首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerical simulations of multiphase CO2 behavior within faulted sandstone reservoirs examine the impact of fractures and faults on CO2 migration in potential subsurface injection systems. In southeastern Utah, some natural CO2 reservoirs are breached and CO2‐charged water flows to the surface along permeable damage zones adjacent to faults; in other sites, faulted sandstones form barriers to flow and large CO2‐filled reservoirs result. These end‐members serve as the guides for our modeling, both at sites where nature offers ‘successful’ storage and at sites where leakage has occurred. We consider two end‐member fault types: low‐permeability faults dominated by deformation‐band networks and high‐permeability faults dominated by fracture networks in damage zones adjacent to clay‐rich gouge. Equivalent permeability (k) values for the fault zones can range from <10?14 m2 for deformation‐band‐dominated faults to >10?12 m2 for fracture‐dominated faults regardless of the permeability of unfaulted sandstone. Water–CO2 fluid‐flow simulations model the injection of CO2 into high‐k sandstone (5 × 10?13 m2) with low‐k (5 × 10?17 m2) or high‐k (5 × 10?12 m2) fault zones that correspond to deformation‐band‐ or fracture‐dominated faults, respectively. After 500 days, CO2 rises to produce an inverted cone of free and dissolved CO2 that spreads laterally away from the injection well. Free CO2 fills no more than 41% of the pore space behind the advancing CO2 front, where dissolved CO2 is at or near geochemical saturation. The low‐k fault zone exerts the greatest impact on the shape of the advancing CO2 front and restricts the bulk of the dissolved and free CO2 to the region upstream of the fault barrier. In the high‐k aquifer, the high‐k fault zone exerts a small influence on the shape of the advancing CO2 front. We also model stacked reservoir seal pairs, and the fracture‐dominated fault acts as a vertical bypass, allowing upward movement of CO2 into overlying strata. High‐permeability fault zones are important pathways for CO2 to bypass unfaulted sandstone, which leads to reduce sequestration efficiency. Aquifer compartmentalization by low‐permeability fault barriers leads to improved storativity because the barriers restrict lateral CO2 migration and maximize the volume and pressure of CO2 that might be emplaced in each fault‐bound compartment. As much as a 3.5‐MPa pressure increase may develop in the injected reservoir in this model domain, which under certain conditions may lead to pressures close to the fracture pressure of the top seal.  相似文献   

2.
The Upper Triassic Mercia Mudstone is the caprock to potential carbon capture and storage (CCS) sites in porous and permeable Lower Triassic Sherwood Sandstone reservoirs and aquifers in the UK (primarily offshore). This study presents direct measurements of vertical (kv) and horizontal (kh) permeability of core samples from the Mercia Mudstone across a range of effective stress conditions to test their caprock quality and to assess how they will respond to changing effective stress conditions that may occur during CO2 injection and storage. The Mercia samples analysed were either clay‐rich (muddy) siltstones or relatively clean siltstones cemented by carbonate and gypsum. Porosity is fairly uniform (between 7.4 and 10.7%). Porosity is low either due to abundant depositional illite or abundant diagenetic carbonate and gypsum cements. Permeability values are as low as 10?20 m2 (10nD), and therefore, the Mercia has high sealing capacity. These rocks have similar horizontal and vertical permeabilities with the highest kh/kv ratio of 2.03 but an upscaled kh/kv ratio is 39, using the arithmetic mean of kh and the harmonic mean of kv. Permeability is inversely related to the illite clay content; the most clay‐rich (illite‐rich) samples represent very good caprock quality; the cleaner Mercia Mudstone samples, with pore‐filling carbonate and gypsum cements, represent fair to good caprock quality. Pressure sensitivity of permeability increases with increasing clay mineral content. As pore pressure increases during CO2 injection, the permeability of the most clay‐rich rocks will increase more than carbonate‐ and gypsum‐rich rocks, thus decreasing permeability heterogeneity. The best quality Mercia Mudstone caprock is probably not geochemically sensitive to CO2 injection as illite, the cause of the lowest permeability, is relatively stable in the presence of CO2–water mixtures.  相似文献   

