首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Having described the spinal fluid, Fran?ois Magendie (1783-1855) called upon a number of chemists in Paris to analyze the material, in the effort to decide if it was a special secretion of the nervous system or simply a filtrate of the blood. J.L. Lassaigne (1800-1859) and J.P. Couerbe (1805-1867) responded. Their results, and those of some earlier investigators, are described. In the ensuing years of the nineteenth century, other investigators similarly conducted analyses of spinal fluid, but these were usually of single constituents in poorly defined diagnostic conditions. In 1909-1912, William Mestrezat (1883-1928) took advantage of the recently introduced technique of lumbar puncture, which by now had become hospital routine, and introduced the modern era of systematic analysis of many components of the spinal fluid, correlated with specific disease states.  相似文献   

2.
François Magendie's (1783–1855) experimental model for measuring blood pressure in animals, which he developed in 1838, had a major impact on French physiology in the nineteenth century, especially upon Etienne-Jules Marey (1830–1904) in Paris. In due course it was also adopted by other European investigators, such as the Leipzig physiologist Carl Ludwig (1816–1895), and by clinicians who developed it into a major measuring tool. Historians of science, however, have paid hardly any attention to Magendie's further laboratory investigations conducted with the assistance of Jean-Louis Marie Poiseuille's (1799–1869) sphygmomètre (blood pressure meter). After having used the apparatus to conduct his experiments on a variety of blood vessels, Magendie also applied the sphygmomètre in 1840 to the ventricular system of the brain in order to measure cerebrospinal fluid (CSF) pressure. But the scope of this new procedure had yet to be defined: the new measuring device invited many speculative interpretations about the meaning of CSF flow for the physiology of the ventricular system in healthy and diseased brain function. As such, Magendie's experiments produced phenomena in very heterogeneous knowledge areas, and CSF measurement was situated at the interface of quite disparate investigative spaces regarding the structure and function of the brain. In his textbook Leçons sur les Fonctions et les Maladies du Système Nerveux (Lectures on the Functions and Diseases of the Nervous System), Magendie described extending application of the measuring “apparatus of Poiseuille” from blood vessels to parts of the brain. The instrument thus became something of a liquidodynamomètre (liquor dynamometer), that paved the way for later applications, including (after 1896) diagnostic intracranial pressure (ICP) measurement by Theodor Kocher (1841–1917) and Harvey Cushing (1869–1939). The current paper focuses on the experimental contingencies that prompted the instrument transfer in Magendie's laboratory and opened up new epistemological perspectives for research in neurophysiology.  相似文献   

3.
The Seferihisar–Balçova Geothermal system (SBG) is characterized by complex temperature and hydrochemical anomalies. Previous geophysical and hydrochemical investigations suggest that hydrothermal convection in the faulted areas of the SBG and recharge flow from the Horst may be responsible for the observed patterns. A numerical model of coupled fluid flow and heat transport processes has been built in order to study the possible fluid dynamics of deep geothermal groundwater flow in the SBG. The results support the hypothesis derived from interpreted data. The simulated scenarios provide a better understanding of the geophysical conditions under which the different fluid dynamics develop. When recharge processes are weak, the convective patterns in the faults can expand to surrounding reservoir units or below the seafloor. These fault‐induced drag forces can cause natural seawater intrusion. In the Melange of the Seferihisar Horst, the regional flow is modified by buoyant‐driven flow focused in the series of vertical faults. As a result, the main groundwater divide can shift. Sealing caprocks prevent fault‐induced cells from being overwhelmed by vigorous regional flow. In this case, over‐pressured, blind geothermal reservoirs form below the caprocks. Transient results showed that the front of rising hot waters in faults is unstable: the tip of the hydrothermal plumes can split and lead to periodical temperature oscillations. This phenomenon known as Taylor–Saffman fingering has been described in mid‐ocean ridge hydrothermal systems. Our findings suggest that this type of thermal pulsing can also develop in active, faulted geothermal systems. To some extent, the role of an impervious fault core on the flow patterns has been investigated. Although it is not possible to reproduce basin‐scale transport processes, this first attempt to model deep groundwater geothermal flow in the SBG qualitatively supported the interpreted data and described the different fluid dynamics of the basin. Geofluids (2010) 10 , 388–405  相似文献   

