首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The techniques for estimating hmF2 from M(3000)F2 are reviewed with particular stress put upon those in which the effects of underlying ionization are accounted for by a correction (ΔM) to M(3000)F2, formulated in terms of the ratio foF2/foE(=xE). The simplifying assumptions involved in the three practical implementations (Bradley and Dudeney, 1973; Dudeney, 1974; Bilitza et al., 1979) are emphasised and their consequences investigated quantitatively using a numerical simulation. The factors considered are the dependence upon ymF2, the importance of the underlying layer shape (in particular the significance of the F1-ledge), and the influence of the geomagnetic field.It is demonstrated that the correction technique relies upon ymF2 being a direct polynomial function of hmF2. Analysis of observational data suggests that this relationship holds in practice. Fluctuations in ymF2 about this mean variation are shown to produce only small effects which decrease in magnitude as the amount of underlying ionization increases. The results indicate that underlying layer shape becomes very important when a large amount of underlying ionization is present (xE<2.5). However, the global morphology of the occurrence of the F1-ledge is such that it is invariably present in such circumstances (ignoring the polar regions). Hence, the ionosphere tends to assume a specific profile form for low xE cases. The three implementations are shown all to fortuitously incorporate this behaviour. It is demonstrated that exclusion of the geomagnetic field introduces a very small extra uncertainty dependent upon gyrofrequency and geomagnetic latitude, which decreases as the amount of underlying ionization increases.The three implementations are compared and it is concluded that the Dudeney (1974) scheme gives the best overall performance. The more modern and complex Bilitza et al. (1979) scheme appears to have no performance advantages, whilst containing a sunspot number dependent geomagnetic term whose behaviour is irreconcilible with the numerical simulation. The Dudeney (1974) equation is shown to be accurate to between 4 and 5% at magnetic mid-latitudes. The scope for further refinement is considered but rejected as being unlikely to produce an increase in accuracy commensurate with the effort required.  相似文献   

2.
Energetic protons entering the atmosphere will either travel as auroral protons or as neutral hydrogen atoms due to charge-exchange and excitation interactions with atmospheric constituents. Our objective is to develop a simple procedure to evaluate the Balmer excitation rates of Hα and Hβ, and produce the corresponding volume emission rates vs height, using semi-empirical range relations in air, starting from proton spectra observed from rockets above the main collision region as measured by Reasoneret al. [(1968) J. geophys. Res.73, 4185] and Søbraaset al. [(1974) J. geophys. Res.79, 1851]. The main assumptions are that the geomagnetic field is parallel and vertical, and that the pitch angle of the proton/hydrogen atom is preserved in collisions with atmospheric constituents before being thermalized. Calculations show that the largest energy losses occur in the height interval between 100 and 125 km, and the corresponding volume emission rate vs height profiles have maximum values in this height interval. The calculted volume emission rate height profile of Hβ compares favorably with that measured with a rocket-borne photometer.  相似文献   

3.
The peak height of the F2 layer, hmF2, has been calculated using the ‘servo’ model of Rishbeth et al. [(1978), J. atmos. terr. Phys. 40, 767], combined with the hedin et al. [(1988), J. geophys. Res. 93, 9959] neutral wind model. The results are compared with observed values at noon and midnight derived from ionosonde measurements at two mid-latitude stations, Boulder and Wallops Island, over a full solar cycle. The reduced height of the F2 layer, zmF2, is also computed for the same period using the observed hmF2 values and the MSIS-86 model. Day-night, seasonal, and solar cycle variations in zmF2 are attributed to neutral composition changes and winds. Anomalously low values of hmF2 and zmF2 during summer both at solar minimum and during the solar cycle maximum in magnetic activity may be associated with increases in the molecular to atomic ion concentration ratio. Under these circumstances the F2 peak may lie significantly below the O+ peak height calculated by the servo model. Neutral meridional winds at Wallops Island are derived from the servo model using the observed hmF2 values and the calculated O+ ‘balance height’. It is shown that if the anomalously low hmF2 values are used, unrealistically large poleward winds are derived, which are inconsistent with both theory and observations made using other techniques. For most conditions the F2 peak is clearly an O+ peak, and daily mean winds at hmF2 derived from the servo model are consistent with the hedin et al. (1988) wind model. Unexpectedly, the results do not show an abrupt transition in the thermospheric circulation at the equinoxes. Diurnal curves of the servo model winds reveal a larger day-night difference at solar minimum than at solar maximum.  相似文献   