3.
The capillary‐sealing efficiency of intermediate‐ to low‐permeable sedimentary rocks has been investigated by N2, CO2 and CH4 breakthrough experiments on initially fully water‐saturated rocks of different lithological compositions. Differential gas pressures up to 20 MPa were imposed across samples of 10–20 mm thickness, and the decline of the differential pressures was monitored over time. Absolute (single‐phase) permeability coefficients (kabs), determined by steady‐state fluid flow tests, ranged between 10?22 and 10?15 m2. Maximum effective permeabilities to the gas phase keff(max), measured after gas breakthrough at maximum gas saturation, extended from 10?26 to 10?18 m2. Because of re‐imbibition of water into the interconnected gas‐conducting pore system, the effective permeability to the gas phase decreases with decreasing differential (capillary) pressure. At the end of the breakthrough experiments, a residual pressure difference persists, indicating the shut‐off of the gas‐conducting pore system. These pressures, referred to as the ‘minimum capillary displacement pressures’ (Pd), ranged from 0.1 up to 6.7 MPa. Correlations were established between (i) absolute and effective permeability coefficients and (ii) effective or absolute permeability and capillary displacement pressure. Results indicate systematic differences in gas breakthrough behaviour of N2, CO2 and CH4, reflecting differences in wettability and interfacial tension. Additionally, a simple dynamic model for gas leakage through a capillary seal is presented, taking into account the variation of effective permeability as a function of buoyancy pressure exerted by a gas column underneath the seal.  相似文献   

4.
Single‐ and two‐phase (gas/water) fluid transport in tight sandstones has been studied in a series of permeability tests on core plugs of nine tight sandstones of the southern North Sea. Absolute (Klinkenberg‐corrected) gas permeability coefficients (kgas_inf) ranged between 3.8 × 10?16 and 6.2 × 10?19 m2 and decreased with increasing confining pressure (10–30 MPa) by a factor 3–5. Klinkenberg‐corrected (intrinsic) gas permeability coefficients were consistently higher by factors from 1.4 to 10 than permeability coefficients determined with water. Non‐steady‐state two‐phase (He/water) flow experiments conducted up to differential pressures of 10 MPa document the dynamically changing conductivity for the gas phase, which is primarily capillary‐controlled (drainage and imbibition). Effective gas permeability coefficients in the two‐phase flow tests ranged between 1.1 × 10?17 and 2.5 × 10?22 m², corresponding to relative gas permeabilities of 0.03% and 10%. In the early phase of the nonstationary flow regime (before establishment of steady‐state conditions), they may be substantially (>50%) lower. Effective gas permeability measurements are affected by the following factors: (i) Capillary‐controlled drainage/imbibition, (ii) viscous–dynamic effects (iii) and slip flow.  相似文献   

5.
Gas breakthrough experiments on fine-grained sedimentary rocks   总被引:1,自引:0,他引:1  
The capillary sealing efficiency of fine‐grained sedimentary rocks has been investigated by gas breakthrough experiments on fully water saturated claystones and siltstones (Boom Clay from Belgium, Opalinus Clay from Switzerland and Tertiary mudstone from offshore Norway) of different lithological compositions. Sand contents of the samples were consistently below 12%, major clay minerals were illite and smectite. Porosities determined by mercury injection lay between 10 and 30% while specific surface areas determined by nitrogen adsorption (BET method) ranged from 20 to 48 m2 g ? 1. Total organic carbon contents were below 2%. Prior to the gas breakthrough experiments the absolute (single phase) permeability (kabs) of the samples was determined by steady state flow tests with water or NaCl brine. The kabs values ranged between 3 and 550 nDarcy (3 × 10?21 and 5.5 × 10?19 m2). The maximum effective permeability to the gas‐phase (keff) measured after gas breakthrough on initially water‐saturated samples extended from 0.01 nDarcy (1 × 10?23 m2) up to 1100 nDarcy (1.1 × 10?18 m2). The residual differential pressures after re‐imbibition of the water phase, referred to as the ‘minimum capillary displacement pressures’ (Pd), ranged from 0.06 to 6.7 MPa. During the re‐imbibition process the effective permeability to the gas phase decreases with decreasing differential pressure. The recorded permeability/pressure data were used to derive the pore size distribution (mostly between 8 and 60 nm) and the transport porosity of the conducting pore system (10‐5–10‐2%). Correlations could be established between (i) absolute permeability coefficients and the maximum effective permeability coefficients and (ii) effective or absolute permeability coefficients and capillary sealing efficiency. No correlation was found between the capillary displacement pressures determined from gas breakthrough experiments and those derived theoretically by mercury injection.  相似文献   