4.
Potassic alteration of rocks adjacent to, and within the Ernest Henry Fe‐oxide–Cu–Au deposit is used here as a test case to investigate fluid–rock interactions using various equilibrium dynamic geochemical modelling approaches available in the HCh code. Reaction of a simple K–Fe–(Na,Ca) brine (constrained by published fluid inclusion analysis) with an albite‐bearing felsic volcanic rock, resulted in predicted assemblages defined by (i) K‐feldspar–muscovite–magnetite, (ii) biotite–K‐feldspar–magnetite, (iii) biotite–quartz–albite and (iv) albite–biotite–actinolite–pyroxene with increasing rock buffering (decreasing log w/r). Models for isothermal–isobaric conditions (450°C and 2500 bars) were compared with models run over a TP gradient (450 to 200°C and 2500 to 500 bars). Three principal equilibrium dynamic simulation methods have been used: (i) static closed system, where individual steps are independent of all others, (ii) flow‐through and flush, where a part of the result is passed as input further along the flow line, and (iii) fluid infiltration models that simulate fluid moving through a rock column. Each type is best suited to a specific geological fluid–rock scenario, with increasing complexity, computation requirements and approximation to different parts of the natural system. Static closed system models can be used to quickly ascertain the broad alteration assemblages related to changes in the water/rock ratio, while flow‐through models are better suited to simulating outflow of reacted fluid into fresh rock. The fluid infiltration model can be used to simulate spatially controlled fluid metasomatism of rock, and we show that, given assumptions of porosity relationships and spatial dimensions, this model is a first‐order approximation to full reactive transport, without requiring significant computational time. This work presents an overview of the current state of equilibrium dynamic modelling technology using the HCh code with a view to applying these techniques to predictive modelling in exploration for mineral deposits. Application to the Ernest Henry Fe‐oxide–Cu–Au deposit demonstrates that isothermal fluid–rock reaction can account for some of the alteration zonation around the deposit.  相似文献   

5.
A major Alpine‐type peridotite located at Almklovdalen in the Western Gneiss Region of Norway was infiltrated by aqueous fluids at several stages during late Caledonian uplift and retrogressive metamorphism. Following peak metamorphic conditions in the garnet–peridotite stability field, the peridotite experienced pervasive fluid infiltration and retrogression in the chlorite–peridotite stability field. Subsequently, the peridotite was infiltrated locally by nonreactive fluids along fracture networks forming pipe‐like structures, typically on the order of 10 m wide. Fluid migration away from the fractures into the initially impermeable peridotite matrix was facilitated by pervasive dilation of grain boundaries and the formation of intragranular hydrofractures. Microstructural observations of serpentine occupying the originally fluid‐filled inclusion space indicate that the pervasively infiltrating fluid was characterized by a high dihedral angle (θ > 60°) and ‘curled up’ into discontinuous channels and fluid inclusion arrays following the infiltration event. Re‐equilibration of the fluid phase topology took place by growth and dissolution processes driven by the excess surface energy represented by the ‘forcefully’ introduced external fluid. Pervasive fluid introduction into the peridotite reduced local effective stresses, increased the effective grain boundary diffusion rates and caused extensive recrystallization and some grain coarsening of the infiltrated volumes. Grain boundary migration associated with this recrystallization swept off abundant intragranular fluid inclusions in the original chlorite peridotite, leading to a significant colour change of the rock. This colour change defines a relatively sharp front typically located 1–20 cm away from the fractures where the nonreactive fluids originally entered the peridotite. Our observations demonstrate how crustal rocks may be pervasively infiltrated by fluids with high dihedral angles (θ > 60°) and emphasize the coupling between hydrofracturing and textural equilibration of the grain boundary networks and the fluid phase topology.  相似文献   

