首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The quiet night-time E-region at high latitudes has been studied using the EISCAT UHF radar. Data from three subsequent nights during a long period of low magnetic activity are shown and typical features of electron density are described. The background electron density is observed to be 5·109 m−3 or smaller. Two types of enhancements above this level are observed ; one is due to charged particle precipitation associated with the F-region trough and the other is composed of sporadic-E layers due to waves in the neutral atmosphere. The sporadic-E is observed to exist almost continuously and to exhibit a regular diurnal behaviour. In addition to the typical afternoon and morning sequential layers, a third major descending layer is formed at night after the passage of the F-region trough The afternoon layer disappears simultaneously with the enhancement of the northward trough-associated electric field and the night-time layer appears at high altitudes after the field has again been reduced to a small value. It is suggested that metal ions from low altitudes are swept by the electric field to the upper E-region where they are again compressed to the night-time layer. A set of steeply descending weaker layers, merging to the main night-time layer are also observed. These layers are most probably caused by atmospheric gravity waves. Theoretical profiles for molecular ions indicate that the strongest layers are necessarily composed of metal ions but, during times when the layers are at their weakest, they may be mainly composed of molecular ions.  相似文献   

2.
F-region density depletions in the afternoon/evening sector of the auroral zone are studied with the EISCAT UHF radar. Four case studies are presented, in which data from three experiment modes are used. In each case the density depletion can be identified with the main ionospheric trough. For the two cases occurring in sunlit conditions the electron densities recovered significantly after the trough minimum. Tristatic ion velocity measurements show the development of poleward electric fields of typically 50–100 m Vm−1, which maximize exactly in the trough minimum. A special analysis technique for incoherent scatter measurements is introduced, based on the ion energy equation. By assuming that the ion temperature should obey this equation it is possible to fix this parameter in a second analysis and to allow the ion composition to be a free parameter. The results from two experiments with accurate velocity measurements indicate that the proportion of O+ near the F-region peak decreased from 100% in the undisturbed ionosphere to only 10% and 30%, respectively, in the density minimum of the trough. The loss of O+ is explained by the temperature dependence of recombination with nitrogen molecules. Temperatures derived from radar measurements are very sensitive to the assumed ion composition. For the above case of 10% O+ the deduced electron temperature in the trough was transformed from a local minimum of < 2000 K to a local maximum of 4000 K.  相似文献   

3.
Changes in total electron content during magnetic storms are compared at stations with similar geographic and geomagnetic latitudes and eastward declinations in the northern and southern hemispheres.Mean patterns are obtained from 58 storms at ±35° and 28 storms at ± 20° latitude. The positive storm phase is generally larger (and earlier) in the southern hemisphere, while negative storm effects are larger in the north. These changes reduce the normal asymmetry in TEC between the two hemispheres. Composition changes calculated from the MSIS86 atmospheric model agree well with the maximum decreases in TEC in both seasons (when changes in the F-layer height are ignored). Recovery occurs with a time constant of about 35 h; this is 50% longer than in the MSIS86 model. There is a marked diurnal variation at 35°S, with a rapid overnight decay and enhanced values of TEC in the afternoon. This pattern is inverted (and weaker) at 35°N, where night-time decay is consistently slower than on undisturbed nights. These results require a diurnal change in composition of opposite sign in the two hemispheres, or enhanced westward winds at night changing to eastward near sunrise. There is some evidence for both these mechanisms. Following a night-time sudden commencement there is a large annual effect with daytime TEC increasing for storms near the June solstice and decreasing near December. Storms occurring between November and April tend to give large, irregular increases in TEC for several days, particularly at low latitudes. In summer and winter at both stations, the mean size of the negative phase does not increase for storms with Kp> 6. The size of the positive phase is proportional to the size of the change in ap in winter, while in summer a positive phase is seen only for the larger storms.  相似文献   