6.
One of the critical factors that control the efficiency of CO2 geological storage process in aquifers and hydrocarbon reservoirs is the capillary‐sealing potential of the caprock. This potential can be expressed in terms of the maximum reservoir overpressure that the brine‐saturated caprock can sustain, i.e. of the CO2 capillary entry pressure. It is controlled by the brine/CO2 interfacial tension, the water‐wettability of caprock minerals, and the pore size distribution within the caprock. By means of contact angle measurements, experimental evidence was obtained showing that the water‐wettability of mica and quartz is altered in the presence of CO2 under pressures typical of geological storage conditions. The alteration is more pronounced in the case of mica. Both minerals are representative of shaly caprocks and are strongly water‐wet in the presence of hydrocarbons. A careful analysis of the available literature data on breakthrough pressure measurements in caprock samples confirms the existence of a wettability alteration by dense CO2, both in shaly and in evaporitic caprocks. The consequences of this effect on the maximum CO2 storage pressure and on CO2 storage capacity in the underground reservoir are discussed. For hydrocarbon reservoirs that were initially close to capillary leakage, the maximum allowable CO2 storage pressure is only a fraction of the initial reservoir pressure.  相似文献   

7.
We retrace hydrogeochemical processes leading to the formation of Mg–Fe–Ca carbonate concretions (first distinct carbonate population, FDCP) in Martian meteorite ALH84001 by generic hydrogeochemical equilibrium and mass transfer modeling. Our simple conceptual models assume isochemical equilibration of orthopyroxenite minerals with pure water at varying water‐to‐rock ratios, temperatures and CO2 partial pressures. Modeled scenarios include CO2 partial pressures ranging from 10.1325 to 0.0001 MPa at water‐to‐rock ratios between 4380 and 43.8 mol mol?1 and different temperatures (278, 303 and 348 K) and enable the precipitation of Mg–Fe–Ca solid solution carbonate. Modeled range and trend of carbonate compositional variation from magnesio‐siderite (core) to magnesite (rim), and the precipitation of amorphous SiO2 and magnetite coupled to magnesite‐rich carbonate are similar to measured compositional variation. The results of this study suggest that the early Martian subsurface had been exposed to a dynamic gas pressure regime with decreasing CO2 partial pressure at low temperatures (approximately 1.0133 to 0.0001 MPa at 278 K or 6 to 0.0001 MPa at 303 K). Moderate water‐to‐rock ratios of ca. 438 mol mol?1 and isochemical weathering of orthopyroxenite are additional key prerequisites for the formation of secondary phase assemblages similar to ALH84001’s ‘FDCP’. Outbursts of water and CO2(g) from confined ground water in fractured orthopyroxenite rocks below an unstable CO2 hydrate‐containing cryosphere provide adequate environments on the early Martian surface.  相似文献   

8.
Detailed information on the hydrogeologic and hydraulic properties of the deeper parts of the upper continental crust is scarce. The pilot hole of the deep research drillhole (KTB) in crystalline basement of central Germany provided access to the crust for an exceptional pumping experiment of 1‐year duration. The hydraulic properties of fractured crystalline rocks at 4 km depth were derived from the well test and a total of 23100 m3 of saline fluid was pumped from the crustal reservoir. The experiment shows that the water‐saturated fracture pore space of the brittle upper crust is highly connected, hence, the continental upper crust is an aquifer. The pressure–time data from the well tests showed three distinct flow periods: the first period relates to wellbore storage and skin effects, the second flow period shows the typical characteristics of the homogeneous isotropic basement rock aquifer and the third flow period relates to the influence of a distant hydraulic border, probably an effect of the Franconian lineament, a steep dipping major thrust fault known from surface geology. The data analysis provided a transmissivity of the pumped aquifer T = 6.1 × 10?6 m2 sec?1, the corresponding hydraulic conductivity (permeability) is K = 4.07 × 10?8 m sec?1 and the computed storage coefficient (storativity) of the aquifer of about S = 5 × 10?6. This unexpected high permeability of the continental upper crust is well within the conditions of possible advective flow. The average flow porosity of the fractured basement aquifer is 0.6–0.7% and this range can be taken as a representative and characteristic values for the continental upper crust in general. The chemical composition of the pumped fluid was nearly constant during the 1‐year test. The total of dissolved solids amounts to 62 g l?1 and comprise mainly a mixture of CaCl2 and NaCl; all other dissolved components amount to about 2 g l?1. The cation proportions of the fluid (XCa approximately 0.6) reflects the mineralogical composition of the reservoir rock and the high salinity results from desiccation (H2O‐loss) due to the formation of abundant hydrate minerals during water–rock interaction. The constant fluid composition suggests that the fluid has been pumped from a rather homogeneous reservoir lithology dominated by metagabbros and amphibolites containing abundant Ca‐rich plagioclase.  相似文献   