6.
Transport properties of reduced carbonic fluid have been studied experimentally at P = 2 kbar and T = 700–1000°C in internally heated pressure vessel (IHPV). Synthetic FeCO3 and natural siderite were used to generate fluid during experiments using a platinum double‐capsule technique. A natural CaTiSiO5 aggregate was placed into the inner capsule as an additional source of trace elements. The outer capsule was loaded with albite glass. No water was introduced to the system and oxygen fugacity was established near to graphite–oxygen (CCO) buffer due to transformation of FeCO3 into a magnetite aggregate during decarbonation to yield CO and CO2. The carbonates decomposed during initial heating of the experiments, causing their some constituent components to be dissolved in and transferred by the fluid to the pore space of the albite glass matrix. After temperature reached 1000°C glass, the shards annealed and then melted, as evidenced by a vesiculated glass in the quench products. Micro‐Raman investigation of the fluid in bubbles in the albite glass in experiments with decomposition of natural siderite yielded CO–CO2 mixture where CO mole fraction was 0.15–0.16. We observe significant concentrations of Pt, Mn, P, and REE in the albite glass; in contrast, no Fe or Mg transfer was detected. LA‐ICP‐MS analysis of the albite glass product yielded the average Pt content of 2 ppm. Such high Pt signal came from Pt particles (100–500 nm in size), which were observed on the walls of the bubbles embedded in the glass. Olivines and aluminous spinel were observed in the Fe‐oxide aggregate, demonstrating transfer of SiO2 and Al2O3 from the albite melt by the reduced carbonic fluid from the albite glass (large capsule). Our results demonstrate that dry CO–CO2 fluid can be important agents of dissolution and transport, especially for Pt and other metals. The data imply that metals are chiefly dissolved as carbonyl complexes.  相似文献   

7.
Br/Cl ratios of hydrothermal fluids are widely used as geochemical tracers in marine hydrothermal systems to prove fluid phase separation processes. However, previous results of the liquid–vapour fractionation of bromine are ambiguous. Here we report new experimental results of the liquid–vapour fractionation of bromine in the system H2O–NaCl–NaBr at 380–450°C and 22.9–41.7 MPa. Our data indicate that bromine is generally more enriched than chlorine in the liquid phase. Calculated exchange coefficients KD(Br‐Cl)liquid‐vapour for the reaction Brvapour + Clliquid = Brliquid + Clvapour are between 0.94 ± 0.08 and 1.66 ± 0.14 within the investigated P–T range. They correlate positively with DClliquid‐vapour and suggest increasing bromine–chlorine fractionation with increasing opening of the liquid–vapour solvus, i.e. increasing distance to the critical curve in the H2O–NaCl system. An empirical fit of the form KD(Br‐Cl)liquid‐vapour = a*ln[b*(DClliquid‐vapour?1) + e1/a] yields a = 0.349 and b = 1.697. Based on this empirical fit and the well‐constrained phase relations in the H2O–NaCl system we calculated the effect of fluid phase separation on the Br/Cl signature of a hydrothermal fluid with initial seawater composition for closed and open adiabatic ascents along the 4.5 and 4.8 J g?1 K?1 isentropes. The calculations indicate that fluid phase separation can significantly alter the Br/Cl ratio in hydrothermal fluids. The predicted Br/Cl evolutions are in accord with the Br/Cl signatures in low‐salinity vent fluids from the 9 to 10°N East Pacific Rise.  相似文献   

8.
Salar Ignorado is a shallow acid saline lake hosted by a small intervolcanic basin high in the Andes Mountains of northern Chile. Modern surface waters have 3.3–4.1 pH, 0.5–3% total dissolved solids (TDS) and are actively precipitating gypsum crystals. The gypsum crystals trap the acid saline water as fluid inclusions, providing a record of recent surface water characteristics. Salar Ignorado gypsum contains three distinct types of primary fluid inclusions, which result from growth of the gypsum from surface waters. Petrography and microthermometry were performed on 27 gypsum crystals from Salar Ignorado to gain an understanding of recent water chemistry of the salar. One 18.3‐cm‐long gypsum crystal, hosting primary fluid inclusions along 28 successive growth bands, was the focus for fluid inclusion studies and allowed a record of high‐resolution chemical trends. This crystal showed a change in parent fluids during growth, from low salinity, to high salinity, back to low salinity. At the bottom of the crystal, the lowest six fluid inclusion assemblages have salinities of 1.7–5.1 eq. wt. % NaCl. The next nine fluid inclusion assemblages have significantly higher salinity (18.6–27.4 eq. wt. % NaCl) inclusions. The twelve fluid inclusion assemblages near the top of the crystal have low salinity (0.9–8.3 eq. wt. % NaCl) like those at the bottom of the crystal. The high‐salinity fluid inclusions in the middle of this gypsum crystal are interpreted to have formed during a pulse of magmatic/hydrothermal fluids to the surface, perhaps during local active volcanism. Secondary evidence of a magmatic influence on surface waters includes hydrogen sulfide and high molecular weight solid hydrocarbons within some fluid inclusions. This study is among the first detailed fluid inclusion studies of gypsum and suggests that fluid inclusions in gypsum can be paleo‐hydrogeologic proxies.  相似文献   

