionospheric Model (TDIM) which uses as variables the solar index (F 10.7), season (summer, winter or equinox), global magnetic index (Kp), IMF By direction, and universal time (UT) [sojkaet al. (1991) Adv. Space Res.11(10), 39].  相似文献   

12.
Measurements of ionospheric electron density vertical profiles, carried out at a magnetic equatorial station located at Fortaleza (4°S, 38°W; dip latitude 2°S) in Brazil, are analyzed and compared with low-latitude electron density profiles predicted by the International Reference Ionosphere (IRI) model. The analysis performed here covers periods of high (1979/1980) and low (1986) solar activities, considering data obtained under magnetically quiet conditions representative of the summer, winter and equinox seasons. Some discrepancies are found to exist between the observed and the IRI model-predicted ionospheric electron density profiles. For high solar activity conditions the most remarkable one is the observed fast upward motion of the F-layer just after sunset, not considered in the IRI model and which precedes the occurrence of nighttime ionospheric plasma irregularities. These discrepancies are attributed mainly to dynamical effects associated with the low latitude E × B electromagnetic plasma drifts and the thermospheric neutral winds, which are not satisfactorily reproduced either in the CCIR numerical maps or in the IRI profile shapes. In particular, the pre-reversal enhancement in the vertical E × B plasma drifts around sunset hours has a great influence on the nighttime spatial distribution of the low-latitude ionospheric plasma. Also, the dynamical control exerted by the electromagnetic plasma drifts and by the thermospheric neutral winds on the low-latitude ionospheric plasma is strongly dependent on the magnetic declination angle at a given longitude. These important longitudinal and latitudinal dependences must be considered for improvement of IRI model predictions at low latitudes.  相似文献   

13.
In this paper EISCAT observations of the effect of artificial modification on the F-region electron temperature and electron density during several heating experiments at Tromsø are reported. During O-mode heating at full power (ERP = 240 MW) the electron temperature is increased by up to 55% of its ambient value at altitudes close to the heater interaction height. Measurements of the electron density have revealed both enhancements and depletions in the vicinity of the heater reflection height. These differences are indicative of variations in the balance between the transport and chemical effects. These results are compared with a time dependent numerical model developed from the perturbation equations of Vas'kov and Gurevich [(1975) Geomagn. Aeron.15, 51]. The results of numerical modelling of the electron temperature are in good agreement with the EISCAT observations, whereas there is less good agreement with regard to electron density.  相似文献   

14.
It is known that on a counter electrojet day the noontime electron density at the equator shows enhanced values with no bite-out. The consequences of the absence of the normal equatorial electrojet on the electron density distribution at the equatorial station Kodaikanal (dip latitude 1.4°N, long. 77.5°E) and at an anomaly crest location Ahmedabad (dip latitude 18°N, long. 73°E) are discussed for a strong electrojet (SEJ) day and a counter electrojet (CEJ) day. The electron density distribution with height for a pair of SEJ and CEJ days at the two equatorial stations Kodaikanal and Huancayo (dip latitude 1°N, long. 75°W) are studied. The F-region peak height, hm and the semi-thickness parameter ym on the SEJ day followed a similar variation pattern. On the CEJ days ym exhibited a substantially low and mostly flattened daytime variation compared to the peaked values on the SEJ day. An attempt is made to interpret these differences in terms of the changes in the vertical drift pattern resulting from the E × B drift of plasma at the equator and the varying recombination rate β, which is also a height dependent and a local time dependent parameter.  相似文献   

15.
When transmitting on 5.8 MHz the Bribie Island HF radar array synthesizes a beam that is 2.5 wide. The beam can be steered rapidly across the sky or left to dwell in any direction to observe the fading rates of echoes within a small cone of angles. With the beam held stationary, the time scale associated with deep fading of F-region echoes is usually more than 5 min. This is consistent with the focusing and defocusing effects caused by the passage of ever-present medium-scale travelling ionospheric disturbances (TIDs). On occasion the time scale for deep fading is much shorter, of the order of tens of seconds or less, and this is thought to be due to the interference of many echoes from within the beam of the radar. It is shown that the echoes are not due to scatter from fine structure in the F-region, but rather due to the creation of multiple F-region paths with differing phase lengths by small, refracting irregularities in underlying, transparent spread sporadic-E, (Spread-Es). The natural drift of the Spread-Es causes the phase paths of the different echoes to change in different ways causing the interference.Two methods are used to investigate the rapidly fading F-region signals. Doppler sorting of the refracted F-region signal does not resolve echoes in angle of arrival suggesting that many echoes exist within a Fresnel zone [Whitehead and Monro (1975), J. atmos. terr. Phys. 37, 1427]. Statistical analysis of F-region amplitude data indicates that when the range spread in Es is severe on ionograms, then a modified Rayleigh distribution caused by the combination of 10 or so echoes is most appropriate. Using knowledge of the refracting process the scale of Es structure is deduced from these results. Both methods find a Spread-Es irregularity size of the order of 1 km or less. It is proposed that the Rayleigh type F-region signals seen by Jacobsonet al. [(1991b), J. atmos. terr. Phys. 53, 63] are F-region signals refracted by spread-Es.  相似文献   

