首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A theoretical study of the effects of background winds on wind shear-produced sporadic-E layers requires an account of the dynamo electric fields which result from the plasma motion produced by these winds. When a sporadic-E layer is carried downward by a descending wind shear the final height of the layer may vary by some 10 km depending on the background wind. Due to a loading effect on the dynamo, for a given background wind, the final height may vary by about 6 km depending on the degree of ionization in the E-layer in the magnetically conjugate hemisphere. The time scale for dispersal of a sporadic-E layer by drifts in wind-induced electric fields may be as little as 2 h.  相似文献   

2.
The Arecibo Initiative in Dynamics of the Atmosphere (AIDA) '89 was a multi-instrument campaign designed to compare various mesospheric wind measurement techniques. Our emphasis here is the comparison of the incoherent scatter radar (ISR) measurements with those of a 3.175 MHz radar operating a s an imaging Doppler interferometer (1131). We have performed further analyses in order to justify the interpretation of the long term IDI measurements in terms of prevailing winds and tides. Initial comparison of 14 profiles by Hines et al., 1993, J. atmos. terr. Phys. 55, 241–288, showed good agreement between the ISR and IDI measurements up to about 80 km, with fair to poor agreement above that altitude. We have compiled statistics from 208 profiles which show that the prevailing wind and diurnal and semidiurnal tides deduced from the IDI data provide a background wind about which both the IDI and ISR winds are normally distributed over the height range from 70 to 97 km. The 3.175 MHz radar data have also been processed using an interferometry (INT) technique [Van Baelen and Richmond 1991, Radio Sts. 26, 1209–1218] and two spaced antenna (SA) techniques [Meek, 1980, J. atmos. terr. Phys. 42, 837–839; Briggs. 1984, MAP Handbook, Vol. 13, pp. 166–186] to determine the three dimensional wind vector. These are then compared with the IDI results. Tidal amplitudes and phases were calculated using the generalized analysis of Groves, 1959, S. atmos. terr. Phys. 16, 344–356, historically used on meteor wind radar data. Results show a predominance of the diurnal S11 tidal mode in the altitude range 70–110 km, reaching a maximum amplitude 45 ms−1 at 95 km, with semidiurnal amplitudes being about 10–15 ms−1 throughout the height range considered. There is evidence of the two day wave in data from 86–120 km, with amplitudes on the order of 20 ms−1.  相似文献   

3.
A model of the ionospheric E-region between 90 and 130 km altitude is constructed with normal molecular ions and two species of metal ion with different masses. This paper investigates whether the vertical structure observed in sporadic-E layers can be accounted for by separation of different ion species according to their mass. The result of the investigation is substantially negative. Another mechanism for range spread sporadic-E has signatures that may be sought in observational data.  相似文献   

4.
The quiet night-time E-region at high latitudes has been studied using the EISCAT UHF radar. Data from three subsequent nights during a long period of low magnetic activity are shown and typical features of electron density are described. The background electron density is observed to be 5·109 m−3 or smaller. Two types of enhancements above this level are observed ; one is due to charged particle precipitation associated with the F-region trough and the other is composed of sporadic-E layers due to waves in the neutral atmosphere. The sporadic-E is observed to exist almost continuously and to exhibit a regular diurnal behaviour. In addition to the typical afternoon and morning sequential layers, a third major descending layer is formed at night after the passage of the F-region trough The afternoon layer disappears simultaneously with the enhancement of the northward trough-associated electric field and the night-time layer appears at high altitudes after the field has again been reduced to a small value. It is suggested that metal ions from low altitudes are swept by the electric field to the upper E-region where they are again compressed to the night-time layer. A set of steeply descending weaker layers, merging to the main night-time layer are also observed. These layers are most probably caused by atmospheric gravity waves. Theoretical profiles for molecular ions indicate that the strongest layers are necessarily composed of metal ions but, during times when the layers are at their weakest, they may be mainly composed of molecular ions.  相似文献   