4.
This paper discusses the results from four rocket experiments conducted from Thumba, India, during the Indian Middle Atmosphere programme (IMAP). These rockets carried instrumented Gerdien Condenser payloads to measure ion densities and their mobilities. In the first two flights only positive ion measurements were attempted while the other two measured both positive and negative ion values. The results show that the positive ion density profiles go through a minimum around 62 km, as expected from the ion production models for this region. The ion density distribution is a function of solar zenith angle. An asymmetry with respect to noon is seen in these measurements, which is not expected theoretically. The positive ion mobilities indicate the ions to be water clusters, of the type H+ (H2O)n with n = 2 or 3, similar to the earlier reported ones. The negative ion density profile exhibits a maximum around 85 km, which is not predicted by the currently available ion density models and theories of D-region ionisation processes. The negative ion mobility measurements show the ions to have a mass range of 30–60 amu, which is within the range of mass spectrometric measurements.  相似文献   

5.
The POGO electrojet data have been analysed for the winter and summer solstitial seasons of the two years, 1968 and 1969, respectively. Our analysis yielded a very large number of values (about 432), each of the electrojet half width, w, its peak current intensity, J0, and its total eastward current, I+, at 0900–1400 LT in December, and at 1000–1500 LT in June solstitial seasons, respectively. The all-longitude daytime values of the parameters are 246 ± 48 km for w,216 ± 60 A km−1 for J0, and (58 ± 8) × 103A for I+, in December of 1968 and 218 ± 19 km for w, 187 ± 20 A km−1 for J0, and (45 ± 3) × 103 A for I+, in June of 1969, respectively. We therefore present a diurnal study covering the entire Earth, in which for the first time, morning data earlier than 1000 LT are incorporated in the analysis. This has enabled us to chart a clearer picture of the temporal variations of electrojet parameters at two different solstices. This shows that all of the three parameters vary substantially with local time, in such a manner that J0 and I+ attain maximal values around local noon, while w is a minimum then, and therefore confirms the finding of Agu and Onwumechili.  相似文献   

6.
The flux of ionisation at 850 km height is calculated using the MSIS atmospheric model, a simplified form for the continuity equation at the peak of the F2-layer, and observed values of NmF2. Results are given for stations at latitudes of 32°N, 21°N, 21°S and 37°S during 1971 and for Tahiti (18°S) in 1980. Changes in the neutral atmosphere and in the hmF2 model have minor effects at low latitudes, where the fluxes are larger, but can appreciably alter the results at mid latitudes. Increased recombination due to N2 vibrational excitation produces a large afternoon decrease in NmF2 in summer, near solar maximum, and an increased downward flux. At all stations the day-time flux has a much larger downward component in winter than in summer. Because of the eastward magnetic declination, zonal winds produce opposite effects on the diurnal variations of hmF2, NmF2 and flux in the northern and southern hemispheres. Downward fluxes are largest in the morning in the southern hemisphere and in the late afternoon and evening in the north. At ± 21° latitude, neutral winds have a major effect on the distribution of ionisation from the equatorial fountain. Thus, at the solstices the day-time flow is about 4 times larger in winter than in summer. Averaged over both hemispheres, the total flow at 21° latitude is approximately the same for solstice and equinox conditions. At mid latitudes there is a downwards flux of about 1–2 × 1012 m2 s−1 into the night ionosphere.  相似文献   

7.
A three-dimensional simulation of the high-latitude ionosphere was applied to investigate the geographical distribution of E-region thin ionization layers which may be formed by the action of the convection electric field. The simulation model computes the ion densities (O+, O+2, N+, N+2, NO+, Fe+), and temperatures as a function of altitude, latitude, and longitude. The stationary state momentum and continuity equations are solved for each ion species, then the energy equation is solved for electrons, neutrals, and a generic ion having the mean ion mass and velocity. The various electric field patterns of the Heppner and Maynard [(1987) J. geophys. Res.92, 4467–4489] convection electric field model were applied and the ionization density pattern was examined after a time sufficient for the formation of thin layers (≈2000 s). It was found that large areas of thin ionization layers were formed for each of the electric field patterns examined. Southward IMF Bz conditions resulted in thin layers forming in the pre-midnight sector in the latitude range north of about 70° to about 80°, and after midnight between 60 and 70°. For northward Bz conditions, the layers were mainly in the pre-midnight sector and covered a latitude range from about 60 to 80°.  相似文献   

