首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eighty‐one samples taken from 68 glass beads found in southwestern Poland on sites of the Lusatian culture from the Hallstatt C and Hallstatt D subphases were analysed by EPMA. A subsample of 18 of these were additionally subjected to analysis by means of LA–ICP–MS in order to validate the results obtained by EPMA. Some glass was made using mineral soda and some using plant ash rich in sodium. Both high‐magnesium soda–lime glass (HMG) and low‐magnesium soda–lime glass (LMG) were identified. A large number of samples are characterized by low MgO content and medium K2O content (LMMK glass), combined with low concentrations of CaO and high Fe2O3 and Al2O3. All the LMMK glass contains numerous silica crystals and inclusions composed of a number of elements (most frequently Cu, Co, Sb, As, Ag, Ni and Fe). The LMMK glass was presumably made in Europe during the Hallstatt C.  相似文献   

2.
Twenty‐six samples from domestic assemblages of 9th–12th century Córdoba were subjected to electron microprobe analysis. The results reveal two main compositional types. The first, encountered in 13 of the samples, seems to result from the combination of plant ashes with high‐impurity sand, and has some contemporary parallels from Syria and Egypt. The second type is a lead–soda–silica glass, encountered in a relatively high proportion of the glasses (11 of the 26 sampled), possibly formed by the addition of lead metal to existing glasses and with very few known parallels. These are among a very small number of results available to date on the chemical composition of glasses from medieval Spain, and the presence of a high proportion of lead–soda–silica glasses is particularly interesting, possibly indicating a technological practice unique to, or originating in, the western Muslim world.  相似文献   

3.
The occurrence of similar glass beads at archaeological sites in Africa and Asia bears witness to the trade relationship between the two continents. This paper reports elemental analysis results from a recent in‐depth laser ablation – inductively coupled plasma – mass spectrometry (LA–ICP–MS) study of a group of archaeological glass beads with a specific alumina‐rich composition from East Africa, India and Sri Lanka. Based on the concentrations of the trace elements, two different subgroups were identified. One subgroup occurs at early periods (fourth century bce to fifth century ace ) in South India and Sri Lanka. The second subgroup appears at later dates in Africa and was identified at different Kenyan sites dated from the ninth to the 19th century ace , and at the contemporaneous site of Chaul in western India.  相似文献   

4.
This paper presents a detailed elemental analysis of 64 glass beads and pendants dated to the Meroitic period (first–third centuries ad ) and the Nobadian period (fourth–sixth centuries) from burial sites in the Lower Nubian Nile Valley region. Laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) was used to determine the chemical composition of the glass and to gain knowledge about its origin. Four main glass types were identified: low‐alumina soda‐lime glass, high‐alumina glass, plant‐ash soda‐lime glass, and mixed‐alkali glass. Mineral soda‐lime glass (m‐Na‐Ca) of East Mediterranean/Egyptian provenance is dominant within the low‐alumina glass group from Meroitic and Nobadian periods. Mineral soda high‐alumina glass (m‐Na‐Al) appeared in the Nobadian bead assemblages, and the m‐Na‐Al 1 subtype was produced in Sri Lanka/South India. An initial insight into the origin of the glass beads in Nubia from the first to sixth centuries is described, indicating the first evidence for the presence of Asian objects in Nubia. The data obtained for the bead trade in North‐east Africa in this study has allowed a new light to be shed on the westward flow of Asian glass during a time of intensive maritime trade contacts with the wider Indian Ocean world.  相似文献   

