首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We apply the geographically weighted regression to investigate spatial variability (nonstationarity) in the relationships between municipal operating expenditure (in total and for a separate component thereof) and the determinants of this expenditure, in South Africa. The empirical findings indicate that some of these relationships are spatially varying for the period under consideration. The global model (i.e., least square regression) cannot take account of the unequal environment in which South African municipalities operate. One implication of our findings is that a “one-size-fits-all” approach in the design of policies targeting municipal finances may not be appropriate for municipalities in South Africa, and indeed in other contexts in which such heterogeneity is found. Instead, policy formulation should explicitly consider relevant differences in local conditions.  相似文献   

2.
Geographically weighted regression (GWR) is a technique that explores spatial nonstationarity in data‐generating processes by allowing regression coefficients to vary spatially. It is a widely applied technique across domains because it is intuitive and conforms to the well‐understood framework of regression. An alternative method to GWR that has been suggested is spatial filtering, which it has been argued provides a superior alternative to GWR by producing spatially varying regression coefficients that are not correlated with each other and which display less spatial autocorrelation. It is, therefore, worthwhile to examine these claims by comparing the output from both methods. We do this by using simulated data that represent two sets of spatially varying processes and examining how well both techniques replicate the known local parameter values. The article finds no support that spatial filtering produces local parameter estimates with superior properties. The results indicate that the original spatial filtering specification is prone to overfitting and is generally inferior to GWR, while an alternative specification that minimizes the mean square error (MSE) of coefficient estimates produces results that are similar to GWR. However, since we generally do not know the true coefficients, the MSE minimizing specification is impractical for applied research.  相似文献   

3.
Biogeographical studies are often based on a statistical analysis of data sampled in a spatial context. However, in many cases standard analyses such as regression models violate the assumption of independently and identically distributed errors. In this article, we show that the theory of wavelets provides a method to remove autocorrelation in generalized linear models (GLMs). Autocorrelation can be described by smooth wavelet coefficients at small scales. Therefore, data can be decomposed into uncorrelated and correlated parts. Using an appropriate linear transformation, we are able to extend GLMs to autocorrelated data. We illustrate our new method, called the wavelet‐revised model (WRM), by applying it to multiple regression with response variables conforming to various distributions. Results are presented for simulated data and real biogeographical data (species counts of the plant genus Utricularia [bladderworts] in grid cells throughout Germany). The results of our WRM are compared with those of GLMs and models based on generalized estimating equations. We recommend WRMs, especially as a method that allows for spatial nonstationarity. The technique developed for lattice data is applicable without any prior knowledge of the real autocorrelation structure.  相似文献   

4.
Geographically weighted quantile regression (GWQR) has been proposed as a spatial analytical technique to simultaneously explore two heterogeneities, one of spatial heterogeneity with respect to data relationships over space and one of response heterogeneity across different locations of the outcome distribution. However, one limitation of GWQR framework is that the existing inference procedures are established based on asymptotic approximation, which may suffer computation difficulties or yield incorrect estimates with finite samples. In this article, we suggest a bootstrap approach to address this limitation. Our bootstrap enhancement is first validated by a simulation experiment and then illustrated with an empirical U.S. mortality data. The results show that the bootstrap approach provides a practical alternative for inference in GWQR and enhances the utilization of GWQR.  相似文献   

5.
The technique of geographically weighted regression (GWR) is used to model spatial 'drift' in linear model coefficients. In this paper we extend the ideas of GWR in a number of ways. First, we introduce a set of analytically derived significance tests allowing a null hypothesis of no spatial parameter drift to be investigated. Second, we discuss 'mixed' GWR models where some parameters are fixed globally but others vary geographically. Again, models of this type may be assessed using significance tests. Finally, we consider a means of deciding the degree of parameter smoothing used in GWR based on the Mallows Cp statistic. To complete the paper, we analyze an example data set based on house prices in Kent in the U.K. using the techniques introduced.  相似文献   

