首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The HF phased-array pencil beam radar at Bribie Island, Australia, used to measure horizontal movements of the ionosphere, has been calibrated using the known velocity of the sunrise terminator. The seasonal variation in the velocity of the terminator has been resolved, both in magnitude and direction.The technique uses single-station ionospheric sounding, and requires the angle of arrival and Doppler shift of ionospheric echoes to be measured as the terminator passes overhead. Pfister's theorem [(1971), J. atmos. terr. Phys. 33, 999] then allows calculation of the velocity of the reflecting surface. The difference between theory and experiment is less than 3% in speed and 2° in direction on average.  相似文献   

2.
We examine errors which are likely to occur in the compact-array HF sounding technique for determining the velocity of traveling ionospheric disturbances. The errors arise from ionospheric irregularities (either large-scale specular facets, or fine-scale scatterers) and from the presence of multiple disturbance undulations propagating simultaneously with different velocities. The errors are either systematic (that is, not causing internal inconsistencies within the array velocimetry data) or random (that is, causing quantifiable inconsistencies between alternative velocity estimates furnished by the array). The random errors can be directly assessed using array data, as is illustrated for actual data from a 16-channel array.  相似文献   

3.
Fridman and Fridman [(1994) J. atmos. terr. Phys. 56, 115] suggested a method of reconstructing the horizontally-inhomogeneous ionospheric structure using vertical- and oblique-incidence backscatter sounding (OBS) ionograms measured at a single location. In the present paper this technique has been used to analyze experimental data and tested against independent vertical sounding (VS) measurements. By using the OBS and VS ionograms measured at Irkutsk as source data for the method we reconstructed ionization profiles over Tomsk (1050 km to the west of Irkutsk). We found that the reconstructed profiles are in reasonable agreement with the profiles obtained from VS measurements at Tomsk.  相似文献   

4.
The relation between angle of arrival and Doppler shift that has been called Pfister's theorem is shown to be a special case of a result that applies to ionospherically transmitted signals between fixed ground sites, whenever the ionosphere moves without change of shape. This general result does not require the existence of an effective mirror reflector or any special symmetry of the ionosphere, but depends only on the validity of ray theory. The formula obtained by Pfister [(1971) J. atmos. terr. Phys.33, 999] is shown to apply, provided the ray returning from the ionosphere follows the same path as the incident ray.  相似文献   

5.
A new nine-position experiment is now routinely carried out with the Millstone Hill incoherent scatter radars which allows estimation of spatial gradients in the measured ionospheric scalar parameters Ne, Te, and Ti, and in the components of the ion velocity vector vi. Use of this technique results in improved estimates of basic and derived parameters from incoherent scatter data at times of significant gradients. We detail the data analysis method and present the first results from this new experiment. The gradients in Ne and in the components of vi are used to compute the motion term in the ionospheric F region continuity equation ▿ · (Nv), which is then combined with ∂N/∂t to estimate the O+ recombination rate β at night. Meridional neutral winds Umer are computed from the field-aligned ion velocity v and a calculation of the O+ diffusion velocity vd, and it is found that horizontal gradients in the ion velocity field at times significantly affect the calculation of the neutral winds.  相似文献   

6.
Global scale longitudinal gradients of pressure in the plasmasphere may be formed naturally by ionospheric processes, or caused by electrostatic fields of ionospheric dynamo origin. It is shown that plasmaspheric gradients of pressure, orthogonal both to the magnetic field (B) and to grad B, generate geophysically significant field-aligned currents. Considering the ionosphere and plasmasphere as a coupled electrodynamic system, these currents alter non-negligibly the self-consistent ionospheric electric field and current. Criteria are established for this coupling mechanism (a kind of plasmaspheric impedance) to be significant. This has implications for the relationships of ionospheric electric fields and currents, F-region drifts, and magnetic variations, due to upper atmosphere tides and winds.  相似文献   

7.
Using a new mode of scanning 630-nm photometer operation the zonal velocities of ionospheric plasma depletions were measured over Cachoeira Paulista in Brasil in two east-west planes tilted 30°N and 30° S with respect to zenith. The measurements cover a time period of approximately 2 years, from January 1988 to January 1990, a period marked by significant increase in solar activity of the ongoing cycle. The results have permitted a rather detailed evaluation of the local time and latitude variations in the zonal plasma bubble velocity as a function of solar activity. Although the mean trend in the velocity local time variation is a decrease from early evening to post-midnight hours, a strong tendency for velocity peaks is observed near 21 LT and midnight. The velocities as well as their height (latitude) gradients show perceivable increases with solar activity represented as sunspot numbers. The present results are compared with the ambient plasma velocities measured using the Jicamarca radar by Fejer el al. (1985), J. Geophys. Res. 90, 12249, with that measured on board the DE 2 satellite on the equatorial latitudes by Coley and Heelis (1989), J. geophys. Res. 94, 6751, and with various theoretical calculations, in an attempt to bring out the salient features of the plasma dynamics of the equatorial ionosphere.  相似文献   

