首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small scale sub-auroral F-region irregularities were observed on 6–7 February 1984 by the two HF radars of the EDIA experiment while the EISCAT UHF system was scanning the ionosphere between 57° and 66° invariant latitude at a slightly different longitude. The bistatic EDIA system was mainly designed to detect the F-region irregularities at sub-auroral latitudes and to measure their perpendicular velocities. This paper is devoted to an examination of the morphology of the irregularity regions detected by the HF radars and of their production mechanisms, by comparison with the horizontal and vertical electron density profiles measured by EISCAT. It is shown that decametric irregularities observed at about 360–430 km height are not associated with any large scale horizontal density gradients in the F-region (350km). However, a strong north-south gradient observed at lower altitudes (150–200km), which is likely to indicate the southern boundary of the high energy particle precipitation zone, is well correlated with the strong scattering regions observed by the HF radars. The EISCAT electron temperature measurements at 350km height also show horizontal gradients which are well correlated with the small scale F-region irregularities. We discuss implications of these observations on the mechanisms of production of irregularities in the sub-auroral F-region.  相似文献   

2.
In continuation of an earlier study (Tanaka and Venkateswaran, 1982) of irregularities in middle latitude Es-layers, observations of multifrequency (4–64 MHz) echoes using an oblique incidence ionosonde and of Doppler spectra using a fixed frequency (25 MHz) radar are presented and discussed in this paper. The ionosonde observations are capable of being explained in terms of the linear theory of cross-field or gradientdrift instability which presumably generates the field-aligned irregularities. The Doppler shifts indicate predominant east-west rather than north-south apparent drift velocities. The widths of the Doppler spectra are rather large (~ 10 Hz). Several possible causes of the spectral broadening mechanisms are examined; it is suggested that turbulence broadening might be a contributing factor as in the case of the equatorial type II irregularities. It would appear from a preliminary examination of our data that the basic assumptions of the theory of turbulence broadening developed specifically for the equatorial case (Sudan and Keskinen, 1979) are more or less satisfied by middle latitude irregularities. More extensive and refined observations are, however, needed for establishing the existence and extent of middle latitude plasma turbulence.  相似文献   

3.
Until now the presence of F-region irregularities responsible for spread-F (sp-F) traces in ionograms has been considered as a purely night-time phenomenon extending sporadically to the early morning hours. We herein report that, on two occasions (26 March 1974 and 1 February 1984) similar irregularities were observed between 1400 and 1600 hours local time with the Jicamarca radar. These irregularities caused enhancements in the power of the radar echo of as much as two orders of magnitude, were found over a region of a few hundred kilometers on the topside of the F-region extending from around 600 to 1000 km altitude, and persisted for 1–2 h. The irregularities were aspect sensitive (aligned with the magnetic field) and produced echoes with a fading rate of the order of one to a few seconds. The background zonal electric field, inferred from the vertical drift velocity, was fairly constant in altitude, with values smaller than 0.1 mV m−1. During the duration of the events, zonal components of both signs occurred, with the component passing through zero several times. We have no information on the vertical component of E. These irregularities could not be observed with ground-based ionosondes, since they are on the topside of the F-region. They may be related to fossil bubbles that are responsible for HF ducting observed by satellites.  相似文献   