16.
Monthly simulations of the solar semidiurnal tide in the 80–100 km height regime are presented. These calculations benefit from the recent heating rates provided by Groves G. V. (1982a,b) (J. atmos. terr. Phys. 44, 111; 44, 281), the zonally-averaged wind, temperature and pressure fields developed for the new COSPAR international reference atmosphere [Labitzke K., Barnett J. J. and Edwards B. (1985) Handbook for MAP 16, 318], and eddy diffusivities determined from gravity wave saturation climatologies and used by Garcia R. R. and Solomon S. (1985) (J. geophys. Res. 90, 3850) to simulate oxygen photochemistry and transport in the mesosphere and lower thermosphere. Some of the main characteristics of the observed semidiurnal tide at middle and high latitudes are reproduced in our simulations: larger amplitudes in winter months than in summer months, and the bi-modal behavior of the phase with summer-like and winter-like months separated by a quick transition around the two equinoxes. The phase transition is also more rapid in the spring, consistent with observations. The wavelengths are also longer in summer than in winter, at least below 95 km (whereas in July and August the simulations exhibit some discrepancies above this altitude), similar to the observational data. Semidiurnal amplitudes are generally smaller and the phases more seasonally symmetric at middle and low latitudes, as compared with the tidal structures above about 50° latitude. In addition, hemispheric differences in the mean zonal wind result in marked asymmetries in tidal behavior between the Arctic and Antarctic regions, and suggest that a comparative study of tide, gravity wave and mean flow interactions in the Arctic and Antarctic mesosphere and lower thermosphere would be fruitful.  相似文献   

17.
18.
The effect of a prolonged period of strongly northward Interplanetary Magnetic Field (IMF) on the high-latitude F-region is studied using data from the EISCAT Common Programme Zero mode of operation on 11–12 August 1982. The analysis of the raw autocorrelation functions is kept to the directly derived parameters Ne, Te, Ti and velocity, and limits are defined for the errors introduced by assumptions about ion composition and by changes in the transmitted power and system constant. Simple data-cleaning criteria are employed to eliminate problems due to coherent signals and large background noise levels. The observed variations in plasma densities, temperatures and velocities are interpreted in terms of supporting data from ISEE-3 and local riometers and magnetometers. Both field-aligned and field-perpendicular plasma flows at Tromsø showed effects of the northward IMF: convection was slow and irregular and field-aligned flow profiles were characteristic of steady-state polar wind outflow with flux of order 1012 m−2 s−1. This period followed a strongly southward IMF which had triggered a substorm. The substorm gave enhanced convection, with a swing to equatorward flow and large (5 × 1012 m−2 s−1), steady-state field-aligned fluxes, leading to the possibility of O+ escape into the magnetosphere. The apparent influence of the IMF over both field-perpendicular and field-aligned flows is explained in terms of the cross-cap potential difference and the location of the auroral oval.  相似文献   

19.
Since the publication of results suggesting the existence of a 6-h tide in the E region above Arecibo [(Tonget al., 1988) J. geophys. Res.93, 10047–10051], much more data has been collected and analyzed. In particular, the time-height trajectories of middle and upper E region Tidal Ion Layers (TILs) for early January 1989 closely resemble those from early January 1981, which first revealed the presence of a 6-h quasi-periodic intermediate layer structure. Further, the January 1989 observations form an ‘overture’ to the March–May 1989 AIDA (Arecibo Initiative in Dynamics of the Atmosphere) campaign, which yielded a total of 28 days of additional data regarding TIL motion. Interestingly, the AIDA data set is dominated, above about 120 km altitude, by sporadic intermediate layers [(mathewset al., 1993) J. atmos. terr. Phys.55, 447–457] and certainly does not show the consistent 6-h period TIL feature seen in the two January data sets. In reviewing all data collected over the past 10 yr and the extensive 1989 observations in particular, we conclude that the basic TIL structure is controlled by two separate tidal wind patterns. We refer to these as the normal pattern and the ‘deep-winter’ pattern. The normal pattern includes the combination of diurnal and semidiurnal tides, while the deep-winter pattern has an additional 6-h tidal component. The deep winter pattern remains unexplained, but we suggest that the 6-h periodicity, which appears to be phase locked with the semidiurnal tide, is generated via in situ non-linear frequency doubling of the semidiurnal tide. The January 1989 results also manifest a TIL structure, below 100 km altitude, which has not been previously reported.  相似文献   

20.
Kellogg, W. W. (1961, J. Met. 18, 373) suggested that transport of atomic oxygen from the summer into the winter hemisphere and subsequent release of energy by three body recombination, O + O + N2O2 + N2 + E, may contribute significantly to the so-called mesopause temperature anomaly (increase in temperature from summer to winter). Earlier model calculations have shown that Kellogg's mechanism produces about a 10% increase in the temperature from summer to winter at 90 km. This process, however, is partly compensated by differential heating from absorption of UV radiation associated with dissociation of O2. In the auroral region of the thermosphere, there is a steady (component of) energy dissipation by Joule heating (with a peak near 130 km) causing a redistribution and depletion of atomic oxygen due to wind-induced diffusion. With the removal of O. latent chemical energy normally released by three body recombination is also removed, and the result is that the temperature decreases by almost 2% near 90 km. Through dynamic feedback, this process reduces the depletion of atomic oxygen by about 25% and the temperature perturbation in the exosphere from 10% to 7% at polar latitudes. Under the influence of the internal dynamo interaction, the prevailing zonal circulation in the upper thermosphere (small in magnitude) changes direction when the redistribution of recombination energy is considered. The above described effects are very sensitive to the adopted rates of eddy diffusion. They are also strongly time dependent and are significantly reduced for disturbances associated with magnetic storms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号