9.
Laboratory experiments have been performed to determine diffusion coefficients of natural gas components (methane, ethane and nitrogen) and isotope fractionation effects under simulated in situ pressure (up to 45 MPa effective stress) and temperature conditions (50–200°C) in water‐saturated pelitic and coarse‐grained rocks. Effective diffusion coefficients of molecular nitrogen (0.39 × 10?11 to 21.6 × 10?11 m2 sec?1 at 90°C) are higher than those for methane (0.18 × 10?11 to 18.2 × 10?11 m2 sec?1 at 90°C). Diffusive flux rates expressed in mass units are generally higher for N2 than for CH4. Both methane and (to a lesser extent) nitrogen diffusion coefficients decrease with increasing total organic carbon (TOC) content of the rock samples because of sorption processes on the organic matter. This effect decreases with increasing temperature. Effective diffusion coefficients increase upon a temperature increase from 50 to 200°C by a factor of four. Effective diffusion coefficients and steady‐state diffusive flux decrease with effective stress. Stationary diffusive fluxes drop by 50–70% for methane and 45–62% for nitrogen while effective diffusion coefficients are reduced by 38% (CH4) and 32–48% (N2), respectively. Isotope fractionation coefficients of diffusive transport are higher for methane (?1.56 and ?2.77‰) than for ethane (?0.84 and ?1.62‰). Application of the experimental results to geological systems show that diffusive transport has only a low transport efficiency. Significant depletion of natural gas reservoirs by molecular diffusion is only expected in cases of very poor caprock qualities (in terms of thickness and/or porosity) and over extended periods of geological time. Under these circumstances, the chemical and isotopic composition of a gas reservoir will change and maturity estimates based on these parameters may be deceptive. To account for these potential effects, nomograms have been developed to estimate diffusive losses and apply maturity corrections.  相似文献   

10.
We used seismic velocity as a proxy for serpentinization of the mantle, which occurred beneath thinned but laterally continuous continental crust during continental break up, prior to opening of the Atlantic Ocean. The serpentinized sub‐continental mantle is now exhumed, beneath the Iberia Abyssal Plain and was accessed by scientific drilling on Ocean Drilling Program legs 149 and 173. Chromatographic modelling of kinetically limited transport of the serpentinization front yields a front displacement of 2197 ± 89 m, a time‐integrated fluid flux of 1098 ± 45 m3 m?2 and a Damköhler number of 6.0 ± 0.2. Whether either surface reaction or chemical transport limit the rate of reaction, we calculate timescales for serpentinization of approximately 105–106 years. This yields time‐average fluid flux rates for H2O, entering and reacting with the mantle, of 60–600 mol m?2 a?1 and for CH4, produced as a by‐product of oxidation of Fe++ to magnetite and exiting the mantle, of 0.55–5.5 mol m?2 a?1. This equates to a CH4‐flux of 0.18–1.8 Tg a?1 for coeval serpentinization of the mantle that was exhumed west of Iberia. This represents 0.03–0.3% of the present‐day annual CH4‐flux from all sources and a higher fraction of pre‐anthropogenic (lower) CH4 levels. CH4 released by serpentinization at or beneath the seafloor could provide substrate for biological chemosynthesis and/or promote gas‐hydrate formation. Finally, noting its volumetric extent and rapidity (<106 years), we interpret serpentinization to be a reckonable component of tectonic processes, contributing both diapiric and expansional forces and helping to ‘lubricate’ extensional processes. Given its anisotropic permeability, actively deforming serpentinite might impede melt migration which may be of interest, given the apparent lack of melt in some rifted margins.  相似文献   