4.
Scintillation data from near Boston, U.S.A., and spread-F data from Argentine Islands, Antarctica are used to investigate the diurnal and seasonal variations of the simultaneous occurrence of medium-scale (~ 1–10 km) irregularities in the electron concentration in the F-region of the ionosphere at conjugate magnetic mid-latitude regions. It is found that these two stations near 52° CGL observe similar irregularity occurrence on ~75% of occasions at night when the data are considered on an hour by hour basis. During solstices, the relationship is dominated by occasions when irregularities are absent from both ends of the geomagnetic field lines; however, at equinoxes, periods of the simultaneous occurrence and non-occurrence of irregularities are approximately equally frequent. During periods of high geomagnetic activity, processes associated with the convection electric field and particle precipitation are likely to be important for the formation and transport of irregularities over these higher mid-latitude observatories. These processes are likely to occur simultaneously in conjugate regions. On days following geomagnetic activity, two processes may be operating that enhance the probability of the temperature-gradient instability, and hence lead to the formation of irregularities. These are the presence of stable auroral red arcs which occur simultaneously in conjugate locations, and the negative F-region storm effects whereby latitudinal plasma concentration gradients are increased; these effects are only similar in conjugate regions. During very quiet geomagnetic periods, F-region irregularities are occasionally observed, but seldom simultaneously at the two ends of the field lines. There is also an anomalous peak in the occurrence of irregularities over Argentine Islands associated with local sunrise in winter. No explanation is offered for these observations. Photo-electrons from the conjugate hemisphere appear to have no effect on irregularity occurrence.  相似文献   

5.
High frequency waves incident on an overdense ionosphere (i.e. HF < penetration frequency) are known to produce large-scale irregularities with scale sizes of several hundred meters in the F-region of the ionosphere. Three observations of radio star intensity fluctuations at UHF are reported for HF ionospheric modification experiments performed at the Arecibo Observatory. Two observations at 430 MHz and one observation at 1400 MHz indicate that the thin phase screen theory is a good approximation to the observed power spectra. However, the theory has to be extended to include antenna filtering. Such filtering is important for UHF radio star scintillations since the antenna usually has a narrow beam width. HF power densities of less than 37 μW m−2 incident on the ionosphere produce electron density irregularities larger than 13% of the ambient density (at 260 km) having scale sizes of ~510 m perpendicular to the geomagnetic field. The irregularities form within 20–25 s after the HF power is turned on. From the observed power spectra driftvelocities of the irregularities can be estimated.  相似文献   

6.
Standard riometer data from a southern auroral station were compared with ionograms obtained at five stations positioned from sub-auroral to equatorial latitudes. The rapid onset in riometer absorption, during intense substorm activities in an equinoctial period, was associated with a sequential propagation of ionospheric disturbances deduced from the F-region parameters h′F and range spread-F. The time shift between absorption maxima and extrapolated commencement times of the disturbances was consistent with the presence of large-scale travelling ionospheric disturbances (TIDs), propagating equatorwards with velocities lying typically in the range 600–900 m s−1, and with a median velocity of 720 m s−1. It is suggested that the onset of TIDs is associated with high-energy particle precipitation, manifested by the occurrence of auroral absorption events. Similarity of absorption increases at the southern and northern conjugate points, found from a previous riometer study, would indicate that large-scale TIDs are simultaneously generated in both hemispheres.  相似文献   

7.
RH-560 rockets instrumented with Langmuir probes were launched from SHAR, India (dip 11°N) for in-situ studies of electron density irregularities associated with equatorial spread-F (ESF) when the F-region plasma was drifting down and strong range spread-F was observed with an ionosonde at SHAR. A high variability was observed in the steepness of the base of the F-region. The bases were found to be steeper during the periods when the F-region plasma was drifting down. On one of the flights irregularities were observed in the region around 280 km where the gradients in electron density were downwards, indicating that the gradient drift instability is the main mechanism for their generation. Assuming a power law of the type Pkkn for irregularities of transitional scale (20–200 m), it was found that the spectral index n ranges between −1.5 and −4.6, when the mean integrated spectral power PT of the irregularities in the above scale size range varied from −45 to −12 db. A relationship between n and PT was observed and can be represented by a Gaussian function using the above expression; the altitude variation of n normalized for a PT value of −10 db showed that the nature of spectral index remains the same between 230 km and the apogee of the rocket. This is at variance with the observations of Kelley et al. [(1982), J. geophys. Res. 87, 1575] that 280 km is the threshold altitude for the steep drift wave type of spectra to a shallower spectra.  相似文献   