4.
The previous dynamical, computer simulation model of the ionosphere at low latitudes of Chan H. F. and Walker G. O. (1984a, J. atmos. terr. Phys. 46, 1103; 1984b, J. atmos. terr. Phys. 46, 1113) has been modified to (1) include photoionization of molecular species NO+, N2+ and O2+ below 300km, (2) decouple the ionization and wind calculations below 180 km and (3) expand the geographical coverage to 46°N-30°S latitude. The first two modifications improved the model stability and the latter reduced the effect of the lateral boundaries on the equatorial anomaly. Results are presented for the representative seasonal months of January, April and July for East Asia, during solar minimum, comprising latitudinal-local standard time (120°E) contour plots of (1) the atmospheric pressure, (2) the computed meridional wind at 300 km, (3) the foF2 and (4) hmF2, together with latitudinal profiles of foF2 and NT (electron content) showing the daytime development and nighttime decay of the equatorial anomaly.Comparisons have been made between the computer simulations and various experimental measurements of foF2, M(3000) F2 and NT obtained in East Asia during periods of low solar activity. Most of the gross features of the development and decay of the equatorial anomaly at the various seasons were reproducible by the model simulations, the best agreement occurring for the equinoctial month of April.  相似文献   

5.
In this study, we tested the validity of molar crown height, which changes according to the degree of tooth wear, for the evaluation of age-at-death. The sample consisted of 372 first and second molars (lower and upper) from 157 individuals of known sex and age-at-death. For each molar, we measured the height of the two cusps most subjected to wear (protocone and hypocone for the upper M1 and M2; protoconid and hypoconid for the lower M1 and M2). The correlation between crown height and age-at-death was assessed by linear regression analysis. The resulting models were not very robust since a significant correlation was only found for a small part of the sample, at best (maxillary M1) around 35%. The result slightly improved when bucco-lingual diameter (BL diameter), ante-mortem tooth loss and dental caries were considered, mainly for the maxillary M2 for which the model using age-at-death and BL diameter as independent variables explained 47% of the sample (p < 0.001).  相似文献   

6.
Cyclic diagrams, obtained by plotting the daily variation of the ionospheric electron density NmF2 against the height hmF2, are drawn for typical conditions at Slough (52°N) and Watheroo (30°S). Using the MSIS86 thermospheric model to relate the heights hmF2 to values of atmospheric pressure, the F2-peak is found to lie at nearly the same pressure-level at any given local time, over a wide range of geophysical conditions (season, solar cycle, magnetic disturbance). As local time varies, the pressure level corresponding to hmF2 varies in a way that is mainly determined by the local time variation of the thermospheric winds. This is verified for noon and midnight, using the MSIS86 model to compute the winds. The noon values of peak electron density (NmF2) are fairly consistent with theory (using values of solar ionizing flux as quoted in the literature), but with some discrepancies—particularly at sunspot maximum—that are probably due to uncertainties in chemical composition, or to the effects of vibrational excitation of molecular nitrogen. Overall, the analysis shows a remarkable consistency between ionospheric theory, the data and the MSIS model.  相似文献   

7.
Winds in the upper atmosphere, and their effect on the ionosphere, are reviewed with an emphasis on information useful to ionospheric studies. The winds are driven by pressure gradients from solar and auroral heating, with some forcing by tidal energy from below. Simple calculations which balance the pressure gradient by ion drag and Coriolis forces are generally unreliable, so large-scale numerical models of the coupled atmosphere and ionosphere are required. The accuracy of these global models is limited by uncertainties in the energy inputs at high latitudes and at the lower boundary (about 90 km). The best current wind data come from incoherent scatter radar or airglow installations, at a few sites and for only a few nights per month. Satellite data are also available for several years, and results to 1989 are incorporated in the global HWM90 model. This seems acceptable for determining mean winds at night, less good during the day, and least good in the southern hemisphere where few data were available. Plots are given to show the mean winds at different latitudes and longitudes, for use in ionospheric calculations.Meridional winds alter the height of the mid-latitude F layer, causing large changes in the effective loss rate. This is the major cause of observed seasonal changes, of differences between the hemispheres, and of changes at different longitudes. An increased knowledge of the winds is essential for further progress in F region studies. Ionospheric data provide the most promising route, using routinely scaled parameters. The simplest calculations compare observed peak heights, obtained from M (3000)F2, with the value ho predicted by simplified “servo” equations. Errors occurring for some hours after sunrise can be overcome using model results to define ho this allows rapid and accurate wind calculations at dip latitudes of 23–62°. Winds can also be obtained from full model calculations, designed to match observed values of peak height or density.  相似文献   