8.
A study has been made of data taken with EISCAT using the Common Program CP-3-C (F-region meridian scan) which shows that regions of enhanced ion temperature (in excess of 3000K at all three EISCAT stations) are found on most days when Kp exceeds 2 or 3, usually accompanied by ion drift velocities of more than 1 km s−1. These periods are often accompanied by anisotropy of the ion temperature and abnormally low apparent electron temperature, consistent with the presence of a non-Maxwellian ion velocity distribution such as would result from large but not exceptional ion drifts. Data for a selected period have been fitted using theoretical ion velocity distributions based on the relaxation collision model and assuming that the ion composition is 100% O+. The results confirm the presence of non-Maxwellian distributions, but a detailed comparison with theory reveals some discrepancies, indicating that the analysis may need to be extended to include effects due to, for example, molecular ions and instabilities.  相似文献   

9.
Ionospheric data from three incoherent scatter stations over the height range 225–450 km were studied for all daylight hours over a wide range of solar conditions. The relationship between electron temperature Te, electron density Nand solar flux at 10.7 cm wavelength S10.7 was expressed as Te = AB·(N−5 × 1011) + C·(S10.7−750), where N is in units of m−3 and S10.7 in kJy.This provided a very satisfactory expression for all data taken at Malvern and St. Santin between 0800 and 1600 LT. For data taken at Arecibo, however, the linearity broke down at low electron densities. The data from all three stations were therefore divided into two sets according to electron density and reexamined.ForN < 5 × 1011 m−3 B increased steadily with height and decreased steadily with latitude.For N > 5 × 1011 m−3 B did not appear to vary with height, with season or with latitude. C was approximately constant for all sets of data.The different mechanisms involved in the heat balance of the electron population are discussed and a qualitative explanation for the relationship is proposed.  相似文献   

10.
On the evening of 13 January 1983 we made simultaneous observations of optical and radar aurora using low light television cameras together with the EISCAT radar system. At 19 h 16 m 06 s UT an extremely bright auroral arc moved rapidly (about 2 km s−1) through the EISCAT radar beam. The associated rapid rise and fall in the E-region electron density indicates that there was an intense narrow electron beam associated with the optical arc. We estimate that the ionisation rate in the E-region increased at least 20-fold (from 1 × 1010 m−3 s−1 to >2 x 1011 m−3 s−1) for 1 or 2 s as the arc passed by. In addition, there was a brief (<4 s) increase of 130% in the signal returned from 250 km altitude which coincided with the arc crossing the radar beam at that height. In view of this coincidence, we find that a possible explanation is that the increase arose from short-lived molecular ions, for example vibrationally excited N+2 ions, produced in the F-region by soft precipitation associated with the arc.  相似文献   

11.
Theoretical and experimental work since 1970 is summarized. Mid-latitude sporadic-E is most likely due to a vertical shear in the horizontal east-west wind and this theory accounts for the detailed observations of the wind and electron density profiles. Preferred heights of sporadic-E are separated by about 6km and descending layers are often seen moving down with velocities in the range 0.6–4 ms. Sometimes sporadic-E layers are very flat and uniform, and at other times form clouds of electrons 2–100km in size moving horizontally at 20–130 ms−1. Sporadic-E is probably not correlated with meteor showers; this is a rather surprising result since the ions are meteor debris.The major problems with windshear theory are to account for the dramatic seasonal variation and, to a lesser extent, for the geographical and diurnal distributions.The Q-type equatorial sporadic-E appears to be due to the gradient instability. There is a very much smaller amount of new experimental data available in this area.  相似文献   

12.
A survey is presented of the occurrence of strong ionospheric sporadic-E for South Pacific ionosonde stations covering a period of many years. The seasonal characteristics indicate the presence of strong non-solar effects with, for example, subtropical data showing strong afternoon enhancements of Es activity in the autumn.  相似文献   

13.
We discuss in this paper sudden sodium layers (SSLs), which we observe with a sodium lidar instrument at Andenes, Norway (69°N). We speak of a SSL if, in a narrow altitude range (typically less than 2km), the Na density increases over the normal Na density by a factor of at least 2 within 5 min. Between December 1985 and November 1987, we have observed 42 such layers in 378 h of lidar measurements. This number increases to 75 if we only require an increase of a factor of 1.5 within 8 min. At our observation site, SSLs have the following properties: (a) they develop between 90 and 110 km altitude, (b) they develop between 20 and 02 LT, (c) their appearance shows a strong, positive correlation with that of ƒ-type Es layers, and (d) their appearance does not show a strong correlation with either riometer absorption or meteor showers. We discuss a number of potential processes for SSL formation. SSLs above 100km can be formed in ƒ-type Es layers by the conversion of Na+ ions into neutral Na. The development of SSLs below 95 km requires the presence of an additional reservoir of Na, such as Na-bearing molecules, ions, and/or ‘smoke’ particles. We also evaluate the proposal that SSLs are the outcome of single meteoroids entering the upper atmosphere, a proposition for which we find little observational support.  相似文献   

