首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
This paper reports the solar condition dependences of the quasi-trapped component (low energy) of the proton population of energy 0.65–35 MeV which peaks in the equatorial zone centered on the minimum magnetic field equator in the altitude range 170–850 km. The proton populations compared pertain to AZUR observation in 1969–1970, S81-1 mission observation in 1982 and EXOS-C observation during 1984–1986. In the equatorial zone, the dependence of the flux normalization constant, which represents the absolute proton population, upon factors like L (1.1–1.3), B (0.29–0.32 gauss), latitude ( ± 20°), longitude (0–360°) and anisotropy index q (~6–12) of the pitch angle distribution function is not so significant in the given range of these factors as it is upon the solar epoch. It is found that the absolute proton flux in 1982 was, at least, forty times that in 1984–1986 and, almost, three times that in 1969–1970, possibly, due to, varying solar conditions in those epochs.  相似文献   

2.
At solar maximum during the late evening hours (2100–2400 LT), NmF2 at Tahiti frequently does not decrease monotonically but exhibits temporary subsidiary maxima. Thus, in 1980, of 66 evening periods for which good data were available, 20 showed monotonie decreases but the remainder exhibited such subsidiary maxima. In summer the subsidiary maxima correspond to hmF2 significantly lower than the monotonie decreases. This lower hmF2 during subsidiary maxima corresponds to a weakening or reversal of the equatorward neutral wind, accompanied by an increase in the flux from the equatorial fountain. In winter the subsidiary maxima are fully accounted for by increases in the flux from the fountain effect, probably due to increases in the strength of the equatorial electrojet.  相似文献   

3.
The solar cycle, seasonal and daily variations of the geomagnetic H field at an equatorial station, Kodaikanal, and at a tropical latitude station, Alibag, are compared with corresponding variations of the E-region ionization densities. The solar cycle variation of the daily range of H at either of the stations is shown to be primarily contributed to by the corresponding variation of the electron density in the E-region of the ionosphere. The seasonal variation of the ΔH at equatorial stations, with maxima during equinoxes, is attributed primarily to the corresponding variation of the index of horizontal electric field in the E-region. The solar daily variation of ΔH at the equatorial station is attributed to the combined effects of the electron density with the maximum very close to noon and the index of electric field with the maximum around 1030 LT, the resulting current being maximum at about 1110 LT. These results are consistent with the ionosphere E-region electron horizontal velocity measurements at the equatorial electrojet station, Thumba in India.  相似文献   

4.
The flux of ionisation at 850 km height is calculated using the MSIS atmospheric model, a simplified form for the continuity equation at the peak of the F2-layer, and observed values of NmF2. Results are given for stations at latitudes of 32°N, 21°N, 21°S and 37°S during 1971 and for Tahiti (18°S) in 1980. Changes in the neutral atmosphere and in the hmF2 model have minor effects at low latitudes, where the fluxes are larger, but can appreciably alter the results at mid latitudes. Increased recombination due to N2 vibrational excitation produces a large afternoon decrease in NmF2 in summer, near solar maximum, and an increased downward flux. At all stations the day-time flux has a much larger downward component in winter than in summer. Because of the eastward magnetic declination, zonal winds produce opposite effects on the diurnal variations of hmF2, NmF2 and flux in the northern and southern hemispheres. Downward fluxes are largest in the morning in the southern hemisphere and in the late afternoon and evening in the north. At ± 21° latitude, neutral winds have a major effect on the distribution of ionisation from the equatorial fountain. Thus, at the solstices the day-time flow is about 4 times larger in winter than in summer. Averaged over both hemispheres, the total flow at 21° latitude is approximately the same for solstice and equinox conditions. At mid latitudes there is a downwards flux of about 1–2 × 1012 m2 s−1 into the night ionosphere.  相似文献   

5.
HF doppler observations of vertical plasma drifts in the post-sunset equatorial F-region at Trivandrum (dip 0.9°S), conducted over a range of solar and geomagnetic conditions, are presented. The observations show that under magnetically quiet conditions, the characteristic post-sunset enhancement in the vertical plasma drift is quite sensitive to solar activity; the peak velocity drops by about a factor of 3 as the solar flux index (S10.7) changes from about 125 to 70. It is found that the drift velocity enhancement has strong magnetic activity dependence only during high solar activity; the drift velocity drops by more than a factor of 2 from quiet to moderate activity, but builds back to the quiet day level for high magnetic activity. The occurrence of equatorial spread-F (ESF) is seen to be closely linked to the post-sunset enhancement in the vertical drift velocity, both showing essentially the same dependence on solar and magnetic activities. A comparison with Jicamarca observations shows that while the gross characteristics of the drift velocity pattern are about the same for the two stations, there are significant differences in the detailed variations, particularly for magnetically disturbed conditions.  相似文献   