5.
Mean winds at 82–106 km altitude have been almost continuously monitored by the Kyoto meteor radar over the period from May 1983 to December 1985. The mean zonal wind becomes eastward with amplitudes as large as 30 m s−1 in the summer months (May–August), maximizing early in July at 95 km altitude, while it is less than 10 m s−1 at all the observed altitudes during the equinoxes. It is normally eastward in winter at low altitudes, although it sometimes becomes westward during sudden stratospheric warmings. The mean meridional wind is usually equatorward and is weaker than the zonal component. A southward wind exceeding 10 m s−1 is detected in July and August. The observed mean winds are compared with the CIRA 1972 model and coincidences with sudden warmings of changes in zonal wind direction are pointed out.  相似文献   

6.
The characteristics of metallic and molecular ion sporadic-E (Es) layers, formed by the action of strong electric fields at auroral latitudes, are examined using computer simulations. It is found that, for electric fields directed between northward and westward (northern hemisphere), thin metallic ion layers (<2 km thick) can be formed above about 105 km altitude. For electric fields directed from westward, through southward, to south-eastward, slightly thicker (4–6 km thick) metallic ion layers can form between 90 and 105 km altitudes. Thin layers of molecular ions can be formed by electric fields directed between north and west if the ion density is low. Examples of Es layers observed by the EISCAT radar, together with simultaneous observations of electric fields and ion drifts are presented which show good agreement with the simulations. The relationship between the lower-altitude Es layers and sudden sodium layers (SSLs) is discussed leading to an explanation of some of the characteristics of SSLs at high latitude. A possible involvement of smoke particles in the formation of both Es layers and SSLs is proposed.  相似文献   

7.
Mean winds at 60–90 km altitudes observed with the MU radar (35°N, 136°E) in 1985–1989 are presented in this paper. The zonal wind at 70 km became westward and eastward in summer and winter, respectively, with a maximum amplitude of 45 m s−1 westward in early July and 80 m s−1 eastward at the end of November. The meridional wind below 85 km was generally northward with the amplitudes less than 10 m s−1. In September to November, the meridional wind at 75–80 km becomes as large as 20–30 m s−1. Those zonal wind profiles below 90 km show good coincidence with the CIRA 1986 model, except for the latter half of winter, from January to March, when the observational result showed a much weaker eastward wind than the CIRA model. The height of the reversal of the summer wind from westward to eastward was determined as being 83–84 km, which is close to the CIRA 1986 model of 85 km. The difference between the previous meteor radar results at 35–40°N, which showed the reversal height below 80 km, could be due to interannual variations or the difference in wind measurement technique. In order to clarify that point, careful comparative observations would be necessary. These mean winds were compared with Adelaide MF radar observations, and showed good symmetry between the hemispheres, including the summer reversal height, except for the short period of eastward winds above Kyoto and the long period over Adelaide.  相似文献   

8.
Conventional meteor radars, operating at wavelengths of around 5–15 m, are unable to detect high-altitude meteors due to the wavelength-dependent echo ceiling. It is suggested that the ‘missing mass’ in the 10−6–10−2 g range of interplanetary material is in fact a high-velocity component which is normally undetected since it ablates at high altitude. This contention is supported by previous work. In this paper we describe measurements of the heights of radio meteors (limiting magnitude about +7) at a wavelength of 150 m (frequency 2 MHz), for which the echo ceiling is above 140 km. The resultant true height distribution is found to peak at ~ 104 km, about 10 km above the peak found by conventional meteor radars. The majority of meteors are detected at or above this peak, and substantial numbers are seen right up to 140 km. It is therefore concluded that the ‘missing mass’, comprising the vast majority of the meteoric input to the atmosphere, ablates well above 100 km.  相似文献   

