首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study characterizes the opacifiers and colouring agents used in the glazed bricks of Persepolis (mid‐first millennium bc ) and the Mannean site of Tepe Rabat in north‐western Iran (eighth to seventh centuries bc ). Various analytical studies show that lead antimonate and brizziite (NaSbO3) were used as the yellow and white opacifiers in the glazes of Persepolis and Tepe Rabat. Brizziite is shown to be incorporated in the white, green and turquoise glazes, and is also associated with lead antimonate and CaSb2O6 in some yellow and white opacifiers. The simultaneous formation of these opacifiers in one glaze might have been accidental. A possible connection between the Achaemenid glaze industry and the Mannean glaze production at Tepe Rabat is discussed.  相似文献   

2.
Inductively coupled plasma emission spectroscopy, reflectance spectroscopy and X‐ray diffraction were used to study seventh‐century AD glass fragments from the Crypta Balbi in Rome. All the samples were found to be silica‐soda‐lime glasses. Iron determines the colour of blue‐green, green and yellow‐green transparent glasses; chemical composition suggests deliberate addition of iron and/or manganese in about half the samples. Copper was found as the main colourant in red, pale blue and blue‐green opaque fragments; elemental copper acts as an opacifier in red glass, and calcium antimonate in white, pale blue and blue‐green glasses. Detection of antimony in transparent fragments suggests recycling of opaque mosaic tesserae.  相似文献   

3.
Since little is known about the cuerda seca technique, our aim has been to complete an initial analysis of 11th‐century cuerda seca by studying fragments from the 10th century (Pechina, Almería) and the 12th century (Mértola and Almería), so as to establish the diachronic evolution of this technique. Characteristics specific to cuerda seca ceramic glazes were investigated using scanning electron microscopy (SEM) and quantitative chemical analysis with energy‐dispersive X‐ray spectrometry (EDX). The chemical compositions of the different‐coloured glazes (green, black, yellow and white) have given us valuable indications about the evolution of the technique. The opacification mode and the firing process were also investigated. With the help of cathodoluminescence (CL) and the study of modern ‘cuerda seca’ glazed ceramics, new hypotheses regarding the number of firing stages, taking into account glaze and paste transformations and their interactions, are put forward.  相似文献   

4.
Eight sherds of ninth–tenth century ad Abbaesid blue‐and‐white glazed earthenware, excavated in 1931 at Hira in western Iraq, were analysed using, variously, quantitative wavelength‐dispersive spectrometry (WDS) and energy‐dispersive spectrometry (EDS) in association with scanning electron microscopes (SEM), and semi‐quantitative X‐ray fluorescence spectrometry (XRF). In order to compare the compositions of the cobalt pigments used, the glazes of seven complete vessels of eighth century ad Chinese Tang blue‐and‐white sancai were also analysed semi‐quantitatively using XRF. The Abbasid wares were shown to have used traditional Mesopotamian alkali–lime glazes applied to calcareous clay bodies. Half the glazes examined were opacified with tin oxide. Three types of blue decoration (i.e., raised; spreading; and flat, non‐spreading) were produced using a variety of formulations, including a mixture of cobalt pigment with lead oxide. The sources of the ores used for the cobalt pigments have not been identified. However, the analytical data showed that the cobalt ore used for the Abbasid blue‐and‐white ware could be distinguished from that used for the Tang blue‐and‐white sancai by its higher iron content and by the presence of a significant amount of zinc. The use of cobalt‐blue decoration on the ninth–tenth century ad Abbasid ware was anticipated in China by eighth century ad Tang blue‐and‐white sancai wares. However, whether its introduction by the Abbasid potters should be seen as an independent invention that followed the introduction of tin‐opacified glazes in Iraq, or whether it was influenced in some way by Chinese originals, is still unresolved.  相似文献   