6.
Geographically Weighted Regression (GWR) is increasingly used in spatial analyses of social and environmental data. It allows spatial heterogeneities in processes and relationships to be investigated through a series of local regression models rather than a single global one. Standard GWR assumes that relationships between the response and predictor variables operate at the same spatial scale, which is frequently not the case. To address this, several GWR variants have been proposed. This paper describes a route map to decide whether to use a GWR model or not, and if so which of three core variants to apply: a standard GWR, a mixed GWR or a multiscale GWR (MS-GWR). The route map comprises 3 primary steps that should always be undertaken: (1) a basic linear regression, (2) a MS-GWR, and (3) investigations of the results of these in order to decide whether to use a GWR approach, and if so for determining the appropriate GWR variant. The paper also highlights the importance of investigating a number of secondary issues at global and local scales including collinearity, the influence of outliers, and dependent error terms. Code and data for the case study used to illustrate the route map are provided.  相似文献   

7.
The capabilities for visualization, rapid data retrieval, and manipulation in geographic information systems (GIS) have created the need for new techniques of exploratory data analysis that focus on the “spatial” aspects of the data. The identification of local patterns of spatial association is an important concern in this respect. In this paper, I outline a new general class of local indicators of spatial association (LISA) and show how they allow for the decomposition of global indicators, such as Moran's I, into the contribution of each observation. The LISA statistics serve two purposes. On one hand, they may be interpreted as indicators of local pockets of nonstationarity, or hot spots, similar to the Gi and G*i statistics of Getis and Ord (1992). On the other hand, they may be used to assess the influence of individual locations on the magnitude of the global statistic and to identify “outliers,” as in Anselin's Moran scatterplot (1993a). An initial evaluation of the properties of a LISA statistic is carried out for the local Moran, which is applied in a study of the spatial pattern of conflict for African countries and in a number of Monte Carlo simulations.  相似文献   

8.
One consequence of the expanding road network and its associated traffic is increased levels of traffic noise. While the hedonic literature has consistently found a negative relationship between real estate prices and noise levels, research in the United States has typically relied on crude measures of traffic noise. Here, we reduce the measurement error of traffic noise exposure through a detailed model of noise propagation over the landscape. We then estimate the hedonic relationship between noise and single family house prices using over 40,000 transactions throughout the St. Paul, Minnesota, urban area from 2005 to 2010. We implement spatially and temporally flexible local regression techniques and find significant nonstationarity in the hedonic function over time and space.  相似文献   

9.
In this paper we consider a crucial issue for survey archaeology: how we identify and make sense of the heterogeneous and often inter-dependent behaviours and processes responsible for apparent archaeological patterns across the landscape. We apply two spatial statistical tools, kriging and geographically weighted regression, to develop a model that addresses the spatial heterogeneity and spatial nonstationarity present in the pottery distributions identified by our intensive survey of the Greek island of Antikythera. Our modelling results highlight a clear spatial structure underlying different scales of pottery density as well as locally varying relationships between pottery densities and several environmental variables. This allows us to develop further testable hypotheses about long-term settlement and land-use patterns on Antikythera, including more explicit models of community organisation, and of the relationship between the island's geomorphological structure and its history of past human activity.  相似文献   

10.
One approach to dealing with spatial autocorrelation in regression analysis involves the filtering of variables in order to separate spatial effects from the variables’ total effects. In this paper we compare two filtering approaches, both of which allow spatial statistical analysts to use conventional linear regression models. Getis’ filtering approach is based on the autocorrelation observed with the use of the Gi local statistic. Griffith's approach uses an eigenfunction decomposition based on the geographic connectivity matrix used to compute a Moran's I statistic. Economic data are used to compare the workings of the two approaches. A final comparison with an autoregressive model strengthens the conclusion that both techniques are effective filtering devices, and that they yield similar regression models. We do note, however, that each technique should be used in its appropriate context.  相似文献   