8.
Faraday rotation data obtained at Delhi, Kurukshetra, Hyderabad, Bangalore, Waltair, Nagpur and Calcutta during the total solar eclipse of 16 February 1980 and at Delhi during the total solar eclipse of 31 July 1981 have been analysed to detect the gravity waves generated by a total solar eclipse as hypothesized by Chimonas and Hines (1970, J. geophys. Res. 75, 875). It has been found that gravity waves can be generated by a total solar eclipse but their detection at ionospheric heights is critically dependent on the location of the observing station in relation to the eclipse path geometry. The distance of the observing station from the eclipse path should be more than 500 km in order to detect such gravity waves.  相似文献   

9.
Measurements of ionospheric electron density vertical profiles, carried out at a magnetic equatorial station located at Fortaleza (4°S, 38°W; dip latitude 2°S) in Brazil, are analyzed and compared with low-latitude electron density profiles predicted by the International Reference Ionosphere (IRI) model. The analysis performed here covers periods of high (1979/1980) and low (1986) solar activities, considering data obtained under magnetically quiet conditions representative of the summer, winter and equinox seasons. Some discrepancies are found to exist between the observed and the IRI model-predicted ionospheric electron density profiles. For high solar activity conditions the most remarkable one is the observed fast upward motion of the F-layer just after sunset, not considered in the IRI model and which precedes the occurrence of nighttime ionospheric plasma irregularities. These discrepancies are attributed mainly to dynamical effects associated with the low latitude E × B electromagnetic plasma drifts and the thermospheric neutral winds, which are not satisfactorily reproduced either in the CCIR numerical maps or in the IRI profile shapes. In particular, the pre-reversal enhancement in the vertical E × B plasma drifts around sunset hours has a great influence on the nighttime spatial distribution of the low-latitude ionospheric plasma. Also, the dynamical control exerted by the electromagnetic plasma drifts and by the thermospheric neutral winds on the low-latitude ionospheric plasma is strongly dependent on the magnetic declination angle at a given longitude. These important longitudinal and latitudinal dependences must be considered for improvement of IRI model predictions at low latitudes.  相似文献   

10.
Owing to the high conductivity along magnetic field lines, the stability of the night-time equatorial F-region is determined by magnetic field line integrated quantities. However, slow vertical diffusion near the magnetic equator plus the rapid increase in ion chemistry rates at lower altitude combine to give a very small positive scale height for the electron concentration on the bottomside of the region. As a result, the field line averaged quantities are reasonably approximated by their equatorial values, provided that the E-region does not contribute significantly. The time-dependent behavior of the growth rate for the Rayleigh-Taylor gravitational instability on the F-region bottomside is examined here as a function of the vertical E × B drift velocity using reasonable chemistry to obtain approximate equatorial vertical profiles of ionospheric parameters. It is found that the growth rate exceeds the chemical recombination rate over most of the bottomside F-layer even without vertical drift, but that a realistic E × B drift can result, after about 1 h, in an increase of this growth rate by an order of magnitude. The absolute growth rate is so small (< 10−3 s−1) with zero vertical drift that a seeding mechanism would probably be required for the formation of bubbles. The rapid appearance of bubbles shortly after sunset appears likely only after a period of upward drift, as is observed.  相似文献   

11.
Daytime observations of the horizontal velocity dispersion of medium-scale travelling ionospheric disturbances (TID) near the F2 peak height have been carried out using an array of HF Doppler sounders in central Japan. Cross-correlation analysis of sample records has shown that the horizontal trace velocity is a decreasing function of the period of fluctuations in the range 13.3–40 min. The theoretical dispersion of the atmospheric gravity waves is also calculated using Klostermeyer's (1974) method. Comparison between the observed and the calculated results suggests the possibility that the components of the lower period of the observed velocity dispersion may be a remnant of the quasi-evanescent mode pertinent to lower-height levels.  相似文献   

12.
A technique for determining ionospheric electron distribution from oblique ionograms is presented, based on the inversion method of Reilly and Kolesar (Radio Sci. 24, 575, 1989). It makes use of an equivalent operating frequency and an additional term to account for magnetoionic effects associated with the Earth's magnetic field. The technique is demonstrated by application to synthetic oblique ionograms, and to an experimentally obtained ionogram.  相似文献   