9.
Quartz veins in the early Variscan Monts d’Arrée slate belt (Central Armorican Terrane, Western France), have been used to determine fluid‐flow characteristics. A combination of a detailed structural analysis, fluid inclusion microthermometry and stable isotope analyses provides insights in the scale of fluid flow and the water–rock interactions. This research suggests that fluids were expelled during progressive deformation and underwent an evolution in fluid chemistry because of changing redox conditions. Seven quartz‐vein generations were identified in the metasedimentary multilayer sequence of the Upper Silurian to Lower Devonian Plougastel Formation, and placed within the time frame of the deformation history. Fluid inclusion data of primary inclusions in syn‐ to post‐tectonic vein generations indicate a gradual increase in methane content of the aqueous–gaseous H2O–CO2–NaCl–CH4–N2 fluid during similar P–T conditions (350–400°C and 2–3.5 kbar). The heterogeneous centimetre‐ to metre‐scale multilayer sequence of quartzites and phyllites has a range of oxygen‐isotope values (8.0–14.1‰ Vienna Standard Mean Ocean Water), which is comparable with the range in the crosscutting quartz veins (10.5–14.7‰ V‐SMOW). Significant differences between oxygen‐isotope values of veins and adjacent host rock (Δ = ?2.8‰ to +4.9‰ V‐SMOW) suggest an absence of host‐rock buffering on a centimetre scale, but based on the similar range of isotope values in the Plougastel Formation, an intraformational buffering and an intermediate‐scale fluid‐flow system could be inferred. The abundance of veins, their well‐distributed and isolated occurrence, and their direct relationship with the progressive deformation suggests that the intermediate‐scale fluid‐flow system primarily occurred in a dynamically generated network of temporarily open fractures.  相似文献   

10.
Y. Song  Z. Hou  Y. Cheng  T. Yang  C. Xue 《Geofluids》2016,16(1):56-77
Extensive quartz–carbonate–Cu sulfide veins occur in clastic rocks and are spatially related to Paleocene granites in the western border of the Lanping Basin, western Yunnan, China. Abundant aqueous‐carbonic fluid inclusions occur in these veins but their origin is debated. In the Jinman–Liancheng deposit, individual primary inclusion groups contain either exclusively liquid‐rich inclusions (Gl), or coexisting liquid‐rich and vapor‐rich inclusions (Glv). Microthermometry and estimate of CO2 content indicate that type Gl inclusions either have homogenization temperatures (Th) 238–263°C and contain c. 3.9–5.5 mole % CO2, or have Th 178–222°C and contain c. 1.6–3.2 mole % CO2. Type Glv inclusions are thought to represent samples of fluid unmixing that occurred at 183–218°C. At that time, the liquid phase in the unmixing fluid may contain c. 2.0–3.3 mole % CO2. As such, the correlation of CO2 content with Th for type Gl inclusions is thought to be caused by fluid unmixing with decreasing temperature and subsequent CO2 escape. δ18O and δD values of the parent water mainly fall in the field below that of primary magmatic water, indicative of fluid derivation from degassed (in open system) magmatic water, with no contributions from basinal or meteoric water. Initial Sr isotopic compositions of hydrothermal carbonates suggest that the fluid was magmatic, probably derived from the Paleogene granites. δ13CPDB values (?4‰ to ?7‰) of the hydrothermal carbonates and δ34SVCDT values of sulfides (mainly ?11‰ to +5‰) indicate that the carbon and sulfur can be derived from (degassed) magma and/or nonmagmatic sources. The CO2‐rich and magmatic‐water‐derived fluid at Jinman–Liancheng differs from the CO2‐poor and basinally derived fluid in sediment‐hosted stratiform Cu (SSC) deposits, which suggests that there are no genetic linkages between the vein Cu and SSC deposits in the Lanping Basin.  相似文献   