11.
S. LI  M. DONG  Z. LI  S. HUANG  H. QING  E. NICKEL 《Geofluids》2005,5(4):326-334
This paper reports a laboratory study of the gas breakthrough pressure for different gas/liquid systems in the Mississippian‐age Midale Evaporite. This low‐permeability rock formation is the seal rock for the Weyburn Field in southeastern Saskatchewan, Canada, where CO2 is being injected into an oil reservoir for enhanced recovery and CO2 storage. A technique for experimentally determining CO2 breakthrough pressure at reservoir conditions is presented. Breakthrough pressures for N2, CO2 and CH4 were measured with the selected seal‐rock samples. The maximum breakthrough pressure is over 30 MPa for N2 and approximately 21 MPa for CO2. The experimental results demonstrate that the Weyburn Midale Evaporite seal rock is of high sealing quality. Therefore, the Weyburn reservoir and Midale Beds can be used as a CO2 storage site after abandonment. The measured results also show that the breakthrough pressure of a seal rock for a gas is nearly proportional to the interfacial tension of the gas/brine system. The breakthrough pressure of a CO2/brine system is significantly reduced compared with that of a CH4/brine system because of the much lower interfacial tension of the former. This implies that a seal rock that seals the original gas in a gas reservoir or an oil reservoir with a gas cap may not be tight enough to seal the injected CO2 if the pressure during or after CO2 injection is the same or higher than the original reservoir pressure. Therefore, reevaluation of the breakthrough pressure of seal rocks for a given reservoir is necessary and of highest priority once it is chosen as a CO2 storage site.  相似文献   

12.
Shale gas reservoirs like coalbed methane (CBM) reservoirs are promising targets for geological sequestration of carbon dioxide (CO2). However, the evolution of permeability in shale reservoirs on injection of CO2 is poorly understood unlike CBM reservoirs. In this study, we report measurements of permeability evolution in shales infiltrated separately by nonsorbing (He) and sorbing (CO2) gases under varying gas pressures and confining stresses. Experiments are completed on Pennsylvanian shales containing both natural and artificial fractures under nonpropped and propped conditions. We use the models for permeability evolution in coal (Journal of Petroleum Science and Engineering, Under Revision) to codify the permeability evolution observed in the shale samples. It is observed that for a naturally fractured shale, the He permeability increases by approximately 15% as effective stress is reduced by increasing the gas pressure from 1 MPa to 6 MPa at constant confining stress of 10 MPa. Conversely, the CO2 permeability reduces by a factor of two under similar conditions. A second core is split with a fine saw to create a smooth artificial fracture and the permeabilities are measured for both nonpropped and propped fractures. The He permeability of a propped artificial fracture is approximately 2‐ to 3fold that of the nonpropped fracture. The He permeability increases with gas pressure under constant confining stress for both nonpropped and propped cases. However, the CO2 permeability of the propped fracture decreases by between one‐half to one‐third as the gas pressure increases from 1 to 4 MPa at constant confining stress. Interestingly, the CO2 permeability of nonpropped fracture increases with gas pressure at constant confining stress. The permeability evolution of nonpropped and propped artificial fractures in shale is found to be similar to those observed in coals but the extent of permeability reduction by swelling is much lower in shale due to its lower organic content. Optical profilometry is used to quantify the surface roughness. The changes in surface roughness indicate significant influence of proppant indentation on fracture surface in the shale sample. The trends of permeability evolution on injection of CO2 in coals and shales are found analogous; therefore, the permeability evolution models previously developed for coals are adopted to explain the permeability evolution in shales.  相似文献   

13.
We used hydrologic models to explore the potential linkages between oil‐field brine reinjection and increases in earthquake frequency (up to Md 3.26) in southeastern New Mexico and to assess different injection management scenarios aimed at reducing the risk of triggered seismicity. Our analysis focuses on saline water reinjection into the basal Ellenburger Group beneath the Dagger Draw Oil field, Permian Basin. Increased seismic frequency (>Md 2) began in 2001, 5 years after peak injection, at an average depth of 11 km within the basement 15 km to the west of the reinjection wells. We considered several scenarios including assigning an effective or bulk permeability value to the crystalline basement, including a conductive fault zone surrounded by tighter crystalline basement rocks, and allowing permeability to decay with depth. We initially adopted a 7 m (0.07 MPa) head increase as the threshold for triggered seismicity. Only two scenarios produced excess heads of 7m five years after peak injection. In the first, a hydraulic diffusivity of 0.1 m2 s?1 was assigned to the crystalline basement. In the second, a hydraulic diffusivity of 0.3 m2 s?1 was assigned to a conductive fault zone. If we had considered a wider range of threshold excess heads to be between 1 and 60 m, then the range of acceptable hydraulic diffusivities would have increased (between 0.1–0.01 m2 s?1 and 1–0.1 m2 s?1 for the bulk and fault zone scenarios, respectively). A permeability–depth decay model would have also satisfied the 5‐year time lag criterion. We also tested several injection management scenarios including redistributing injection volumes between various wells and lowering the total volume of injected fluids. Scenarios that reduced computed excess heads by over 50% within the crystalline basement resulted from reducing the total volume of reinjected fluids by a factor of 2 or more.  相似文献   