11.
The stability of regression coefficients over the observation set (“regional homogeneity”) is typically assessed by means of a Chow test or within a seemingly unrelated regression (SUR) framework. When spatial error autocorrelation is present in cross-sectional equations the traditional tests are no longer applicable. I evaluate this both in formal terms as well as empirically. I introduce a taxonomy of spatial effects in models for structural instability, and discuss its implication for testing. I compare the performance of traditional tests, robust approaches, maximum-likelihood procedures and pretest techniques by means of a series of simple Monte Carlo experiments.  相似文献   

12.
In this simulation study, regressions specified with autocorrelation effects are compared against those with relationship heterogeneity effects, and in doing so, provides guidance on their use. Regressions investigated are: (1) multiple linear regression, (2) a simultaneous autoregressive error model, and (3) geographically weighted regression. The first is nonspatial and acts as a control, the second accounts for stationary spatial autocorrelation via the error term, while the third captures spatial heterogeneity through the modeling of nonstationary relationships between the response and predictor variables. The geostatistical‐based simulation experiment generates data and coefficients with known multivariate spatial properties, all within an area‐unit spatial setting. Spatial autocorrelation and spatial heterogeneity effects are varied and accounted for. On fitting the regressions, that each have different assumptions and objectives, to very different geographical processes, valuable insights to their likely performance are uncovered. Results objectively confirm an inherent interrelationship between autocorrelation and heterogeneity, that results in an identification problem when choosing one regression over another. Given this, recommendations on the use and implementation of these spatial regressions are suggested, where knowledge of the properties of real study data and the analytical questions being posed are paramount.  相似文献   

13.
Regression models are commonly applied in the analysis of transportation data. This research aims at broadening the range of methods used for this task by modeling the spatial distribution of bike-sharing trips in Cologne, Germany, applying both parametric regression models and a modified machine learning approach while incorporating measures to account for spatial autocorrelation. Independent variables included in the models consist of land use types, elements of the transport system and sociodemographic characteristics. Out of several regression models with different underlying distributions, a Tweedie generalized additive model is chosen by its values for AIC, RMSE, and sMAPE to be compared to an XGBoost model. To consider spatial relationships, spatial splines are included in the Tweedie model, while the estimations of the XGBoost model are modified using a geographically weighted regression. Both methods entail certain advantages: while XGBoost leads to far better values regarding RMSE and sMAPE and therefore to a better model fit, the Tweedie model allows an easier interpretation of the influence of the independent variables including spatial effects.  相似文献   

14.
ABSTRACT This paper advocates a spatial dynamic model that introduces technology diffusion, factor mobility, and structural change into the cross‐region growth regression. The spatial setting is derived from theory rather than spatial statistical tests. An application of this model to the study of cross‐province growth in China over the period 1980–2005 indicates that incomes are spatially correlated, which highlights the significance of technology diffusion and factor mobility. Furthermore, the integration of neoclassical growth empirics and the structural change perspective of development economics provide a much improved account of interprovincial variations in income levels and economic growth.  相似文献   

15.
Tobler’s first law of geography is widely recognized as reflecting broad empirical realities in geography. Its key concepts of “near” and “related” are intuitive in a univariate setting. However, when moving to the joint consideration of spatial patterns among multiple variables, the combination of attribute similarity and geographical similarity that underlies the concept of spatial autocorrelation is much harder to deal with. This article uses the notion of distance in multiattribute space to explore and visualize the connection between “near” and “related” in a multivariate context. We approach this from a global, local, and regional perspective. We outline a number of ways to combine different visualization techniques and introduce a new local neighbor match test for multivariate local clusters. We illustrate the methods by means of Guerry’s classic data set on moral statistics in 1833 France.  相似文献   