11.
The burial and pore fluid pressure history of fluorite ore deposits is reconstructed: (i) at Hammam Zriba–Djebel Guebli along the eastern margin of the Tunisian Atlas; and (ii) at Koh‐i‐Maran within the northern part of the Kirthar Range in Pakistan. Both the deposits are hosted by Late Jurassic carbonate reservoirs, unconformably overlain by Late Cretaceous seals. Microthermometric analyses on aqueous and petroleum fluid inclusions with pressure–volume–temperature–composition (PVTX) modeling of hydrocarbon fluid isochores are integrated with kinematics and thermal 2D basin modeling in order to determine the age of mineralization. The results suggest a Cenozoic age for the fluorite mineralization and a dual fluid migration model for both ore deposits. The PVTX modeling indicates that the initial stage of fluorite cementation at Hammam Zriba occurred under fluid pressures of 115 ± 5 bars and at a temperature close to 130°C. At Koh‐i‐Maran, the F3 geodic fluorite mineralization developed under hydrostatic pressures of 200 ± 10 bars, and at temperatures of 125–130°C. The late increase in temperature recorded in the F3 fluorites can be accounted for by rapid rise of hotter fluids (up to 190°C) along open fractures, resulting from hydraulic fracturing of overpressured sedimentary layers.  相似文献   

12.
Hydrothermal polymetallic veins of the Gemeric unit of the Western Carpathians are oriented coherently with the foliation of their low‐grade Variscan basement host. Early siderite precipitated from homogeneous NaCl‐KCl‐CaCl2‐H2O brines with minor CO2, while immiscible gas–brine mixtures are indicative of the superimposed barite, quartz–tourmaline and quartz–sulphide stages. The high‐salinity aqueous fluid (18–35 wt%) found in all mineralization stages corresponds to formation water modified by interaction with crystalline basement rocks at temperatures between 140 and 300°C. High brominity (around 1000 ppm in average) resulted from evaporation and anhydrite precipitation in a Permo‐Triassic marine basin, and from secondary enrichment by dissolution of organic matter in the marine sediments at diagenetic temperatures. Sulphate depletion reflects thermogenic reduction during infiltration of the formation waters into the Variscan crystalline basement. Crystallization temperatures of the siderite fill (140–300°C) and oxygen isotope ratios of the parental fluids (4–10‰) increase towards the centre of the Gemeric cleavage fan, probably as a consequence of decreasing water/rock ratios in rock‐buffered hydrothermal systems operating during the initial stages of vein evolution. In contrast, buoyant gas–water mixtures, variable salinities and strongly fluctuating P–T parameters in the successive mineralization stages reflect transition from a closed to an open hydrothermal system and mixing of fluids from various sources. Depths of burial were 6–14 km (1.7–4.4 kbar, in a predominantly lithostatic fluid regime) during the siderite and barite sub‐stages of the north‐Gemeric veins, and up to 16 km (1.6–4.5 kbar, in a hydrostatic to lithostatic fluid regime) in the quartz–tourmaline stage of the south‐Gemeric veins. The fluid pressure decreased down to approximately 0.6 kbar during crystallization of sulphides. U‐Pb‐Th, 40Ar/39Ar and K/Ar geochronology applied to hydrothermal muscovite–phengite and monazite, as well as cleavage phyllosilicates in the adjacent basement rocks and deformed Permian conglomerates corroborated the opening of hydrothermal veins during Lower Cretaceous thrusting and their rejuvenation during Late Cretaceous sinistral transpressive shearing and extension.  相似文献   