5.
Fifteen fragments of glazed pottery were studied by scanning electron microscopy coupled with energy‐dispersive X‐ray analysis (SEM–EDS). The fragments, dated from between the 11th and the 12th centuries, are part of a group excavated at ancient Bust and Lashkar‐i Bazar (southern Afghanistan) and belonging to the International Museum of Ceramics in Faenza. All the samples are characterized by highly calcareous bodies, and all of them but one is coated with a transparent lead glaze; the last fragment is, instead, coated with a turquoise opaque lead–alkali glaze. With three exceptions, the studied fragments show underglaze decorations featuring white, red, green or black motifs applied on to a white, red or black engobe; one of the remaining glazes is applied on to a monochrome white slip and the other two directly on to the ceramic body. Optical microscopy and SEM images show that engobes and decorations were obtained by deposition of differently coloured clayey slips, the composition of which was characterized by EDS analyses. In particular, black engobes and decorative motifs were obtained by recourse to manganese and iron compounds or to chromium, magnesium and iron compounds; it appears that both possibilities could be exploited for obtaining different decorative motifs on the same object.  相似文献   

6.
Five sherds of green glazed pottery excavated at Canosa (Apulia) in Italy have been analysed by scanning electron microscopy. The aim of the investigation was to determine the chemical composition of the glazes and thus obtain information on the methods used in their production. The glazes were all of the high‐lead type, coloured green by the addition of copper. Intermediate layers, observed at the interface between the glaze and body and giving the appearance of an applied white slip, were the result of the crystallization of lead feldspar from the molten glaze. Non‐calcareous clays were used in the production of the pottery bodies. Concentration profiles from the glaze exterior to the body suggested that the glazes were produced by applying a suspension consisting of lead oxide plus silica to the bodies. On the basis of the glaze and body compositions, it is suggested that the Canosa glazed pottery was produced locally.  相似文献   

7.
In the Majiayao cultural stratum of the Lajia site in Minhe County, Qinghai Province, much earthenware of rich variety and strong character has been found, among which the most special item is a suspected glazed white ceramic fragment. This study investigates this ceramic sherd and many other overfired objects. Energy‐dispersive X‐ray fluorescence spectroscopy, scanning electron microscopy – energy‐dispersive X‐ray spectroscopy, X‐ray diffraction and thermodilatometry were employed to analyse the composition, microstructure, phase composition and firing temperature of the white ceramic. In addition to large condensed glaze droplets, the white ceramic showed a thin and uneven glaze layer, which might represent the earliest results of the exploration of glaze‐making technology by Lajia inhabitants, and provide a new perspective on the study of the origin of Chinese proto‐porcelains.  相似文献   

8.
Twenty‐five samples of Byzantine glazed pottery from two archaeological sites between Limassol and Paphos region (Cyprus), dated between the 12th and 15th century ad were studied using micro X‐ray fluorescence spectroscopy, scanning electron microscopy and X‐ray diffraction analysis. It was found that all the glazes contain lead, following the main manufacturing process of medieval pottery in the Mediterranean territory, while some of them contain tin, possibly for better opacity. Furthermore, it is shown that copper, iron and cobalt with nickel are responsible for the decoration colours. Finally, the application of principal component analysis revealed significant differentiation for some of the samples.  相似文献   

9.
EDS, X‐ray fluorescence, Raman spectroscopy, thermal expansion–shrinkage measurement and scanning electron microscopy were applied to determine the elemental components, structural phases and glazing temperatures of the transparent glazes, blue underglaze and overglaze tam thai (including gold‐like lustre) decorations from the 15th‐century Vietnamese porcelains/stonewares found at the Chu Ðâu–My Xa kiln site and in the Cù Lao Chàm (Hôi An) cargo. The ancient technology for colouring the glazes is discussed. The various blue tones in the underglazed décor result from cobalt‐containing manganese ore, with the intentional addition of iron oxide. The overglaze copper‐green and the gold‐like lustre were obtained by dispersing copper in lead‐based glass. The red colour was made using hematite dispersed in lead‐rich flux.  相似文献   