6.
Data from the unique network of low latitude geomagnetic observatories in India extending from the dip equator to the northern focus of the Sq current system have shown a new type of Sq current distribution different from those associated with the normal or the counter electrojet currents. On 3 December 1985 both the horizontal as well as the vertical components of the geomagnetic field at Annamalainagar showed maximum values around the midday hours. The abnormal feature described seems to be rather a rare phenomenon. The solar daily range of H field is found to be fairly constant from the dip equator up to about 12° dip latitude, suggesting the complete absence of the equatorial enhancement of ΔH, typical of the equatorial electrojet. The cancellation of the equatorial electrojet is suggested to be caused by a westward flowing current system much wider than the conventional equatorial electrojet. This additional current system could be due to the excitation of certain tidal modes at low latitudes on such abnormal days.  相似文献   

7.
The growth rate of whistler-mode waves is calculated analytically for a bi-Maxwellian plasma in the presence of a beam of cool electrons. This beam is moving in the same direction as the gyroresonant electrons and in the opposite direction to the waves which are considered to propagate parallel (or anti-parallel) to the imposed geomagnetic field. A somewhat surprising result is found. This is that even if the anisotropy is greater than a critical value, which is strongly frequency dependent, the beam reduces the growth of the waves near half the electron gyrofrequency. For a field-aligned current density ~ 1 μA m−2, this mechanism can explain the lack of signals near 1.4 kHz on auroral (return current) flux tubes. It can also explain the observed absorption of signals at half the electron gyrofrequency, around 7 kHz on L = 4 flux tubes, near the equatorial plane and just outside the plasmapause.  相似文献   

8.
It is known that on a counter electrojet day the noontime electron density at the equator shows enhanced values with no bite-out. The consequences of the absence of the normal equatorial electrojet on the electron density distribution at the equatorial station Kodaikanal (dip latitude 1.4°N, long. 77.5°E) and at an anomaly crest location Ahmedabad (dip latitude 18°N, long. 73°E) are discussed for a strong electrojet (SEJ) day and a counter electrojet (CEJ) day. The electron density distribution with height for a pair of SEJ and CEJ days at the two equatorial stations Kodaikanal and Huancayo (dip latitude 1°N, long. 75°W) are studied. The F-region peak height, hm and the semi-thickness parameter ym on the SEJ day followed a similar variation pattern. On the CEJ days ym exhibited a substantially low and mostly flattened daytime variation compared to the peaked values on the SEJ day. An attempt is made to interpret these differences in terms of the changes in the vertical drift pattern resulting from the E × B drift of plasma at the equator and the varying recombination rate β, which is also a height dependent and a local time dependent parameter.  相似文献   

9.
An intense solar proton event causing enhanced ionization in the ionospheric D-region occurred on 12 August 1989. The event was partially observed during three successive nights by the EISCAT UHF incoherent scatter radar at Ramfjordmoen near Tromsa, Norway. Ion production rates calculated from GOES-7 satellite measurements of proton flux and a detailed ion chemistry model of the D-region are used together with the radar data to deduce electron concentration, negative ion to electron concentration ratio, mean ion mass and neutral temperature in the height region from 70 to 90 km, at selected times which correspond to the maximum and minimum solar elevations occurring during the radar observations. The quantitative interpretation of EISCAT data as physical parameters is discussed. The obtained temperature values are compared with nearly simultaneous temperature measurements at Andøya based on lidar technique.  相似文献   

10.
Energetic protons entering the atmosphere will either travel as auroral protons or as neutral hydrogen atoms due to charge-exchange and excitation interactions with atmospheric constituents. Our objective is to develop a simple procedure to evaluate the Balmer excitation rates of Hα and Hβ, and produce the corresponding volume emission rates vs height, using semi-empirical range relations in air, starting from proton spectra observed from rockets above the main collision region as measured by Reasoneret al. [(1968) J. geophys. Res.73, 4185] and Søbraaset al. [(1974) J. geophys. Res.79, 1851]. The main assumptions are that the geomagnetic field is parallel and vertical, and that the pitch angle of the proton/hydrogen atom is preserved in collisions with atmospheric constituents before being thermalized. Calculations show that the largest energy losses occur in the height interval between 100 and 125 km, and the corresponding volume emission rate vs height profiles have maximum values in this height interval. The calculted volume emission rate height profile of Hβ compares favorably with that measured with a rocket-borne photometer.  相似文献   