13.
An integrated fluid inclusion and stable isotope study was carried out on hydrothermal veins (Sb‐bearing quartz veins, metal‐bearing fluorite–barite–quartz veins) from the Schwarzwald district, Germany. A total number of 106 Variscan (quartz veins related to Variscan orogenic processes) and post‐Variscan deposits were studied by microthermometry, Raman spectroscopy, and stable isotope analysis. The fluid inclusions in Variscan quartz veins are of the H2O–NaCl–(KCl) type, have low salinities (0–10 wt.% eqv. NaCl) and high Th values (150–350°C). Oxygen isotope data for quartz range from +2.8‰ to +12.2‰ and calculated δ18OH2O values of the fluid are between ?12.5‰ and +4.4‰. The δD values of water extracted from fluid inclusions vary between ?49‰ and +4‰. The geological framework, fluid inclusion and stable isotope characteristics of the Variscan veins suggest an origin from regional metamorphic devolatilization processes. By contrast, the fluid inclusions in post‐Variscan fluorite, calcite, barite, quartz, and sphalerite belong to the H2O–NaCl–CaCl2 type, have high salinities (22–25 wt.% eqv. NaCl) and lower Th values of 90–200°C. A low‐salinity fluid (0–15 wt.% eqv. NaCl) was observed in late‐stage fluorite, calcite, and quartz, which was trapped at similar temperatures. The δ18O values of quartz range between +11.1‰ and +20.9‰, which translates into calculated δ18OH2O values between ?11.0‰ and +4.4‰. This range is consistent with δ18OH2O values of fluid inclusion water extracted from fluorite (?11.6‰ to +1.1‰). The δD values of directly measured fluid inclusion water range between ?29‰ and ?1‰, ?26‰ and ?15‰, and ?63‰ and +9‰ for fluorite, quartz, and calcite, respectively. Calculations using the fluid inclusion and isotope data point to formation of the fluorite–barite–quartz veins under near‐hydrostatic conditions. The δ18OH2O and δD data, particularly the observed wide range in δD, indicate that the mineralization formed through large‐scale mixing of a basement‐derived saline NaCl–CaCl2 brine with meteoric water. Our comprehensive study provides evidence for two fundamentally different fluid systems in the crystalline basement. The Variscan fluid regime is dominated by fluids generated through metamorphic devolatilization and fluid expulsion driven by compressional nappe tectonics. The onset of post‐Variscan extensional tectonics resulted in replacement of the orogenic fluid regime by fluids which have distinct compositional characteristics and are related to a change in the principal fluid sources and the general fluid flow patterns. This younger system shows remarkably persistent geochemical and isotopic features over a prolonged period of more than 100 Ma.  相似文献   

14.
Fran?ois Magendie's (1783-1855) experimental model for measuring blood pressure in animals, which he developed in 1838, had a major impact on French physiology in the nineteenth century, especially upon Etienne-Jules Marey (1830-1904) in Paris. In due course it was also adopted by other European investigators, such as the Leipzig physiologist Carl Ludwig (1816-1895), and by clinicians who developed it into a major measuring tool. Historians of science, however, have paid hardly any attention to Magendie's further laboratory investigations conducted with the assistance of Jean-Louis Marie Poiseuille's (1799-1869) sphygmomètre (blood pressure meter). After having used the apparatus to conduct his experiments on a variety of blood vessels, Magendie also applied the sphygmomètre in 1840 to the ventricular system of the brain in order to measure cerebrospinal fluid (CSF) pressure. But the scope of this new procedure had yet to be defined: the new measuring device invited many speculative interpretations about the meaning of CSF flow for the physiology of the ventricular system in healthy and diseased brain function. As such, Magendie's experiments produced phenomena in very heterogeneous knowledge areas, and CSF measurement was situated at the interface of quite disparate investigative spaces regarding the structure and function of the brain. In his textbook Le?ons sur les Fonctions et les Maladies du Système Nerveux (Lectures on the Functions and Diseases of the Nervous System), Magendie described extending application of the measuring "apparatus of Poiseuille" from blood vessels to parts of the brain. The instrument thus became something of a liquidodynamomètre (liquor dynamometer), that paved the way for later applications, including (after 1896) diagnostic intracranial pressure (ICP) measurement by Theodor Kocher (1841-1917) and Harvey Cushing (1869-1939). The current paper focuses on the experimental contingencies that prompted the instrument transfer in Magendie's laboratory and opened up new epistemological perspectives for research in neurophysiology.  相似文献   

15.
Mineralised vein systems have been investigated at nine localities at the southern margin of the Anglo‐Brabant fold belt in Belgium. During the late Silurian to early Middle Devonian Caledonian orogeny, shear zones formed, inferred to be associated with granitoid basement blocks in the subsurface. The circulation of a metamorphic fluid, possibly originating in the Cambrian core of the fold belt, along these shear zones resulted in the formation of mesozonal orogenic mineralisation at the southern margin of the Anglo‐Brabant fold belt. The fluid had a composition dominated by H2O–CO2–X–NaCl–KCl. The shear zones form part of a greater fault zone, the Nieuwpoort–Asquempont fault zone, which is characterised by normal faulting that started before the Givetian and by the reactivation of the shear zones. Two fluid generations are associated with this normal faulting. First, a low salinity H2O–NaCl(–KCl) fluid migrated through the Palaeozoic rocks after the Silurian. Based on the isotopic composition, this fluid could be a late‐metamorphic Caledonian fluid or a younger fluid that originated from the Rhenohercynian basin and interacted with Lower Devonian rocks along its migration path. Second, a high salinity H2O–NaCl–CaCl2 fluid was identified in the fault systems. Similar fluids have been found in southern and eastern Belgium, where they produced Mississippi Valley‐type Zn–Pb deposits. These fluids are interpreted as evaporative brines that infiltrated the Lower Palaeozoic basement, from where they were expelled during extensional tectonism in the Mesozoic.  相似文献   