8.
An experiment is described for the routine study of scintillations and ionospheric irregularities at high-latitudes using NNSS satellites with additional coordinated observations by means of the EISCAT ionospheric radar facility. Early results, obtained during the development phase of the experiment, are presented of the power spectra of intensity fluctuations at 150 MHz observed at the equatorwards edge of the high-latitude irregularity zone. The spectra of 165 samples of night-time scintillation recorded during October 1982 to May 1983 show a spectral index with a mean value of −3.58 and a steepening of the spectral slope with increasing S4. Some examples of scintillation arising from irregularities at E-layer height show spectral indices of magnitude generally smaller than for F-region cases. A few spectra have been found with a clear break in spectral slope at around 10 Hz, suggesting two regimes for irregularities of different scale sizes.  相似文献   

9.
Measurements with a 25 MHz radar over Iioka, Japan show that field-aligned E-region irregularities occur mainly at night in association with Es-layers at an altitude range of about 100–110 km and drift predominantly westward with speeds of the order of 60 m s−1. These observed characteristics of the irregularities are shown to be in reasonable agreement with quantitative predictions of the gradient drift instability theory. The predictions are based on appropriate models for neutral air densities and temperatures, ionic composition and ionospheric electric fields and on available observations of electron density profiles of E- and sEs-layers.  相似文献   

10.
Using the measured Doppler spectra of the VHF backscatter radar signals from type II ionization irregularities in the equatorial electrojet (EEJ) at Thumba (dip. 56′S), the height profiles of the phase velocity Vp of the plasma waves in the EEJ are determined. It is shown that the east-west electrostatic field Ey in the EEJ can be deduced from the experimental height profiles of Vp using an appropriate model of ion and electron collision frequencies. The theoretical basis and the practical application of the method for deducing Ey are described. The usefulness of the method even when type I irregularities are present at the higher altitudes of the EEJ is demonstrated.It is shown that the collision frequencies of ions and electrons are likely to have a significant diurnal variation, which may be caused by diurnal variations of the neutral densities and temperatures in the E-region.  相似文献   

11.
12.
13.
Using the Doppler spectra of VHF radar signals, the height profiles of the phase velocity (Vp) of 2.7 m irregularities in the equatorial electrojet (EEJ) over Thumba (dip: 56′S) are obtained. The day-time east-west electric fields (Ey) are deduced by matching experimentally observed Vp profiles with theoretically deduced ones for a number of quiet and disturbed days. The experimental Ey values show: (i) a large day-to-day variability; (ii) a large decrease in the afternoon hours on some days (quiet and disturbed); (iii) the frequent presence of short period fluctuations with amplitudes of 30–50% of the background value and with typical time scales of 30–60 min, on moderately disturbed days (9 ⩽ Ap ⩽ 30); (iv) a significant decrease of the average Ey on disturbed days compared to that on quiet days during 0900–1200 h L.T.  相似文献   

14.
A high frequency radio Doppler experiment was deployed in the Antarctic Peninsula region, centred on Argentine Islands (65°15′S, 64°16′W; L = 2.3), to investigate the morphology and sources of ionospheric disturbances. The experiment consisted of a three-transmitter dual frequency network which permits horizontal and vertical propagation velocities to be estimated over a north-south baseline of 200 km and an east-west baseline of 100 km.A new class of ionospheric disturbance has been observed, in the period range 10 min−1 h. These disturbances are characterised by unusually good correlation between perturbations on all available Doppler signals, but are apparently non—propagating and occur simultaneously at each reflection point. Several of these events display large (2 Hz at about 5 MHz transmitted frequency) Doppler shifts, thus we have labelled them Large Simultaneous Disturbances (LSDs).Criteria for identification of LSDs are established and the analysis of one event is described in detail. The occurrence statistics of the LSDs are presented, including their seasonal and diurnal distributions.There is no clear general relationship between LSDs and local geomagnetic field perturbations. However, examination of the magnetic indices AE and IRC indicates that there is a loose association between the occurrence and amplitude of LSDs and magnetic activity.Several possible mechanisms for the generation of LSDs at middle latitudes are reviewed. The most likely explanation is that high latitude electric fields penetrate to magnetic middle latitudes and drive the ionospheric plasma via the E × B drift.  相似文献   