8.
Monthly simulations of the solar semidiurnal tide in the 80–100 km height regime are presented. These calculations benefit from the recent heating rates provided by Groves G. V. (1982a,b) (J. atmos. terr. Phys. 44, 111; 44, 281), the zonally-averaged wind, temperature and pressure fields developed for the new COSPAR international reference atmosphere [Labitzke K., Barnett J. J. and Edwards B. (1985) Handbook for MAP 16, 318], and eddy diffusivities determined from gravity wave saturation climatologies and used by Garcia R. R. and Solomon S. (1985) (J. geophys. Res. 90, 3850) to simulate oxygen photochemistry and transport in the mesosphere and lower thermosphere. Some of the main characteristics of the observed semidiurnal tide at middle and high latitudes are reproduced in our simulations: larger amplitudes in winter months than in summer months, and the bi-modal behavior of the phase with summer-like and winter-like months separated by a quick transition around the two equinoxes. The phase transition is also more rapid in the spring, consistent with observations. The wavelengths are also longer in summer than in winter, at least below 95 km (whereas in July and August the simulations exhibit some discrepancies above this altitude), similar to the observational data. Semidiurnal amplitudes are generally smaller and the phases more seasonally symmetric at middle and low latitudes, as compared with the tidal structures above about 50° latitude. In addition, hemispheric differences in the mean zonal wind result in marked asymmetries in tidal behavior between the Arctic and Antarctic regions, and suggest that a comparative study of tide, gravity wave and mean flow interactions in the Arctic and Antarctic mesosphere and lower thermosphere would be fruitful.  相似文献   

9.
The Arecibo Initiative in Dynamics of the Atmosphere (AIDA) '89 was a multi-instrument campaign designed to compare various mesospheric wind measurement techniques. Our emphasis here is the comparison of the incoherent scatter radar (ISR) measurements with those of a 3.175 MHz radar operating a s an imaging Doppler interferometer (1131). We have performed further analyses in order to justify the interpretation of the long term IDI measurements in terms of prevailing winds and tides. Initial comparison of 14 profiles by Hines et al., 1993, J. atmos. terr. Phys. 55, 241–288, showed good agreement between the ISR and IDI measurements up to about 80 km, with fair to poor agreement above that altitude. We have compiled statistics from 208 profiles which show that the prevailing wind and diurnal and semidiurnal tides deduced from the IDI data provide a background wind about which both the IDI and ISR winds are normally distributed over the height range from 70 to 97 km. The 3.175 MHz radar data have also been processed using an interferometry (INT) technique [Van Baelen and Richmond 1991, Radio Sts. 26, 1209–1218] and two spaced antenna (SA) techniques [Meek, 1980, J. atmos. terr. Phys. 42, 837–839; Briggs. 1984, MAP Handbook, Vol. 13, pp. 166–186] to determine the three dimensional wind vector. These are then compared with the IDI results. Tidal amplitudes and phases were calculated using the generalized analysis of Groves, 1959, S. atmos. terr. Phys. 16, 344–356, historically used on meteor wind radar data. Results show a predominance of the diurnal S11 tidal mode in the altitude range 70–110 km, reaching a maximum amplitude 45 ms−1 at 95 km, with semidiurnal amplitudes being about 10–15 ms−1 throughout the height range considered. There is evidence of the two day wave in data from 86–120 km, with amplitudes on the order of 20 ms−1.  相似文献   

10.
The analysis investigates the base heights of the ionosphere (hF) when spread-F is recorded at Brisbane, Australia, for 2 separate periods, namely July and August 1966 when spread-F occurs frequently and September and October 1966 when the activity is much lower. It is found that for July and August there is little tendency for spread-F to occur preferentially when the base height is above the average for the period. However, for the September–October period, spread-F occurs more often (by a factor of 2 or 3 depending on the geomagnetic activity) when the base height is above rather than below the average height. Also, this analysis shows that the overall spread-F occurrence (for both periods investigated) decreased to some extent following increased geomagnetic activity. This suppressed activity in the hours following geomagnetic activity is confirmed by superposed-epoch analyses using K indices (for Macquarie Island) as controls. It is suggested that the results of all the analyses might be explained by invoking a transition height in the ionosphere (controlled by the neutral-particle density of the upper atmosphere). Ionospheric off-vertical reflections from above this height would be recorded as spread-F traces in this model. This transition height would be low in July and August when the neutral-particle density is low and higher in September and October. It is further proposed that changes in the neutral-particle density could also be associated with reduced spread-F activity following increased geomagnetic activity, as well as influencing the diurnal, annual and sunspot-cycle variations of spread-F occurrence in mid-latitudes.  相似文献   