13.
The effects on the horizontal ionospheric velocity vectors deduced from radar beam-swinging experiments, which occur when changes in the flow take place on short time scales compared with the experiment cycle time, are analysed in detail. The further complications which arise in the interpretation of beam-swinging data, due to longitudinal gradients in the flow and to field-aligned flows, are also considered. It is concluded that these effects are unlikely to seriously compromise statistical determinations of the response time of the flow, e.g. to changes in the north-south component of the IMF, such as have been recently reported by Etemadi et al. (1988, Planet. Space Sci. 36, 471), using EISCAT ‘Polar’ data.  相似文献   

14.
This paper presents simulated ionograms calculated for a parabolic ionospheric layer containing irregularities in the form of small amplitude waves. With small amplitudes, perturbation techniques can be used enabling results for the irregular ionospheres to be calculated from the results for smooth ionospheres. This approach is relatively straightforward and avoids having to ray trace new paths each time the irregularity parameters are changed. It is, however, restricted to irregularities which do not cause multiple echoes. Irregularities with vertical wavelengths of up to a few kilometres can produce significant changes in the ionosphere over height intervals smaller than those involved in reflecting a single pulse. Consequently, in the simulation procedure, it is essential to consider not just the carrier frequency but the complete frequency spectrum of the pulse. Irregularities with vertical wavelengths of the order of 10 km or more can produce ripples in an ionogram trace. These will, of course, be more evident on ionograms with high frequency resolution. Irregularities with vertical wavelengths of up to several kilometres and amplitudes up to a few per cent can produce significant pulse spreading and splitting. The actual effects depend not just on the irregularity properties but also on the ionosonde pulse width, gain and frequency and height resolutions. Some simulations show trace splitting and quasi-horizontal traces similar in many respects to effects observed by Bowman (1987, J. atmos. terr. Phys. 49, 1007) and Bowmanet al. (1988, J. atmos. terr. Phys. 50, 797). Consequently it is suggested that, at least in some cases, small amplitude (≤3%) and small scale (≤4 km) irregularities produce the spread-ifF reported by these authors.  相似文献   

15.
On oblique ionograms, the maximum frequencies of the ordinary and extraordinary modes are referred to as nose frequencies. The difference in the nose frequencies depends on parameters such as the length of the propagation circuit and the direction of propagation. In this paper, the difference in nose frequencies is studied using the frequency scaling technique of Bennettet at. [(1991) Appl. Comput. Electromagn. Soc. Jl6, 192]. For long paths, an explicit formula is obtained which gives the difference approximately as a function of the local magnetic dip and azimuth of propagation at the ray mid point. For shorter paths, it is shown how analytic ray tracing can be used to determine the difference.  相似文献   

16.
The idealized ‘servo’ model of the ionospheric F2-layer, developed by Rishbeth, ganguly and Walker (1978), is used to simulate the observed behaviour of the daytime F2-peak at Arecibo for sunspot minimum. Taking the east-west electric field to be given by the observed plasma drift velocity perpendicular to the magnetic field, the theoretical equations are integrated using a trial-and-error approach to match the observed values of field-parallel plasma velocity, and the height and electron density of the F2-peak. From the calculation is determined empirically the meridional pressure-gradient force associated with the meridional neutral-air wind. The local time variation during the day is found to be consistent with the semidiurnal variation given by the MSIS atmospheric model of Hedinet al. (1977a, b), though with a phase shift that varies with season; on some days in the fall the pressure-gradient force displays a strong equatorward ‘surge’ in the evening. The values of F2-layer loss and diffusion coefficients needed to match the data are broadly consistent with the MSIS model. The analysis thus validates the MSIS model by way of ionospheric parameters quite independent of the data from which MSIS was originally derived.  相似文献   

17.
The papers by Winseret al. [(1990) J. atmos. terr. Phys.52, 501] and Häggström and Collis [(1990) J. atmos. terr. Phys.52, 519] used plasma flows and ion temperatures, as measured by the EISCAT tristatic incoherent scatter radar, to investigate changes in the ion composition of the ionospheric F-layer at high latitudes, in response to increases in the speed of plasma convection. These studies reported that the ion composition rapidly changed from mainly O+ to almost completely (>90%) molecular ions, following rapid increases in ion drift speed by >1 km s−1. These changes appeared inconsisent with theoretical considerations of the ion chemistry, which could not account for the large fractions of molecular ions inferred from the obsevations. In this paper, we discuss two causes of this discrepancy. First, we reevaluate the theoretical calculations for chemical equilibrium and show that, if we correct the derived temperatures for the effect of the molecular ions, and if we employ more realistic dependences of the reaction rates on the ion temperature, the composition changes derived for the faster convection speeds can be explained. For the Winser et al. observations with the radar beam at an aspect angle of ϕ = 54.7° to the geomagnetic field, we now compute a change to 89% molecular ions in < 2 min, in response to the 3 km s−1 drift. This is broadly consistent with the observations. But for the two cases considered by Häggström and Collis, looking along the field line (ϕ = 0°), we compute the proportion of molecular ions to be only 4 and 16% for the observed plasma drifts of 1.2 and 1.6 km s−1, respectively. These computed proportions are much smaller than those derived experimentally (70 and 90%). We attribute the differences to the effects of non-Maxwellian, anisotropic ion velocity distribution functions. We also discuss the effect of ion composition changes on the various radar observations that report anisotropies of ion temperature.  相似文献   