14.
Using the measured Doppler spectra of the VHF backscatter radar signals from type II ionization irregularities in the equatorial electrojet (EEJ) at Thumba (dip. 56′S), the height profiles of the phase velocity Vp of the plasma waves in the EEJ are determined. It is shown that the east-west electrostatic field Ey in the EEJ can be deduced from the experimental height profiles of Vp using an appropriate model of ion and electron collision frequencies. The theoretical basis and the practical application of the method for deducing Ey are described. The usefulness of the method even when type I irregularities are present at the higher altitudes of the EEJ is demonstrated.It is shown that the collision frequencies of ions and electrons are likely to have a significant diurnal variation, which may be caused by diurnal variations of the neutral densities and temperatures in the E-region.  相似文献   

15.
The previous dynamical, computer simulation model of the ionosphere at low latitudes of Chan H. F. and Walker G. O. (1984a, J. atmos. terr. Phys. 46, 1103; 1984b, J. atmos. terr. Phys. 46, 1113) has been modified to (1) include photoionization of molecular species NO+, N2+ and O2+ below 300km, (2) decouple the ionization and wind calculations below 180 km and (3) expand the geographical coverage to 46°N-30°S latitude. The first two modifications improved the model stability and the latter reduced the effect of the lateral boundaries on the equatorial anomaly. Results are presented for the representative seasonal months of January, April and July for East Asia, during solar minimum, comprising latitudinal-local standard time (120°E) contour plots of (1) the atmospheric pressure, (2) the computed meridional wind at 300 km, (3) the foF2 and (4) hmF2, together with latitudinal profiles of foF2 and NT (electron content) showing the daytime development and nighttime decay of the equatorial anomaly.Comparisons have been made between the computer simulations and various experimental measurements of foF2, M(3000) F2 and NT obtained in East Asia during periods of low solar activity. Most of the gross features of the development and decay of the equatorial anomaly at the various seasons were reproducible by the model simulations, the best agreement occurring for the equinoctial month of April.  相似文献   

16.
A modelling study has been carried out of field-aligned ion flows in the topside ionospheres of conjugate hemispheres under solstice conditions at mid to low latitudes. In the model calculations coupled time-dependent O+, H+ and electron continuity, momentum and heat balance equations are solved along dipole magnetic field lines at L = 1.5 and 3.0 Sunspot medium and sunspot minimum atmospheric conditions are considered.It has been found that thermal coupling between conjugate hemispheres gives rise to strong flows of O+ in the topside ionosphere of the summer hemisphere that are directed upwards at conjugate sunrise and directed downwards at conjugate sunset. At conjugate sunrise in the winter hemisphere there is a small upward-directed signature in the O+ field-aligned flux; there is no observable signature in the O+ field-aligned flux in the winter hemisphere at conjugate sunset. There are strong upward and downward flows of O+ at local sunrise and local sunset, respectively, in both the summer and winter hemispheres.At both L = 1.5 and 3.0 the 24 h time-integrated interhemispheric H+ flux is in the direction summer hemisphere to winter hemisphere. At L = 1.5 its magnitude is in good agreement with the magnitude of the 24 h time-integrated plasma (O+ + H+) field-aligned flux at 1000 km altitude; there are no such agreements at L = 3.0.A study of the roles played by the individual terms of the O+ momentum equation has demonstrated the complex structure of momentum balance. Certain of the terms may be orders of magnitude greater than the combined total of the individual terms, i.e. the O+ field-aligned flux.  相似文献   