11.
Observations of neutral winds and temperatures obtained using a FabryPerot interferometer at Beveridge (37°28′S, 145°6′E) have been combined with h'F measurements from ionosondes at Canberra (35°21′S, 149°10′E) and Hobart (42°54′S, 147° 12′E). Data from 16 nights have been used to study the response (height change) of the F2-layer to changes in neutral wind and temperature. The observations have been compared with the ‘servo’ model of Rishbeth. It is found that the ‘night stationary level’ of the F2-layer depends on temperature, with the height changing by (13 ± 6) km per 100K. This agrees well with the prediction of the ‘servo’ model. There is reasonable overall agreement between the observations and the model predictions for the change in height produced by a given meridional wind. However, there is considerable scatter in the individual comparisons due to the approximations used to apply the theory to the observations. In particular, the effect of electric fields on the F2-layer height has been ignored.  相似文献   

12.
13.
Procedures are described for use in the real height analysis of ionogram data using the ordinary ray only, to allow for the presence of underlying (low density) ionisation. A controlled extrapolation of the virtual heights, with upper and lower limits, gives some useful correction under most conditions. For more accurate and consistent results a synoptic model is used to give a mean starting height at a fixed frequency of 0.5 MHz. Constraints are placed on the profile shape between 0.5 MHz and the lowest observed frequency 1, to minimise the variations with different methods of analysis and different values of 1. Suitable model starting heights are described for day and night conditions, and presented in tabular and graphical form. Equations are also given from which the model starting height can be calculated directly as a function of the local time, the month and the station latitude.  相似文献   

14.
The lightning-produced electromagnetic effects may produce significant modifications in the ionospheric plasmas. An outstanding phenomenon investigated in this paper is the so-called “explosive spread F”, whose close link with lightning has been identified (woodman R. F. and Kudeki E., 1984, Geophys. Res. Lett. 11, 1165). The parametric instability excited by the lightning-induced whistler waves is proposed as a potential source mechanism causing the explosive spread F. Some observed striking features of this phenomenon can be reasonably explained by the proposed mechanism.  相似文献   

15.
We examine the extent to which the cross-polar cap potential difference ϕ and the global Joule heating rate, U, both determined by the magnetogram-inversion method (Kamideet al., 1981, J. geophys. Res. 86, 801), depend upon the assumed conductance models. For this purpose two statistically-determined conductance models developed by Siroet al. (1982, J. geophys. Res. 87, 8215) and ahn et al. (1983b, Planet. Space Sci. 31, 641), and a realistic conductance distribution estimated from bremsstrahlung X-ray image data (Ahnet al., 1989, J. geophys. Res. 94, 2565) have been used. As expected from earlier studies, U is less affected by the choice of conductance models than is ϕ. This is because U is a globally integrated quantity, and thus the local structures of the electric potential pattern do not affect it appreciably, whereas they are crucial in determining ϕ, which is defined as the difference between the maximum and minimum potential values usually found in the dawn and dusk sectors, respectively. A comparison between Uand ϕ based on the statistical conductance models and U and ϕ based on a realistic conductance distribution shows that there are considerable similarities, thus enabling us to use statistical conductance models as a first approximation in deriving such global quantities as the cross-polar cap potential difference and the global Joule heating rate in the study of solar wind-magnetosphere coupling. Several suggestions are made for improving the present available conductance models and some limitations (possibly intrinsic ones) are also discussed.  相似文献   

16.
We have derived analytic expressions connecting the three plasma parameters namely hm, the height of the F2-peak; Nm, the peak density and Ym, the radius of curvature of the vertical profile at hm, which help us to explain certain features of the plasma distribution in the ionosphere. Although both Nm and TEC (total electron content) exhibit the equatorial anomaly in response to the fountain effect, TEC does not show a noon-time bite-out whereas Nm does. Moreover, we predict that the response of TEC towards the fountain effect is weaker than that of Nm, which we substantiate with simultaneous observations of Nm and TEC in the Indian zone. Thus we have shown that even one-dimensional analysis can explain those effects which are generally thought of as two-dimensional phenomena.  相似文献   