15.
Recent rocket and satellite measurements of equatorial F-region irregularities have been able to resolve wavelengths comparable to the meter-size sensitivities of the Jicamarca and Altair radar backscatter techniques. In a July 1979 rocket campaign at the Kwajalein Atoll, vertical profile measurements by ‘in situ’ plasma probes showed the F-region marked by a number of large scale plasma depletions, each having its own distribution of smaller scale irregularities and a trend toward a co-location of the more intense irregularities with positive gradients of larger scale features. Similar measurements on the S3-4 Ionospheric Irregularities Satellite have shown large scale depletions (1–3 orders of magnitude) with east-west asymmetries that point toward the western wall as the sight for the more intense plasma density fluctuations. The combined rocket and satellite measurements provide a two-dimensional model of macroscopic F-region depletions with small structures tending to develop more readily on the top and western boundaries. The model and associated power spectral analyses is in concert with a developing catalog of radar observations and the predictions of numerical simulations which employ the Rayleigh-Taylor instability as the primary mechanism for the generation of intermediate wavelength irregularities.  相似文献   

16.
Since the last equatorial aeronomy meeting in 1980, our understanding of the morphology of equatorial scintillations has advanced greatly due to more intensive observations at the equatorial anomaly locations in the different longitude zones. The unmistakable effect of the sunspot cycle in controlling irregularity belt width and electron concentration responsible for strong scintillation in the GHz range has been demonstrated. The fact that night-time F-region dynamics is an important factor in controlling the magnitude of scintillations has been recognized by interpreting scintillation observations in the light of realistic models of total electron content at various longitudes. A hypothesis based on the alignment of the solar terminator with the geomagnetic flux tubes as an indicator of enhanced scintillation occurrence and another based on the influence of a transequatorial thermospheric neutral wind have been postulated to describe the observed longitudinal variation.A distinct class of equatorial irregularities known as the bottomside sinusoidal (BSS) type has been identified. Unlike equatorial bubbles, these irregularities occur in very large patches, sometimes in excess of several thousand kilometers in the E-W direction and are associated with frequency spread on ionograms. Scintillations caused by such irregularities exist only in the VHF band, exhibit Fresnel oscillations in intensity spectra and are found to give rise to extremely long durations (~ several hours) of uninterrupted scintillations. These irregularities maximize during solstices, so that in the VHF range, scintillation morphology at an equatorial station is determined by considering occurrence characteristics of both bubble type and BSS type irregularities.The temporal structure of scintillations in relation to the in situ measurements of irregularity spatial structure within equatorial bubbles has been critically examined. A two-component irregularity spectrum with a shallow slope (p1 ~ 1.5) at long scalelengths (> 1km) and steep slope (p2 ~−3) at shorter scalelengths has been found in both vertical and horizontal spectra. Phase and intensity scintillation modelling was found to be consistent with this two-component irregularity spectrum.Finally, the information provided by the major experimental undertaking represented by Project Condor in the fields of night-time scintillations and zonal irregularity drifts with be briefly outlined.  相似文献   