10.
A collection of ceramics from the Middle Ages found in Altilia and Terravecchia (the Saepinum area, Campobasso, Italy) were characterized by using different mineralogical analyses to investigate their provenance and production techniques. The body ceramic was investigated using Rietveld phase analysis of X‐ray powder diffraction patterns, X‐ray fluorescence spectrometry and scanning electron microscopy. The chemical compositions of the coatings were measured by scanning electron microscopy and their mineralogical compositions were determined using a particular technique of X‐ray small‐angle scattering (SAS) optimized for studies of thin films. Moreover, the material used for decoration was studied using micro‐Raman spectroscopy. The archaeometric results confirmed the distinction into two different ceramic classes, already individuated from archaeological analysis: the Altilia objects belong to the protomajolica class, whereas the objects from Terravecchia are RMR (ramina‐manganese‐red) ceramics. A comparison between the chemical and mineralogical compositions of good‐quality ceramic objects and those of waste products indicated local production of the ceramics. A sharp distinction was found in the chemical composition of the coatings: the Altilia products have tin‐opacified lead glazes, while the Terravecchia ones have transparent high‐lead glazes. Among the Altilia products, the unsuccessful process that produced a large quantity of discarded materials was attributed to the high lead content of the glazes. In fact, the principal advantage of the high lead content was to make the preparation and application of the glaze suspension easier, but the risk of reduction of lead oxide to metallic lead was greatly increased. Using micro‐Raman spectroscopy, the following minerals were identified as pigments: pyrolusite for the dark colour, malachite for green, lepidocrocite for yellow and hematite for red.  相似文献   

11.
Micro‐Raman spectroscopy and the laser‐induced transformation technique were used for systematic study of five coloured glazes on Saint John the Baptist (29 inch tondo), a majolica terracotta relief attributed to Luca Della Robbia and on permanent exhibit in The John and Mable Ringling Museum of Art. We suggest that ions in a lead silicate matrix, called ‘lead ultramarine’, could contribute to the famous Della Robbia blue colour, in addition to the effect of Co atoms as suggested previously by Pappalardo et al. (2004 ). The original yellow glaze contains lead(II) antimonate. The green is a mixture of the yellow and blue pigments, the brown contains hematite, and the white glaze contains tin dioxide as an opacifier. The use of lead oxide as a main fluxing agent is confirmed by laser‐induced micro‐crystallization.  相似文献   

12.
Three types of antimony‐based, opaque ceramic colours were used in the faience workshop of Le Bois d’Épense during the first decades of the 19th century; that is, yellow, tawny and green. Yellow is generated by lead antimonate crystals (Naples Yellow), which are incorporated into an uncoloured glass matrix. According to SEM–EDS measurements, these pigments contain iron. The tawny colour is the optical result of the combined presence of similar yellow, iron‐bearing lead antimonate particles in a Fe‐rich, brownish glass matrix. The green opaque colour is produced by the combination of a blue cobalt glass and yellow Pb–Sn–Fe‐antimonate crystals. Cores of zoned pigments lighten the recipes, according to which the pigments were produced. First, they were synthesized by calcination, ground and then mixed with a colourless, brown or blue glass powder. The resulting powder mixture was added to a liquid agent and used as high‐temperature ceramic colour.  相似文献   

13.
14.
Nineteen samples of medieval transparent‐glazed pottery and archaic majolica from Orvieto (central Italy) were studied. They were classified by archaeological criterion as follows: five transparent‐glazed fragments with green and brown decorations (first half of the 13th century), eight green transparent‐glazed fragments (13th century) and six tin‐glazed fragments with green and brown decorations (second half of the 13th century). SEM–EDX, XRD (the Rietveld method) and XRF were used to characterize the chemical and mineralogical compositions both of the bodies and the coatings. In all of the samples, the paste is Ca‐rich with CaO contents as high as 13–20 wt%. The mineralogical composition is compatible with a firing temperature of about 950°C, which is the typical temperature reached in a wood kiln. No difference was observed between the bodies of transparent‐ and tin‐glazed pottery. In the case of transparent glazes, the burial conditions lead to heavy weathering of the samples. However, on the basis of the analyses carried out in non‐weathered areas, the typical composition is PbO 55–65 wt%, SiO231–35 wt%. In tin glazes, the tin is scattered on the mass of the glaze as SnO2crystals with a concentration of 7–14 wt%. Concerning the decorations, it is established that the green colour is due to the presence of copper, while manganese is responsible for the brown colour. These pigments, which represent the typical colours of ‘archaic majolica’, are spread through the glaze homogeneously, apart from one case in which there is clear evidence of manganese oxide crystals.  相似文献   