9.
We have observed Traveling Ionospheric Disturbances (TIDs) in the night-time D- and E-regions using a 2.66 MHz imaging Doppler interferometer radar. TIDs were observed in two distinct ways. In the first, the TID was manifested as discrete traveling surges, with average spacings of 54 min. The D-region surges were so well defined that they could be tracked as they passed close to overhead by using the phase differences across the antenna arrays. A velocity of 135 m s−1 to the south was measured, giving a horizontal wavelength of 440 km typical of medium scale TIDs. The direction of phase travel relative to the horizontal was −6° (i.e. downwards). These observations were made during a night of extraordinary OH infrared mesopause structure activity made visible by the presence of a total lunar eclipse. In the second type of TID observation, we show the Doppler interferometer analysis of ripples on the under surface of sporadic-E layers taken on two nights of significant OH infrared and OI 5577 Å wave activity. The TIDs were observed to propagate at speeds of 120–300 m s−1, with directions predominately toward the southwest, again typical of medium scale TIDs. These results show definite wave effects on MF radar returns and thus suggest that the measurement of mesospheric bulk winds with MF radars should be approached with some caution. Comparison of the TID characteristics with the OH structure characteristics show that the TIDs travel faster than the OH structures, have longer apparent horizontal wavelengths and generally travel in the opposite direction.  相似文献   

10.
An imaging Doppler interferometer (IDI) radar was operated during the three AIDA '89 campaigns in Puerto Rico over the period March–May of 1989. The output of the IDI analysis characterizes radar scattering in terms of a number of discrete ‘scattering points,’ also referred to as ‘multiple scattering centers,’ IDI/MSC for short. For each of these points the three-dimensional location, radial velocity and amplitude and phase are determined, similar to the output of meteor radars. We have applied the conventional Groves [(1959) J. atmos. terr. Phys. 16, 344–356] meteor wind radar analysis to the scattering points to produce the mean apparent motions over the height range from 70 to 110 km which are presented here. The mean apparent motion of the scattering centers is the quantity that would correspond to the neutral atmosphere wind or bulk motion if the scattering points are physical entities (such as turbulent eddies) whose motions are determined solely by advection. This is the quantity which is treated as the ‘wind’ in the analysis which follows and which should be compared to the wind measurements as deduced from the other methods employed during this campaign. There is, however, a caveat which supports the contention of Hineset al. [(1993) J. atmos. terr. Phys. 55, 241–287] that extreme care must be used in interpreting the velocities measured by partial reflection radars as winds. The current application of the Groves method of analysis has revealed motions from which one would infer a typical equatorial easterly circulation, with mean meridional circulation becoming significant only above 96 km. A periodogram analysis of the complete data interval (5–11 April) has shown the diurnal tide to be the most significant feature of the wind field at these altitudes, with zonal amplitudes up to some 50 m/s and meridional amplitudes approximately half this value. The 12 and 6 h tides become as significant as the diurnal above 100 km. The two day (48 ± 5 h) wave is the next most significant feature, with zonal amplitude increasing with height up to 30 m/s at 110km. The semidiurnal tide is not at all well developed below 100 km. However, analysis on a day by day basis reveals a significant semidiurnal component which is not phase coherent over the total interval. Mean vertical velocities are of the order of tens of centimeters per second and are considered to be more realistic than the meters per second velocities usually inferred from analyses of meteor trail drifts.  相似文献   

11.
The radars utilized are meteor (2), medium-frequency (2) and the new low-frequency (1) systems: analysis techniques have been exhaustively studied internally and comparatively and are not thought to affect the results. Emphasis is placed upon the new height-time contours of 24, 12 h tidal amplitudes and phases which best display height and seasonal structures; where possible high resolution (10 d) is used (Saskatoon) but all stations provide monthly mean resolution. At these latitudes the semi-diurnal tide is generally larger than the diurnal (10–30 m s−1 vs. < 10 ms−1), and displays less month to month variability. The semi-diurnal tide does show significant regular seasonal structure; wavelengths are generally small (⩽50 km) in winter, large in summer (≲ 100 km), and these states are separated by rapid equinoctial transitions. There is some evidence for less regularity toward 40°C. Coupling with mean winds is apparent. The diurnal tide has weaker seasonal variations; however there is a tendency for vertical wavelengths and amplitudes to be larger during summer months. On occasions in winter and fall wavelengths may be less than 50 km. Again the seasonal transitions are in phase with reversals of the zonal wind. Agreement with new numerical models is to be shown encouraging.  相似文献   