14.
J. Tóth  I. Almási 《Geofluids》2001,1(1):11-36
The ≈ 40 000 km2 Hungarian Great Plain portion of the Pannonian Basin consists of a basin fill of 100 m to more than 7000 m thick semi‐ to unconsolidated marine, deltaic, lacustrine and fluviatile clastic sediments of Neogene age, resting on a strongly tectonized Pre‐Neogene basement of horst‐and‐graben topography of a relief in excess of 5000 m. The basement is built of a great variety of brittle rocks, including flysch, carbonates and metamorphics. The relatively continuous Endr?d Aquitard, with a permeability of less than 1 md (10?15 m2) and a depth varying between 500 and 5000 m, divides the basin's rock framework into upper and lower sequences of highly permeable rock units, whose permeabilities range from a few tens to several thousands of millidarcy. Subsurface fluid potential and flow fields were inferred from 16 192 water level and pore pressure measurements using three methods of representation: pressure–elevation profiles; hydraulic head maps; and hydraulic cross‐sections. Pressure–elevation profiles were constructed for eight areas. Typically, they start from the surface with a straight‐line segment of a hydrostatic gradient (γst = 9.8067 MPa km?1) and extend to depths of 1400–2500 m. At high surface elevations, the gradient is slightly smaller than hydrostatic, while at low elevations it is slightly greater. At greater depths, both the pressures and their vertical gradients are uniformly superhydrostatic. The transition to the overpressured depths may be gradual, with a gradient of γdyn = 10–15 MPa km?1 over a vertical distance of 400–1000 m, or abrupt, with a pressure jump of up to 10 MPa km?1 over less than 100 m and a gradient of γdyn > 20 MPa km?1. According to the hydraulic head maps for 13 100–500 m thick horizontal slices of the rock framework, the fluid potential in the near‐surface domains declines with depth beneath positive topographic features, but it increases beneath depressions. The approximate boundary between these hydraulically contrasting regions is the 100 m elevation contour line in the Duna–Tisza interfluve, and the 100–110 m contours in the Nyírség uplands. Below depths of ≈ 600 m, islets of superhydrostatic heads develop which grow in number, areal extent and height as the depth increases; hydraulic heads may exceed 3000 m locally. A hydraulic head ‘escarpment’ appears gradually in the elevation range of ? 1000 to ? 2800 m along an arcuate line which tracks a major regional fault zone striking NE–SW: heads drop stepwise by several hundred metres, at places 2000 m, from its north and west sides to the south and east. The escarpment forms a ‘fluid potential bank’ between a ‘fluid potential highland’ (500–2500 m) to the north and west, and a ‘fluid potential basin’ (100–500 m) to the south and east. A ‘potential island’ rises 1000 m high above this basin further south. According to four vertical hydraulic sections, groundwater flow is controlled by the topography in the upper 200–1700 m of the basin; the driving force is orientated downwards beneath the highlands and upwards beneath the lowlands. However, it is directed uniformly upwards at greater depths. The transition between the two regimes may be gradual or abrupt, as indicated by wide or dense spacing of the hydraulic head contours, respectively. Pressure ‘plumes’ or ‘ridges’ may protrude to shallow depths along faults originating in the basement. The basement horsts appear to be overpressured relative to the intervening grabens. The principal thesis of this paper is that the two main driving forces of fluid flow in the basin are gravitation, due to elevation differences of the topographic relief, and tectonic compression. The flow field is unconfined in the gravitational regime, whereas it is confined in the compressional regime. The nature and geometry of the fluid potential field between the two regimes are controlled by the sedimentary and structural features of the rock units in that domain, characterized by highly permeable and localized sedimentary windows, conductive faults and fracture zones. The transition between the two potential fields can be gradual or abrupt in the vertical, and island‐like or ridge‐like in plan view. The depth of the boundary zone can vary between 400 and 2000 m. Recharge to the gravitational regime is inferred to occur from infiltrating precipitation water, whereas that to the confined regime is from pore volume reduction due to the basement's tectonic compression.  相似文献   