17.
Using a new mode of scanning 630-nm photometer operation the zonal velocities of ionospheric plasma depletions were measured over Cachoeira Paulista in Brasil in two east-west planes tilted 30°N and 30° S with respect to zenith. The measurements cover a time period of approximately 2 years, from January 1988 to January 1990, a period marked by significant increase in solar activity of the ongoing cycle. The results have permitted a rather detailed evaluation of the local time and latitude variations in the zonal plasma bubble velocity as a function of solar activity. Although the mean trend in the velocity local time variation is a decrease from early evening to post-midnight hours, a strong tendency for velocity peaks is observed near 21 LT and midnight. The velocities as well as their height (latitude) gradients show perceivable increases with solar activity represented as sunspot numbers. The present results are compared with the ambient plasma velocities measured using the Jicamarca radar by Fejer el al. (1985), J. Geophys. Res. 90, 12249, with that measured on board the DE 2 satellite on the equatorial latitudes by Coley and Heelis (1989), J. geophys. Res. 94, 6751, and with various theoretical calculations, in an attempt to bring out the salient features of the plasma dynamics of the equatorial ionosphere.  相似文献   

18.
19.
This paper presents simulated ionograms calculated for a parabolic ionospheric layer containing irregularities in the form of small amplitude waves. With small amplitudes, perturbation techniques can be used enabling results for the irregular ionospheres to be calculated from the results for smooth ionospheres. This approach is relatively straightforward and avoids having to ray trace new paths each time the irregularity parameters are changed. It is, however, restricted to irregularities which do not cause multiple echoes. Irregularities with vertical wavelengths of up to a few kilometres can produce significant changes in the ionosphere over height intervals smaller than those involved in reflecting a single pulse. Consequently, in the simulation procedure, it is essential to consider not just the carrier frequency but the complete frequency spectrum of the pulse. Irregularities with vertical wavelengths of the order of 10 km or more can produce ripples in an ionogram trace. These will, of course, be more evident on ionograms with high frequency resolution. Irregularities with vertical wavelengths of up to several kilometres and amplitudes up to a few per cent can produce significant pulse spreading and splitting. The actual effects depend not just on the irregularity properties but also on the ionosonde pulse width, gain and frequency and height resolutions. Some simulations show trace splitting and quasi-horizontal traces similar in many respects to effects observed by Bowman (1987, J. atmos. terr. Phys. 49, 1007) and Bowmanet al. (1988, J. atmos. terr. Phys. 50, 797). Consequently it is suggested that, at least in some cases, small amplitude (≤3%) and small scale (≤4 km) irregularities produce the spread-ifF reported by these authors.  相似文献   

20.
An imaging Doppler interferometer (IDI) radar was operated during the three AIDA '89 campaigns in Puerto Rico over the period March–May of 1989. The output of the IDI analysis characterizes radar scattering in terms of a number of discrete ‘scattering points,’ also referred to as ‘multiple scattering centers,’ IDI/MSC for short. For each of these points the three-dimensional location, radial velocity and amplitude and phase are determined, similar to the output of meteor radars. We have applied the conventional Groves [(1959) J. atmos. terr. Phys. 16, 344–356] meteor wind radar analysis to the scattering points to produce the mean apparent motions over the height range from 70 to 110 km which are presented here. The mean apparent motion of the scattering centers is the quantity that would correspond to the neutral atmosphere wind or bulk motion if the scattering points are physical entities (such as turbulent eddies) whose motions are determined solely by advection. This is the quantity which is treated as the ‘wind’ in the analysis which follows and which should be compared to the wind measurements as deduced from the other methods employed during this campaign. There is, however, a caveat which supports the contention of Hineset al. [(1993) J. atmos. terr. Phys. 55, 241–287] that extreme care must be used in interpreting the velocities measured by partial reflection radars as winds. The current application of the Groves method of analysis has revealed motions from which one would infer a typical equatorial easterly circulation, with mean meridional circulation becoming significant only above 96 km. A periodogram analysis of the complete data interval (5–11 April) has shown the diurnal tide to be the most significant feature of the wind field at these altitudes, with zonal amplitudes up to some 50 m/s and meridional amplitudes approximately half this value. The 12 and 6 h tides become as significant as the diurnal above 100 km. The two day (48 ± 5 h) wave is the next most significant feature, with zonal amplitude increasing with height up to 30 m/s at 110km. The semidiurnal tide is not at all well developed below 100 km. However, analysis on a day by day basis reveals a significant semidiurnal component which is not phase coherent over the total interval. Mean vertical velocities are of the order of tens of centimeters per second and are considered to be more realistic than the meters per second velocities usually inferred from analyses of meteor trail drifts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号