16.
The chemical evolution of fluids in Alpine fissure veins (open cavities with large free‐standing crystals) has been studied by combination of fluid inclusion petrography, microthermometry, LA‐ICPMS microanalysis, and thermodynamic modeling. The quartz vein systems cover a metamorphic cross section through the Central Alps (Switzerland), ranging from subgreenschist‐ to amphibolite‐facies conditions. Fluid compositions change from aqueous inclusions in subgreenschist‐ and greenschist‐facies rocks to aqueous–carbonic inclusions in amphibolite‐facies rocks. The fluid composition is constant for each vein, across several fluid inclusion generations that record the growth history of the quartz crystals. Chemical solute geothermometry, fluid inclusion isochores, and constraints from fluid–mineral equilibria modeling were used to reconstruct the pressure–temperature conditions of the Alpine fissure veins and to compare them with the metamorphic path of their host rocks. The data demonstrate that fluids in the Aar massif were trapped close to the metamorphic peak whereas the fluids in the Penninic nappes record early cooling, consistent with retrograde alteration. The good agreement between the fluid–mineral equilibria modeling and observed fluid compositions and host‐rock mineralogy suggests that the fluid inclusions were entrapped under rock‐buffered conditions. The molar Cl/Br ratios of the fluid inclusions are below the seawater value and would require unrealistically high degrees of evaporation and subsequent dilution if they were derived from seawater. The halogen data may thus be better explained by interaction between metamorphic fluids and organic matter or graphite in metasedimentary rocks. The volatile content (CO2, sulfur) in the fluid inclusions increases systematically as function of the metamorphic grade, suggesting that the fluids have been produced by prograde devolatilization reactions. Only the fluids in the highest grade rocks were partly modified by retrograde fluid–rock interactions, and all major element compositions reflect equilibration with the local host rocks during the earliest stages of postmetamorphic uplift.  相似文献   

17.
Highly saline, deep‐seated basement brines are of major importance for ore‐forming processes, but their genesis is controversial. Based on studies of fluid inclusions from hydrothermal veins of various ages, we reconstruct the temporal evolution of continental basement fluids from the Variscan Schwarzwald (Germany). During the Carboniferous (vein type i), quartz–tourmaline veins precipitated from low‐salinity (<4.5wt% NaCl + CaCl2), high‐temperature (≤390°C) H2O‐NaCl‐(CO2‐CH4) fluids with Cl/Br mass ratios = 50–146. In the Permian (vein type ii), cooling of H2O‐NaCl‐(KCl‐CaCl2) metamorphic fluids (T ≤ 310°C, 2–4.5wt% NaCl + CaCl2, Cl/Br mass ratios = 90) leads to the precipitation of quartz‐Sb‐Au veins. Around the Triassic–Jurassic boundary (vein type iii), quartz–haematite veins formed from two distinct fluids: a low‐salinity fluid (similar to (ii)) and a high‐salinity fluid (T = 100–320°C, >20wt% NaCl + CaCl2, Cl/Br mass ratios = 60–110). Both fluids types were present during vein formation but did not mix with each other (because of hydrogeological reasons). Jurassic–Cretaceous veins (vein type iv) record fluid mixing between an older bittern brine (Cl/Br mass ratios ~80) and a younger halite dissolution brine (Cl/Br mass ratios >1000) of similar salinity, resulting in a mixed H2O‐NaCl‐CaCl2 brine (50–140°C, 23–26wt% NaCl + CaCl2, Cl/Br mass ratios = 80–520). During post‐Cretaceous times (vein type v), the opening of the Upper Rhine Graben and the concomitant juxtaposition of various aquifers, which enabled mixing of high‐ and low‐salinity fluids and resulted in vein formation (multicomponent fluid H2O‐NaCl‐CaCl2‐(SO4‐HCO3), 70–190°C, 5–25wt% NaCl‐CaCl2 and Cl/Br mass ratios = 2–140). The first occurrence of highly saline brines is recorded in veins that formed shortly after deposition of halite in the Muschelkalk Ocean above the basement, suggesting an external source of the brine's salinity. Hence, today's brines in the European basement probably developed from inherited evaporitic bittern brines. These were afterwards extensively modified by fluid–rock interaction on their migration paths through the crystalline basement and later by mixing with younger meteoric fluids and halite dissolution brines.  相似文献   