15.
X. Xie  C. M. Bethke  S. Li  X. Liu  H. Zheng 《Geofluids》2001,1(4):257-271
The occurrence of abnormally high formation pressures in the Dongying Depression of the Bohaiwan Basin, a prolific oil‐producing province in China, is controlled by rapid sedimentation and the distribution of centres of active petroleum generation. Abnormally high pressures, demonstrated by drill stem test (DST) and well log data, occur in the third and fourth members (Es3 and Es4) of the Eocene Shahejie Formation. Pressure gradients in these members commonly fall in the range 0.012–0.016 MPa m?1, although gradients as high as 0.018 MPa m?1 have been encountered. The zone of strongest overpressuring coincides with the areas in the central basin where the principal lacustrine source rocks, which comprise types I and II kerogen and have a high organic carbon content (>2%, ranging to 7.3%), are actively generating petroleum at the present day. The magnitude of overpressuring is related not only to the burial depth of the source rocks, but to the types of kerogen they contain. In the central basin, the pressure gradient within submember Es32, which contains predominantly type II kerogen, falls in the range 0.013–0.014 MPa m?1. Larger gradients of 0.014–0.016 MPa m?1 occur in submember Es33 and member Es4, which contain mixed type I and II kerogen. Numerical modelling indicates that, although overpressures are influenced by hydrocarbon generation, the primary control on overpressure in the basin comes from the effects of sediment compaction disequilibrium. A large number of oil pools have been discovered in the domes and faulted anticlines of the normally pressured strata overlying the overpressured sediments; the results of this study suggest that isolated sandstone reservoirs within the overpressured zone itself offer significant hydrocarbon potential.  相似文献   

16.
Fault intersections are the locus of hot spring activity and Carlin‐type gold mineralization within the Basin and Range, USA. Analytical and numerical solutions to Stokes equation suggest that peak fluid velocities at fault intersections increase between 20% and 47% when fracture apertures have identical widths but increase by only about 1% and 8% when aperture widths vary by a factor of 2. This suggests that fault zone intersections must have enlarged apertures. Three‐dimensional finite element models that consider intersecting 10‐ to 20‐m wide fault planes resulted in hot spring activity being preferentially located at fault zone intersections when fault zones were assigned identical permeabilities. We found that the onset of convection at the intersections of the fault zones occurred in our hydrothermal model over a narrow permeability range between 5 × 10?13 and 7 × 10?13 m2. Relatively high vertical fluid velocities (0.3–3 m year?1) extended away from the fault intersections for about 0.5–1.5 km. For the boundary conditions and fault plane dimensions used, peak discharge temperatures of 112°C at the water table occurred with an intermediate fault zone permeability of 5 × 10?13 m2. When fault plane permeability differed by a factor of 2 or more, the locus of hot spring activity shifted away from the intersections. However, increasing the permeability at the core of the fault plane intersection by 40% shifted the discharge back to the intersections. When aquifer units were assigned a permeability value equal to those of the fault planes, convective rolls developed that extend about 3 km laterally along the fault plane and into the adjacent aquifer.  相似文献   

17.
The Jian copper deposit, located on the eastern edge of the Sanandaj–Sirjan metamorphic zone, southwest of Iran, is contained within the Surian Permo‐Triassic volcano‐sedimentary complex. Retrograde metamorphism resulted in three stages of mineralization (quartz ± sulfide veins) during exhumation of the Surian metamorphic complex (Middle Jurassic time; 159–167 Ma), and after the peak of the metamorphism (Middle to Late Triassic time; approximately 187 Ma). The early stage of mineralization (stage 1) is related to a homogeneous H2O–CO2 (XCO2 > 0.1) fluid characterized by moderate salinity (<10 wt.% NaCl equivalent) at high temperature and pressure (>370°C, >3 kbar). Early quartz was followed by small amounts of disseminated fine‐grained pyrite and chalcopyrite. Most of the main‐ore‐stage (stage 2) minerals, including chalcopyrite, pyrite and minor sphalerite, pyrrhotite, and galena, precipitated from an aqueous‐carbonic fluid (8–18 wt.% NaCl equivalent) at temperatures ranging between 241 and 388°C during fluid unmixing process (CO2 effervescence). Fluid unmixing in the primary carbonaceous fluid at pressures of 1.5–3 kbar produced a high XCO2 (>0.05) and a low XCO2 (<0.01) aqueous fluid in ore‐bearing quartz veins. Oxygen and hydrogen isotope compositions suggest mineralization by fluids derived from metamorphic dehydration (δ18Ofluid = +7.6 to +10.7‰ and δD = ?33.1 to ?38.5‰) during stage 2. The late stage (stage 3) is related to a distinct low salinity (1.5–8 wt.% NaCl equivalent) and temperatures of (120–230°C) aqueous fluid at pressures below 1.5 kbar and the deposition of post‐ore barren quartz veins. These fluids probably derived from meteoric waters, which circulated through the metamorphic pile at sufficiently high temperatures and acquire the characteristics of metamorphic fluids (δ18Ofluid = +4.7 to +5.1‰ and δD = ?52.3 to ?53.9‰) during waning stages of the postearly Cimmerian orogeny in Surian complex. The sulfide‐bearing quartz veins are interpreted as a small‐scale example of redistribution of mineral deposits by metamorphic fluids. This study suggests that mineralization at the Jian deposit is metamorphogenic in style, probably related to a deep‐seated mesothermal system.  相似文献   