11.
The effects of day-to-day or seasonal variation of altitude and latitude profiles of the Elayer plasma density in the equatorial ionosphere on equatorial electrojet (EEJ) structure are examined numerically using a self-consistent and high resolution dynamo model. It is found that variations in the E-layer peak altitude and amplitude and its gradient below significantly affect EEJ structure. For any realistic shape, the EEJ peak appears at or below the E-layer peak altitude. Distinct double peaks appear in the EEJ structure, such as revealed by rocket measurements, if the E-layer peak is above 105 km or the gradient is large, as when sporadic-E is present. The influence of the latitudinal variation of ionospheric field line integrated conductivities upon the amplitude and altitude of the EEJ peak is demonstrated.  相似文献   

12.
AE indices have been used to investigate, at times of increased geomagnetic activity, the possibility of significant changes to both spread-F occurerence and hF values for 3 stations in equatorial latitudes. The investigation covered a sunspot minimum period. Furthermore, data for each of these parameters have been considered for both a pre-midnight period (interval A) and a post-midnight period (interval B). The use of the AE indices at 12 different times at 2 h intervals allows the measurement of the delay times, after increased geomagnetic activity, of any significant changes in the parameters being investigated.The results show that for interval A significant suppressions of spread-F occurrence are recorded at delay times of approximately 3 h and 9 h. These delays correspond to enhanced geomagnetic activity at local times of 1800 and 1200, respectively. Also, for interval A the hF variations suggest that hF is suppressed at times of spread-F suppression. For interval B spread-F occurrence seems to be controlled by two opposing effects. For several hours after enhanced geomagnetic activity spread-F occurrence increases significantly, followed by a sharp decline culminating in suppressed occurrence, again related to increased geomagnetic activity at 1800 local time for the maximum effect. Also, for interval B hF values lift abruptly a few hours after enhanced geomagnetic activity, followed by a gradual decline when delays of up to 20 h are considered. Further work on these delays may allow reliable short-term forecasting of some ionospheric behaviour in equatorial regions.  相似文献   

13.
First results on the behaviour of thermospheric temperature over Kavalur (12.5°N, 78.5°E geographic; 2.8°N geomagnetic latitude) located close to the geomagnetic equator in the Indian zone are presented. The results are based on measurements of the Doppler width of O(1D) night airglow emission at 630 nm made with a pressure-scanned Fabry-Perot interferometer (FPI) on 16 nights during March April 1992. The average nighttime (2130-0430 IST) thermospheric temperature is found to be consistently higher than the MSIS-86 predictions on all but one of the nights. The mean difference between the observed nightly temperatures and model values is 269 K with a standard error of 91 K. On one of the nights (9/10 April 1992, Ap = 6) the temperature is found to increase by ~250 K around 2330 IST and is accompanied by a ‘midnight collapse’ of the F-region over Ahmedabad (23°N, 72°E, dip 26.3°N). This relationship between the temperature increase at Kavalur and F-region height decrease at Ahmedabad is also seen in the average behaviour of the two parameters. The temperature enhancement at Kavalur is interpreted as the signature of the equatorial midnight temperature maximum (MTM) and the descent of the F-region over Ahmedabad as the effect of the poleward neutral winds associated with the MTM.  相似文献   

14.
We have derived analytic expressions connecting the three plasma parameters namely hm, the height of the F2-peak; Nm, the peak density and Ym, the radius of curvature of the vertical profile at hm, which help us to explain certain features of the plasma distribution in the ionosphere. Although both Nm and TEC (total electron content) exhibit the equatorial anomaly in response to the fountain effect, TEC does not show a noon-time bite-out whereas Nm does. Moreover, we predict that the response of TEC towards the fountain effect is weaker than that of Nm, which we substantiate with simultaneous observations of Nm and TEC in the Indian zone. Thus we have shown that even one-dimensional analysis can explain those effects which are generally thought of as two-dimensional phenomena.  相似文献   