17.
The magnetic field expressions from the current ribbon and thick current versions of the continuous distribution of current density model and their merits have been presented. For the first time both the latitudinal and vertical parameters of the equatorial electrojet (EEJ) have been derived from the same set of data. The local noon and daytime means of certain key parameters of the EEJ are shown to be in good agreement with those from other sources. Selected local noon means include: peak current density jo, 10.58 ± 0.34 A/km2; peak current intensity jo, 224 ± 9 A/km; total eastward current I+, 74 ± 5 kA ; EEJ current focal distance w, 300 ± 5 km ; half thickness at half of peak current density p, 7.0 ± 0.1 km; peak westward current location xm, 5.13 ± 0.08° dip latitude; and EEJ latitudinal extent L1, 12 ± 1° dip latitude. The problem of model calculated landmark distances of EEJ being consistently shorter than observations, encountered by Onwumechiliet al. [J. geomagn. Geoelecl. 41, 443 (1989)] has been solved.  相似文献   

18.
Ion velocities perpendicular and parallel to the geomagnetic field have recently been deduced by Smith et al. from bistatic measurements at 71° geomagnetic latitude in the afternoon sector. The results of this experiment include large (>400 m s−1) downward ion velocities parallel to the magnetic field that persist for hours, small (100 m s−1) ion velocities perpendicular to the magnetic field and electron density profiles with extremely narrow full-width at half-maximum. The explanation of these results was that the ionospheric flux tubes observed were near the terminator, and thus, sunlit at the top and in darkness at the bottom. The difference in production between the top and bottom of the flux tube creates an excess of ions at the top, which rapidly diffuse downwards. A three-dimensional, time-dependent model of the ionosphere has been used to test this explanation. Numerical experiments were performed to determine upper limits for the downward ion velocity. Assuming reasonable vertically-induced ion drifts due to either neutral winds or plasma convection, these upper limits were substantially smaller than the measurements. The location of the terminator was found to contribute a maximum of about 60 m s−1 to the vertical ion velocity due to diffusion in a partially illuminated flux tube. In an attempt to explain the narrow density profiles without invoking an additional ionization source, the downward force in the model was arbitrarily increased, as would occur due to parallel electric fields in the ionosphere. Since the interpretation of these measurements as large field-aligned flows seems untenable by a model thought to be consistent with the currently accepted physics of the atmosphere, an alternate hypothesis is presented. If the common volume measurement is made in a region of O+ precipitation, then the line profile would not be Doppler shifted when viewed off-zenith. Therefore, the field-aligned velocities would be small, and the narrow width of the profiles would be due to enhanced electron densities in an O+ arc.  相似文献   

19.
A new nine-position experiment is now routinely carried out with the Millstone Hill incoherent scatter radars which allows estimation of spatial gradients in the measured ionospheric scalar parameters Ne, Te, and Ti, and in the components of the ion velocity vector vi. Use of this technique results in improved estimates of basic and derived parameters from incoherent scatter data at times of significant gradients. We detail the data analysis method and present the first results from this new experiment. The gradients in Ne and in the components of vi are used to compute the motion term in the ionospheric F region continuity equation ▿ · (Nv), which is then combined with ∂N/∂t to estimate the O+ recombination rate β at night. Meridional neutral winds Umer are computed from the field-aligned ion velocity v and a calculation of the O+ diffusion velocity vd, and it is found that horizontal gradients in the ion velocity field at times significantly affect the calculation of the neutral winds.  相似文献   

20.
We compare the DE-2 electric field measurements used by Heppner and Maynard [(1987) J. geophys. Res.92, 4467] to illustrate strongly distorted, BC convection patterns for IMF Bz > 0 and large |By|, with simultaneous detections of particle spectra, plasma drifts and magnetic perturbations. Measured potentials >50 keV, driven by the solar wind speeds exceeding 500 km/s, are greater than published correlation analysis predictions by up to 27%. The potential distributions show only two extrema and thus support the basic conclusion that under these conditions the solar wind/IMF drives two- rather than fourcell convection patterns. However, several aspects of the distorted two-cell convection pattern must be revised. In addition to the strong east-west convection in the vicinity of the cusp, indicated by Heppner and Maynard, we also detect comparable components of sunward (equatorward) plasma flow. Combined equipotential and particle precipitation distributions indicate the presence of a lobe cell embedded within the larger, afternoon reconnection cell. Both types rotate in the same sense, with the lobe cell carrying 20–40% of the total afternoon cell potential. We detected no lobe cell within morning convection cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号