18.
Pfister's theorem provides a relationship between the velocity of an effective reflecting surface, the Doppler shifts of the reflected radio waves and their angles of arrival. The Bribie Island HF radar measures the Doppler shift, the north-south angle of arrival and the east-west angle of arrival of the ionospheric echo(es). These three dimensions were used to form Pfister's space. The signatures produced by modelled data in this space were used to characterise ionospheric movements. These signatures allowed non-dispersive plane-wave motions, non plane-wave motions which obey Pfister's theorem, dispersive and superposed motions to be distinguished. These different characteristic motions were also identified in a time-series of F-region measurements. Some of the ionospheric motions previously attributed to dispersion may have been produced by superposed disturbances. The day to day variation of how well Pfister's theorem is obeyed may be due to the variability of sources producing disturbances, and therefore superposition effects, and not just dispersion as previously claimed. The individual parameters of superposed disturbances may be difficult to extract using spectral analysis techniques. The wide variety of motions observed at mid-latitudes have important consequences for those techniques which assume a uniform drift of the ionosphere.  相似文献   

19.
Using ray tracing we investigate, on a qualitative level and in the linear approximation, the effects of medium-scale travelling ionospheric disturbances (MS TIDs) arising when powerful HF radio transmitters are operated in conjunction with antenna arrays designed for ionospheric modification (heating) and for radio location of the Moon. It is shown that the HF radio wave focusing effect, arising during the movement of the MS TIDs, can give rise to a strong inhomogeneous and nonstationary modulation of the space-time distribution of the field intensity of a powerful radio transmitter both at heights near the reflection region (in heating experiments) and at the exit from the ionosphere (in radio location of the Moon). The excess of intensity over an unperturbed value for typical parameters of MS TIDs in experiments on ionospheric modification can reach values of hundreds of percent: a ‘spot’ of increased intensity of the wave field can have the size of about 1–10 km, and can move with a velocity close to the MS TID phase velocity.In the case of lunar radio location, the inhomogeneity and nonstationarity of the wave field intensity distribution at the exit from the ionosphere substantially complicates the evaluation of the corresponding distribution on the Moon's surface and the interpretation of the Moon-reflected radio signal characteristics.  相似文献   

20.
When transmitting on 5.8 MHz the Bribie Island HF radar array synthesizes a beam that is 2.5 wide. The beam can be steered rapidly across the sky or left to dwell in any direction to observe the fading rates of echoes within a small cone of angles. With the beam held stationary, the time scale associated with deep fading of F-region echoes is usually more than 5 min. This is consistent with the focusing and defocusing effects caused by the passage of ever-present medium-scale travelling ionospheric disturbances (TIDs). On occasion the time scale for deep fading is much shorter, of the order of tens of seconds or less, and this is thought to be due to the interference of many echoes from within the beam of the radar. It is shown that the echoes are not due to scatter from fine structure in the F-region, but rather due to the creation of multiple F-region paths with differing phase lengths by small, refracting irregularities in underlying, transparent spread sporadic-E, (Spread-Es). The natural drift of the Spread-Es causes the phase paths of the different echoes to change in different ways causing the interference.Two methods are used to investigate the rapidly fading F-region signals. Doppler sorting of the refracted F-region signal does not resolve echoes in angle of arrival suggesting that many echoes exist within a Fresnel zone [Whitehead and Monro (1975), J. atmos. terr. Phys. 37, 1427]. Statistical analysis of F-region amplitude data indicates that when the range spread in Es is severe on ionograms, then a modified Rayleigh distribution caused by the combination of 10 or so echoes is most appropriate. Using knowledge of the refracting process the scale of Es structure is deduced from these results. Both methods find a Spread-Es irregularity size of the order of 1 km or less. It is proposed that the Rayleigh type F-region signals seen by Jacobsonet al. [(1991b), J. atmos. terr. Phys. 53, 63] are F-region signals refracted by spread-Es.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号