15.
The aim of the present work is to characterize plasters from Ptolemaic baths recently discovered in front of the Karnak temple complex, by the excavations of an Egyptian–French team. The characterization was carried out by means of optical microscopy (OM), scanning electron microscopy (SEM) equipped with an energy‐dispersive X‐ray detector (EDS), X‐ray diffraction analysis (XRD) and Fourier transform infrared spectroscopy (FT–IR). The results allowed the identification of the chemical composition and structure of these plasters. In addition, samples of red, yellow, black and white pigments were examined and identified. The results helped in providing an image concerning some materials used during the Ptolemaic era in ancient Egypt.  相似文献   

16.
Lead-glazed pottery from the medieval workshop of Les Olleries Majors (Paterna, Spain) has been studied by Mössbauer spectroscopy, X-ray diffraction, X-ray fluorescence and optical spectroscopy. Yellow, brown and honey-coloured glazes occur on pots glazed on only one surface. They have virtually identical compositions and transmittance spectra, their apparent differences in colour are due to the colours of the underlying pastes. Yellow glazes occur on cream-coloured calcareous bodies, honey-coloured glazes occur on less calcareous bodies with some development of hematite, while brown glazes occur on red siliceous cooking-pots. Green glazes are found on pots glazed on both surfaces; the glazes trapped CO2 evolved by decomposing carbonates, resulting in an internal reducing environment. This caused the reduction of iron to the ferrous state which coloured the glaze green by diffusion.  相似文献   

17.
One hundred and seventy‐five glazed ceramics from Sasanian and Early Islamic period sites located on the Deh Luran Plain in southwestern Iran were examined by instrumental neutron activation analysis for characterizing differences in ceramic pastes and by laser‐ablation inductively coupled plasma mass‐spectrometry for identifying the constituents of the ceramic glazes. The results of the analysis reveal that alkaline‐based glazed ceramics have paste compositions that are distinct from contemporary and later ceramics decorated with alkaline–low‐lead and lead‐based glazes.  相似文献   

18.
Blue‐green mosaic and polychrome masks and funerary offerings from the royal tombs of Calakmul, Mexico, were analysed by scanning electron microscope equipped with energy dispersive X‐ray spectroscopy (SEM‐EDS), X‐ray diffraction (XRD), and particle induced X‐ray emission (PIXE). This led to the first identification of the use of veszelyite, a rare hydrated copper‐zinc phosphate, as green pigment. Analyses of a geological sample of this mineral have been done to confirm the characterization of this Mayan pigment, which might help determine pre‐Columbian trade routes of precious and luxury objects in the ancient Maya Classic period (ad 250–800).  相似文献   

19.
Tin‐based opacifiers (lead stannate yellow and tin oxide white) were first used in glass production for a short period in Europe from the second to the first centuries bc , and then again throughout the Roman and Byzantine Empires from the fourth century ad onwards. Tin oxide was also used in the production of Islamic opaque glazes from the ninth century ad , and subsequently in enamels applied to Islamic and Venetian glasses from the 12th century ad onwards. A selection of published analytical data for the tin‐opacified glasses, enamels and glazes is summarized, and the methods used in their production are reassessed. The phase transformations occurring when mixtures of lead oxide, tin oxide and silica are fired are investigated with high temperature X‐ray diffraction (XRD) using a synchrotron radiation source, and these results are used to explain the observed differences in the glass, enamel and glaze compositions. Possible reasons for the use of tin‐based opacifiers in the second to first centuries bc , and for the switch from antimony‐ to tin‐based opacifiers in the fourth century ad are suggested, and the possible contexts in which tin‐based opacifiers might have been discovered are considered. The introduction of tin‐opacified glazes by Islamic potters in the ninth century ad is discussed in terms of technological transfer or independent invention.  相似文献   

20.
This work characterizes both tanning and colouring materials found in ancient Egyptian leather objects from the Metropolitan Museum of Art. The analytical investigations focused on assessing the development of the technology of ancient tanners using high‐performance liquid chromatography (HPLC), surface‐enhanced Raman spectroscopy (SERS), X‐ray fluorescence (XRF), Fourier transform infrared spectroscopy (FT–IR), X‐ray radiography and a scanning electron microscope connected to an energy‐dispersive X‐ray detector (SEM–EDX). Reference leather samples and archaeological leather objects were investigated to identify the animal skin species and the early use of hydrolyzable vegetable tannins for leather tanning. Different methods were used to colour th leather, including madder dying and staining with hematite, or painting with Egyptian blue and Egyptian green.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号