17.
The Arecibo Initiative in Dynamics of the Atmosphere (AIDA) '89 was a multi-instrument campaign designed to compare various mesospheric wind measurement techniques. Our emphasis here is the comparison of the incoherent scatter radar (ISR) measurements with those of a 3.175 MHz radar operating a s an imaging Doppler interferometer (1131). We have performed further analyses in order to justify the interpretation of the long term IDI measurements in terms of prevailing winds and tides. Initial comparison of 14 profiles by Hines et al., 1993, J. atmos. terr. Phys. 55, 241–288, showed good agreement between the ISR and IDI measurements up to about 80 km, with fair to poor agreement above that altitude. We have compiled statistics from 208 profiles which show that the prevailing wind and diurnal and semidiurnal tides deduced from the IDI data provide a background wind about which both the IDI and ISR winds are normally distributed over the height range from 70 to 97 km. The 3.175 MHz radar data have also been processed using an interferometry (INT) technique [Van Baelen and Richmond 1991, Radio Sts. 26, 1209–1218] and two spaced antenna (SA) techniques [Meek, 1980, J. atmos. terr. Phys. 42, 837–839; Briggs. 1984, MAP Handbook, Vol. 13, pp. 166–186] to determine the three dimensional wind vector. These are then compared with the IDI results. Tidal amplitudes and phases were calculated using the generalized analysis of Groves, 1959, S. atmos. terr. Phys. 16, 344–356, historically used on meteor wind radar data. Results show a predominance of the diurnal S11 tidal mode in the altitude range 70–110 km, reaching a maximum amplitude 45 ms−1 at 95 km, with semidiurnal amplitudes being about 10–15 ms−1 throughout the height range considered. There is evidence of the two day wave in data from 86–120 km, with amplitudes on the order of 20 ms−1.  相似文献   

18.
F-region density depletions in the afternoon/evening sector of the auroral zone are studied with the EISCAT UHF radar. Four case studies are presented, in which data from three experiment modes are used. In each case the density depletion can be identified with the main ionospheric trough. For the two cases occurring in sunlit conditions the electron densities recovered significantly after the trough minimum. Tristatic ion velocity measurements show the development of poleward electric fields of typically 50–100 m Vm−1, which maximize exactly in the trough minimum. A special analysis technique for incoherent scatter measurements is introduced, based on the ion energy equation. By assuming that the ion temperature should obey this equation it is possible to fix this parameter in a second analysis and to allow the ion composition to be a free parameter. The results from two experiments with accurate velocity measurements indicate that the proportion of O+ near the F-region peak decreased from 100% in the undisturbed ionosphere to only 10% and 30%, respectively, in the density minimum of the trough. The loss of O+ is explained by the temperature dependence of recombination with nitrogen molecules. Temperatures derived from radar measurements are very sensitive to the assumed ion composition. For the above case of 10% O+ the deduced electron temperature in the trough was transformed from a local minimum of < 2000 K to a local maximum of 4000 K.  相似文献   

19.
In this paper, results and analyses of solar eclipse effects on the lower ionosphere are presented. After the first contact of the total eclipse on 16 February 1980, an absorption increment of 12 dB was observed. At the same time, the frequency of amplitude fading increased largely and Doppler frequency shift disturbances appeared. The calculation of signal strength is carried out by means of Booker's scattering theory, supposing an outer scale To = 1000 m and an inner scale Ti = 5 m, of space scale spectrum of field-aligned irregularities in the equatorial E-region. The calculated results agree fairly well with observations. Results showed that, because of the formation of lower ionospheric field-aligned irregularities in the course of the obscuration of solar local ionization source, radio wave scattering was strengthened.  相似文献   

20.
In order to investigate the particles which produce the polar cap aurora at the Vostok station in Antarctica, charged particle data obtained by the DMSP satellites for some days in a period from April to August 1985 were surveyed. Due to the satellite orbit the local time range in which the data were available was the morning sector. For all the events when sun-aligned arcs were observed on the ground the simultaneous DMSP measurements on almost the same field line showed an increased integral number flux J. > 108 (cm8/s/sr)−1 of the precipitating electrons with energy Ee > 200 eV. The electron spectra with double peaks are typical of intense electron precipitation in the polar cap arcs. The most noticeable feature of ion spectra in the polar cap arcs is the prominent minimum in ion flux in the energy range 0.1 < Ei < 1 keV in contrast with the oval precipitation ; this feature gives the possibility to separate the polar arcs from the aurora in the oval. In some events the satellite crossed the system of two widely separated arcs ; one of them was a sun-aligned arc whereas the other was circular at constant latitude according to the Vostok data. The analysis of the DMSP electron and ion precipitation data has shown that in these events the latitude-oriented arcs are located in the polar cap and not in the auroral oval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号