16.
Local statistics test the null hypothesis of no spatial association or clustering around the vicinity of a location. To carry out statistical tests, it is assumed that the observations are independent and that they exhibit no global spatial autocorrelation. In this article, approaches to account for global spatial autocorrelation are described and illustrated for the case of the Getis–Ord statistic with binary weights. Although the majority of current applications of local statistics assume that the spatial scale of the local spatial association (as specified via weights) is known, it is more often the case that it is unknown. The approaches described here cover the cases of testing local statistics for the cases of both known and unknown weights, and they are based upon methods that have been used with aspatial data, where the objective is to find changepoints in temporal data. After a review of the Getis–Ord statistic, the article provides a review of its extension to the case where the objective is to choose the best set of binary weights to estimate the spatial scale of the local association and assess statistical significance. Modified approaches that account for spatially autocorrelated data are then introduced and discussed. Finally, the method is illustrated using data on leukemia in central New York, and some concluding comments are made.  相似文献   

17.
The aim of this article is to find optimal or nearly optimal designs for experiments to detect spatial dependence that might be in the data. The questions to be answered are: how to optimally select predictor values to detect the spatial structure (if it is existent) and how to avoid to spuriously detect spatial dependence if there is no such structure. The starting point of this analysis involves two different linear regression models: (1) an ordinary linear regression model with i.i.d. error terms—the nonspatial case and (2) a regression model with a spatially autocorrelated error term, a so-called simultaneous spatial autoregressive error model. The procedure can be divided into two main parts: The first is use of an exchange algorithm to find the optimal design for the respective data collection process; for its evaluation an artificial data set was generated and used. The second is estimation of the parameters of the regression model and calculation of Moran's I , which is used as an indicator for spatial dependence in the data set. The method is illustrated by applying it to a well-known case study in spatial analysis.  相似文献   

18.
Spatial heterogeneity has been regarded as an important issue in space–time prediction. Although some statistical methods of space–time predictions have been proposed to address spatial heterogeneity, the linear assumption makes it difficult for these methods to predict geographical processes accurately because geographical processes always involve complicated nonlinear characteristics. An extreme learning machine (ELM) has the advantage of approximating nonlinear relationships with a rapid learning speed and excellent generalization performance. However, determining how to incorporate spatial heterogeneity into an ELM to predict space–time data is an urgent problem. For this purpose, a new method called geographically weighted ELM (GWELM) is proposed to address spatial heterogeneity based on an ELM in this article. GWELM is essentially a locally varying ELM in which the parameters are regarded as functions of spatial locations, and geographically weighted least squares is applied to estimate the parameters in a local model. The proposed method is used to analyze two groups of different data sets, and the results demonstrate that the GWELM method is superior to the comparative method, which is also developed to address spatial heterogeneity.  相似文献   

19.
Many existing models concerning locations and market areas of competitive facilities assume that customers patronize a facility based on distance to that facility, or perhaps on a function of distances between the customer and the different facilities available. Customers are generally assumed to be located at certain discrete demand points in a two-dimensional space, or continuously distributed over a one-dimensional line segment. In this paper these assumptions are relaxed by employment of a continuum optimization model to characterize the equilibrium choice behavior of customers for a given set of competitive facilities over a heterogeneous two-dimensional space. Customers are assumed to be scattered continuously over the space and each customer is assumed to choose a facility based on both congested travel time to the facility and on the attributes of the facility. The model is formulated as a calculus of variations problem and its optimality conditions are shown to be equivalent to the spatial customer-choice equilibrium conditions. An efficient numerical method using finite element technique is proposed and illustrated with a numerical example.  相似文献   

20.
A fundamental concern of spatial analysts is to find patterns in spatial data that lead to the identification of spatial autocorrelation or association. Further, they seek to identify peculiarities in the data set that signify that something out of the ordinary has occurred in one or more regions. In this paper we provide a statistic that tests for local spatial autocorrelation in the presence of the global autocorrelation that is characteristic of heterogeneous spatial data. After identifying the structure of global autocorrelation, we introduce a new measure that may be used to test for local structure. This new statistic Oi is asymptotically normally distributed and allows for straightforward tests of hypotheses. We provide several numerical examples that illustrate the performance of this statistic and compare it with another measure that does not account for global structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号