15.
Magsat data are re-examined with regard to the presence and character of fields due to the equatorial electrojet and meridional currents at dawn and dusk local times. Dip-latitude organized field variations at dawn are:
  • 1.(1) extremely weak,
  • 2.(2) extremely variable with longitude,
  • 3.(3) inconsistent with the pattern expected from a line or narrow sheet current.
It is shown that the use of Magsat dusk data can ‘contaminate’ a main field model, introducing apparent equatorial electrojet effects into the dawn data.Fields due to the equatorial electrojet and (presumably) associated meridional currents are clearly present in the dusk data. They show a variation with longitude which is apparently associated with the longitudinal variation of the strength, or square of the strength, of the main field in the E-region. Also evident is a variation with time of the year, although data are available for only a six month period. The meridional currents are generally minimum during January and February and maximum either during November and December or March and April, depending upon longitude. The E-region horizontal currents are minimum in November and December and maximum in March and April, except for − 30° to −90° longitude when the maximum occurs in January and February.Assuming that field gradients in local time are considerably smaller than field gradients in dip-latitude, current densities are estimated to be 1–3.6μA/m2 for the horizontal current at 110km and about 10–20 × 10−9 A/m2 for the vertical currents at 400km altitude. These results confirm and extend earlier results of Takeda and Maeda.Most models of the electrojet system in the literature disagree severely with these measurements either because their scope is inadequate or because of the wind system they assume. Those models which best describe the data invoke an eastward wind and/or an eastward electric field at dusk local time.  相似文献   

16.
The effects of composition and ionization fluxes on the diurnal variation of NmF2 at an equatorial anomaly zone station (Tahiti) are separated. The calculated diurnal variation of the fluxes agrees well with what would be expected from published equatorial E × B drift observations and global neutral wind models. A correlation analysis shows that lower hmF2 is often accompanied by larger NmF2, in spite of a much larger recombination rate. This illustrates the dominance of the fountain effect and neutral wind induced interhemispheric transport at this station.  相似文献   

17.
Cyclic diagrams, obtained by plotting the daily variation of the ionospheric electron density NmF2 against the height hmF2, are drawn for typical conditions at Slough (52°N) and Watheroo (30°S). Using the MSIS86 thermospheric model to relate the heights hmF2 to values of atmospheric pressure, the F2-peak is found to lie at nearly the same pressure-level at any given local time, over a wide range of geophysical conditions (season, solar cycle, magnetic disturbance). As local time varies, the pressure level corresponding to hmF2 varies in a way that is mainly determined by the local time variation of the thermospheric winds. This is verified for noon and midnight, using the MSIS86 model to compute the winds. The noon values of peak electron density (NmF2) are fairly consistent with theory (using values of solar ionizing flux as quoted in the literature), but with some discrepancies—particularly at sunspot maximum—that are probably due to uncertainties in chemical composition, or to the effects of vibrational excitation of molecular nitrogen. Overall, the analysis shows a remarkable consistency between ionospheric theory, the data and the MSIS model.  相似文献   

18.
The magnetic field expressions from the current ribbon and thick current versions of the continuous distribution of current density model and their merits have been presented. For the first time both the latitudinal and vertical parameters of the equatorial electrojet (EEJ) have been derived from the same set of data. The local noon and daytime means of certain key parameters of the EEJ are shown to be in good agreement with those from other sources. Selected local noon means include: peak current density jo, 10.58 ± 0.34 A/km2; peak current intensity jo, 224 ± 9 A/km; total eastward current I+, 74 ± 5 kA ; EEJ current focal distance w, 300 ± 5 km ; half thickness at half of peak current density p, 7.0 ± 0.1 km; peak westward current location xm, 5.13 ± 0.08° dip latitude; and EEJ latitudinal extent L1, 12 ± 1° dip latitude. The problem of model calculated landmark distances of EEJ being consistently shorter than observations, encountered by Onwumechiliet al. [J. geomagn. Geoelecl. 41, 443 (1989)] has been solved.  相似文献   

19.
A procedure is established to evaluate the Balmer excitation rates of Hα and Hβ to produce the corresponding volume emission rates versus height, using semi-empirical range relations of protons in air. The calculations are carried out with identified ion-energy particle spectra of the dayside aurora obtained by low altitude satellites. The calculated emission intensities of Hα and Hβ indicate that they are indeed observable by ground-based optical detection. Measurements of the dayside aurora from Nordlysstasjonen in Adventdalen, Svalbard, are discussed in relation to these calculations. Periodic bursts of auroral Hα and Hβ emissions are observed in the dayside aurora by ground-based photometers and spectrometers. The mean period between proton events is found to be 10 min on average. Furthermore, it is found that when the time between successive bursts decreases, the emission ratio of Hα and Hβ fluctuates indicating a step-like behaviour in the primary initial proton energy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号