12.
The lunar semidiurnal tide is extracted from hourly values of winds in the 75–105 km region measured by the Poker Flat Alaska MST radar used in the meteor mode. Since year-to-year variations are apparent, detailed results for 1983 and 1984 are presented. Inferred vertical wavelengths range from 17 km in March 1983 to 46–55 km in September of 1983 and 1984. The height progression of the phase is frequently too irregular to derive a vertical wavelength. Amplitudes of 3 m s−1 are common and range up to 8 m s−1. Amplitudes generally are largest at the equinoxes, especially in September, with another maximum in winter sometimes occurring. Reasonable agreement is found with lunar tidal measurements at Saskatoon, and some points of similarity are found with the solar semidiurnal tide at Poker Flat.  相似文献   

13.
High resolution incoherent-scatter observations of E-region thin (1–3 km) metallic ion layers are presented. Data were collected during three different periods from August 1990 to August 1991, in three different experimental modes. First, the antenna was directed vertically and the entire duty cycle was devoted to Barker coded multi-pulse [Zamlutti (1980) J. atmos. terr. Phys.42, 975–982] measurements to determine the densities and temperatures in the E-region with 300 m resolution. The second experiment measured the F-region electric field as well as the high resolution E-region densities. For the third experiment the antenna was scanned magnetic north-south while only the E-region densities were measured. The experiments were carried out on 16 different nights for a period of 4 h each night at a time near magnetic midnight. Thin ionization layers were observed on 12 of the 16 nights. The first experiment demonstrated that the thin layers are composed of a significant fraction of heavy metallic ions; assuming the layers are composed of a mixture of Fe+ and Mg+ a composition estimate of 63% Fe+ was obtained in one example. The second experiment investigated the relationship between the direction of the electric field and the presence of the thin layers. In these observations thin layers were only present when the electric field was pointed in the magnetic north-west or south-west quadrants, most frequently when the field was near magnetic west. Correlation between layer altitude and field direction was also observed, layers occurring at higher altitudes for fields directed in the north-west, and lower altitudes for fields directed to the south-west. The observations are compatible with the electric field mechanism for thin ionization layer formation. The scanning experiment showed that the layers were of a limited latitudinal extent, typically about 100 km up to a maximum of about 200 km.  相似文献   

14.
We discuss in this paper sudden sodium layers (SSLs), which we observe with a sodium lidar instrument at Andenes, Norway (69°N). We speak of a SSL if, in a narrow altitude range (typically less than 2km), the Na density increases over the normal Na density by a factor of at least 2 within 5 min. Between December 1985 and November 1987, we have observed 42 such layers in 378 h of lidar measurements. This number increases to 75 if we only require an increase of a factor of 1.5 within 8 min. At our observation site, SSLs have the following properties: (a) they develop between 90 and 110 km altitude, (b) they develop between 20 and 02 LT, (c) their appearance shows a strong, positive correlation with that of ƒ-type Es layers, and (d) their appearance does not show a strong correlation with either riometer absorption or meteor showers. We discuss a number of potential processes for SSL formation. SSLs above 100km can be formed in ƒ-type Es layers by the conversion of Na+ ions into neutral Na. The development of SSLs below 95 km requires the presence of an additional reservoir of Na, such as Na-bearing molecules, ions, and/or ‘smoke’ particles. We also evaluate the proposal that SSLs are the outcome of single meteoroids entering the upper atmosphere, a proposition for which we find little observational support.  相似文献   

15.
A sodium LIDAR instrument located at Andenes, Norway (69°N; 16°E) observed several sudden developments of narrow sodium layers in the 90–100 km altitude region. These layers grow with typical time constants of 5 min and have a width of 1 km in altitude. We present the temporal and spatial properties for a number of these events. In a first step towards identifying the processes which create these layers we study the correlation of the growth phase of sudden sodium layers and of sporadic E layers. The latter have been recorded by an ionosonde located 129 km east of the LIDAR site. Within the mutual altitude and time resolution available in our common records a strong correlation of simultaneous occurrence of sudden sodium layers and Esl layers is observed, which establishes a strong link between the formation of the two types of layers. We further discuss processes which potentially could give rise to the formation of sudden sodium layers.  相似文献   