18.
The Lost City hydrothermal field (LCHF) is hosted in serpentinite at the crest of the Atlantis Massif, an oceanic core complex close to the mid‐Atlantic Ridge. It is remarkable for its longevity and for venting low‐temperature (40–91°C) alkaline fluids rich in hydrogen and methane. IODP Hole U1309D, 5 km north of the LCHF, penetrated 1415 m of gabbroic rocks and contains a near‐conductive thermal gradient close to 100°C km?1. This is remarkable so close to an active hydrothermal field. We present hydrothermal modelling using a topographic profile through the vent field and IODP site U1309. Long‐lived circulation with vent temperatures similar to the LCHF can be sustained at moderate permeabilities of 10?14 to 10?15 m2 with a basal heatflow of 0.22 W m?2. Seafloor topography is an important control, with vents tending to form and remain in higher topography. Models with a uniform permeability throughout the Massif cannot simultaneously maintain circulation at the LCHF and the near‐conductive gradient in the borehole, where permeabilities <10?16 m2 are required. A steeply dipping permeability discontinuity between the LCHF and the drill hole is required to stabilize venting at the summit of the massif by creating a lateral conductive boundary layer. The discontinuity needs to be close to the vent site, supporting previous inferences that high permeability is most likely produced by faulting related to the transform fault. Rapid increases in modelled fluid temperatures with depth beneath the vent agree with previous estimates of reaction temperature based on geochemical modelling.  相似文献   

19.
A geochemical study was carried out on the CO2‐rich water occurring in granite areas of Chungcheong Province, Korea. In this area, very dilute and acidic CO2‐rich waters [62–242 mg l?1 in total dissolved solid (TDS), 4.0–5.3 in pH; group I) occur together with normal CO2‐rich waters (317–988 mg l?1 in TDS, 5.5–6.0 in pH; group II). The concentration levels and ages of group I water are similar to those of recently recharged and low‐mineralized groundwater (group III). Calculation of reaction pathways suggests that group I waters are produced by direct influx of CO2 gas into group III type waters. When the groundwater is injected with CO2, it develops the capacity to accept dissolved solids and it can evolve into water with very high solute concentrations. Whether the water is open or closed to the CO2 gases becomes less important in controlling the reaction pathway of the CO2‐rich groundwater when the initial pco 2 is high. Our data show that most of the solutes are dissolved in the CO2‐rich groundwater at pH > 5 where the weathering rates of silicates are very slow or independent of pH. Thus, groundwater age is likely more important in developing high solute concentrations in the CO2‐rich groundwaters than accelerated weathering kinetics because of acidic pH caused by high pco 2.  相似文献   

20.
A cased and sealed borehole in the Northern Barbados accretionary complex was the site of the first attempts to measure permeability in situ along a plate boundary décollement. Three separate efforts at Hole 949C yielded permeability estimates for the décollement spanning four orders of magnitude. An analysis of problems encountered during installation of the casing and seals provides insights into how the borehole conditions may have led to the wide range of results. During the installation, sediments from the surrounding formation repeatedly intruded into the borehole and casing. Stress analysis shows that the weak sediments were deforming plastically and the radial and tangential stresses around the borehole were significantly lower than lithostatic. This perturbed stress state may explain why the test pressure records showed indications of hydrofracture at pressures below lithostatic, and permeabilities rose rapidly as the estimated effective stress dropped below 0.8 MPa. Even after the borehole was sealed, the plastic deformation of the formation and relatively large gap of the wire wrapped screen allowed sediment to flow into the casing. Force equilibrium calculations predict sediment would have filled the borehole to 10 cm above the top of the screen by the time slug tests were conducted 1.5 years after the borehole was sealed. Reanalysis of the slug test results with these conditions yields several orders of magnitude higher permeability estimates than the original analysis which assumed an open casing. Overall the results based on only the tests with no sign of hydrofracture yield a permeability range of 10?14–10?15 m2 and a rate of increase in permeability with decreasing effective stress consistent with laboratory tests on samples from the décollement zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号