18.
Abundant illite precipitation in Proterozoic rocks from Northern Lawn Hill Platform, Mt Isa Basin, Australia, occurred in organic matter‐rich black shales rather than in sandstones, siltstones and organic matter‐poor shales. Sandstones and siltstones acted as impermeable rocks, as early diagenetic quartz and carbonate minerals reduced the porosity–permeability. Scanning and transmission electron microscopy (SEM and TEM) studies indicate a relation between creation of microporosity–permeability and organic matter alteration, suitable for subsequent mineral precipitation. K–Ar data indicate that organic matter alteration and the subsequent illite precipitation within the organic matter occurred during the regional hydrothermal event at 1172 ± 50 (2σ) Ma. Hot circulating fluids are considered to be responsible for organic matter alteration, migration and removal of volatile hydrocarbon, and consequently porosity–permeability creation. Those rocks lacking sufficient porosity–permeability, such as sandstones, siltstones and organic matter poor shales, may not have been affected by fluid movement. In hydrothermal systems, shales and mudstones may not be impermeable as usually assumed because of hydrocarbons being rapidly removed by fluid, even with relatively low total organic carbon.  相似文献   

19.
The fluorite deposits of Asturias (northern Iberian Peninsula) are hosted by rocks of Permo‐Triassic and Palaeozoic age. Fluid inclusions in ore and gangue minerals show homogenization temperatures from 80 to 170°C and the presence of two types of fluids: an H2O–NaCl low‐salinity fluid (<8 eq. wt% NaCl) and an H2O–NaCl–CaCl2 fluid (7–13 wt% NaCl and 11–14 wt% CaCl2). The low salinity and the Cl/Br and Na/Br ratios (Cl/Brmolar 100–700 and Na/Brmolar 20–700) are consistent with an evaporated sea water origin of this fluid. The other end‐member of the mixture was highly saline brine with high Cl/Br and Na/Br ratios (Cl/Brmolar 700–13 000 and Na/Brmolar 700–11 000) generated after dissolution of Triassic age evaporites. LA‐ICP‐MS analyses of fluid inclusions in fluorite reveal higher Zn, Pb and Ba contents in the high‐salinity fluids (160–500, 90–170, 320–480 p.p.m. respectively) than in the low‐salinity fluid (75–230, 25–150 and 100–300 p.p.m. respectively). The metal content of the fluids appears to decrease from E to W, from Berbes to La Collada and to Villabona. The source of F is probably related to leaching of volcanic rocks of Permian age. Brines circulated along faults into the Palaeozoic basement. Evaporated sea water was present in permeable rocks and faults along or above the unconformity between the Permo‐Triassic sediments and the Palaeozoic basement. Mineralization formed when the deep brines mixed with the surficial fluids in carbonates, breccias and fractures resulting in the formation of veins and stratabound bodies of fluorite, barite, calcite, dolomite and quartz and minor amounts of sulphides. Fluid movement and mineralization occurred between Late Triassic and Late Jurassic times, probably associated with rifting events related to the opening of the Atlantic Ocean. This model is also consistent with the geodynamic setting of other fluorite‐rich districts in Europe.  相似文献   

20.
Local statistics test the null hypothesis of no spatial association or clustering around the vicinity of a location. To carry out statistical tests, it is assumed that the observations are independent and that they exhibit no global spatial autocorrelation. In this article, approaches to account for global spatial autocorrelation are described and illustrated for the case of the Getis–Ord statistic with binary weights. Although the majority of current applications of local statistics assume that the spatial scale of the local spatial association (as specified via weights) is known, it is more often the case that it is unknown. The approaches described here cover the cases of testing local statistics for the cases of both known and unknown weights, and they are based upon methods that have been used with aspatial data, where the objective is to find changepoints in temporal data. After a review of the Getis–Ord statistic, the article provides a review of its extension to the case where the objective is to choose the best set of binary weights to estimate the spatial scale of the local association and assess statistical significance. Modified approaches that account for spatially autocorrelated data are then introduced and discussed. Finally, the method is illustrated using data on leukemia in central New York, and some concluding comments are made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号