16.
As part of the MAP/WINE campaign (winter 1983–1984) and the MAC/SINE campaign (summer 1987) high resolution wind profiles were obtained in the upper mesosphere using the foil cloud technique. Vertical winds were derived from the fall rate of the foil clouds and are used for estimating the momentum fluxes associated with vertical wavelengths shorter than about 10 km. From the ensemble average of 15 observations over an altitude range of 74–89 km we calculate a zonal net momentum flux of +12.6 ± 4.5 m2s−2 in summer. The average of 14 measurements in winter between 73 and 85 km indicates a zonal net momentum flux of −3.7 ± 2.4 m22 s−2.  相似文献   

17.
We recorded shadow bands just before and just after the total phase of the solar eclipse of 11 July 1991. The recordings were made using two broad band silicon photodiodes separated horizontally by 100 mm. They faced the zenith, near to where the eclipsed Sun lay as seen from our observing site close to San José del Cabo in Baja California. The irradiance fluctuations associated with the shadow bands were around 0.04 W m−2 peak to peak on a background of 1–3 W m−2. The cross-correlation function indicates that the shadow bands were moving at about 1.8 m s−1 perpendicular to their extent. The power spectral density functions are in accord with the shadow band theory of Codona [(1986), Astron. Astrophys. 164, 415–427].  相似文献   

18.
The effects of day-to-day or seasonal variation of altitude and latitude profiles of the Elayer plasma density in the equatorial ionosphere on equatorial electrojet (EEJ) structure are examined numerically using a self-consistent and high resolution dynamo model. It is found that variations in the E-layer peak altitude and amplitude and its gradient below significantly affect EEJ structure. For any realistic shape, the EEJ peak appears at or below the E-layer peak altitude. Distinct double peaks appear in the EEJ structure, such as revealed by rocket measurements, if the E-layer peak is above 105 km or the gradient is large, as when sporadic-E is present. The influence of the latitudinal variation of ionospheric field line integrated conductivities upon the amplitude and altitude of the EEJ peak is demonstrated.  相似文献   

19.
The paper presents a method to retrieve the height-varying east-west wind U(z) in the equatorial electrojet from the local wind generated electric field EW(z), or from the radar-measured phase velocity VpII(z) of the type II plasma waves. The method is found to be satisfactory when EwEp, where Ep is the vertical polarization electric field generated by the global scale east-west electric field, EY, and Ey < 0.2 mV m−1. Measurements of VpII by a VHF backscatter radar can be inverted to obtain the causative wind profile by this method. The method is tested using a simulation study in which Ew(z) and VpII(z) as generated by two different wind models are used. The retrieved winds are compared with the original wind profiles and it is found that the error in the retrieved winds is mostly under 5%, for the case of no errors in the model Pedersen conductivity (σ1) profile and the Ew(z) or VpII(z)(z) profiles used in the inversion. Even with a ±20% error in the above profiles, the errors in the retrieved winds are found to be less than 20% over 75% of the altitude range and 20–30% for the remaining 25% of the altitude range, on the average.  相似文献   

20.
In view of the recent observations on the presence of vertical winds in the equatorial ionosphere in the evening and night-time, the role of vertical winds in the Rayleigh-Taylor (R-T) mode instability has been re-examined. The mathematical treatment of Chiu and Straus, earlier developd for a case of horizontal winds, is extended to evaluate the role of vertical winds in causing the R-T mode instability. It is shown that the vertical (downward) winds of small magnitude have a very significant effect on the instability growth rate in the. F-region. A downward wind of l m s−1 can cause the same growth rate as a 200 m s−1 eastward wind at 260 km altitude. Furthermore, a downward wind of 16m s−1 at 300 km can be as effective as that due to the gravitational drift itself. Similarly, an upward wind can inhibit the instability on the bottomside of the F-region. It appears that the polarity of the vertical winds (upward or downward) at the base of the F-layer plays an important role in the growth of the R-T mode plasma instability in the equatorial ionosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号