5.
Two sets of wine bottles dated between the end of the 17th and the 19th centuries were characterized by means of μ‐PIXE (major and minor elements) and LA–ICP–MS (trace and REE elements). The fragmented wine bottles were recovered from two archaeological contexts in Lisbon and reach a total of 79 fragments. One of the archaeological bottle sets comes from a house structure that collapsed during the major earthquake in 1755, providing a precise terminus ante quem. The second set comes from the exploratory archaeological intervention performed in Rua do Arsenal, where the Côrte‐Real Palace (built in the 16th century), was discovered. From this site, posterior contexts dated up to the 19th century were considered. This systematic study allowed the glass to be identified as high‐lime, low‐alkali (HLLA) for all the considered chronologies. However, the 19th‐century bottles have a different HLLA composition, suggesting the use of synthetic soda. Comparison with data from literature showed some similarity with English, Belgium and French reported compositions. This is the first systematic attempt to characterize the composition of glass wine bottles circulating in Portugal, giving new insights into their probable provenances, and on the exchange between Portugal and its trading allies.  相似文献   

6.
Fourteen glass beads and one glass fragment from Khami‐period (ad 1400–1830) sites of Danamombe, Naletale, Gomoremhiko, Nharire and Zinjanja, in Zimbabwe, were analysed by pXRF and Raman spectroscopy with the intention of correlating the results with associated radiocarbon dates. The results show that Zinjanja and an earlier part of the Danamombe stratigraphic context had Khami Indo‐Pacific beads (15th–17th centuries) corresponding with Torwa occupational layers. Other European beads and one bottle fragment [high‐lime, low‐alkali (HLLA) glass] dating from the 16th to the 19th centuries were confined to the top stratigraphic layers of Danamombe and Naletale, which coincide with the later Rozvi occupational layers. Gomoremhiko had one Mapungubwe–Zimbabwe bead series (13th–15th centuries), which suggests that it was probably earlier than the other sites. All European beads are made of soda–lime plant‐ash glass with high alumina, which makes them comparable with glass produced through the Mediterranean traditions in Southern Europe.  相似文献   

7.
A total of 33 ancient glass beads unearthed from the Kizil reservoir cemetery and Wanquan cemetery in Xinjiang are studied using Raman spectroscopy, scanning electron microscopy with energy‐dispersive spectrometry (SEM–EDS) and other methods. The detailed study of the glassy matrices, the crystalline inclusions and the microstructural heterogeneities for these glass beads has revealed some valuable information to help in the understanding of their possible manufacturing technology and provenance. At least two different types of glass were present in the two cemeteries. For the first time, antimony‐based colourant/opacifier—for example, Pb2Sb2O7 or CaSb2O6—was systematically identified in some beads of plant‐ash type soda–lime glass dated to about 1000–500 bc . The limited number of potash glass beads from the Kizil reservoir cemetery, which were dated to about 500–300 bc , used tin oxide as an opacifier. The diverse resources of the soda–lime and potash glasses indicate the existence of a complex trade network between China and the West much earlier than the Western Han Dynasty.  相似文献   

8.
Scottish window glass from both archaeological sites and historic buildings was examined using portable X‐ray fluorescence (pXRF) and scanning electron microscopy – energy‐dispersive X‐ray micro‐analysis (SEM–EDX). The elemental composition of the glass provides information regarding the materials used and, subsequently, an approximate range of dates of manufacture. pXRF is shown to be more vulnerable than SEM–EDX to the effects of surface corrosion and matrix effects in archaeological samples. The study showed that the production of window glass in Scotland from the 17th century onwards appears to closely parallel that in England. It also demonstrated the potential of pXRF for in situ studies of window glass in historic buildings. pXRF was used to assess two Scottish buildings; one in state care and one in private ownership. The building in state care, the Abbot's House at Arbroath Abbey, showed a uniform glass type, suggesting that the building was re‐glazed completely at some point during the late 19th or early 20th century. The building in private ownership, Traquair House, had a range of glass types and ages, demonstrating a different maintenance and repair regime. This type of data can be useful in understanding historic buildings in the future, particularly if re‐glazing is being considered.  相似文献   

9.
In this work we attempt to elucidate the chronological and geographical origin of deeply coloured and black glass dating between 100 bc and ad 300 on the basis of their major and trace element compositions. Samples from the western and eastern parts of the Roman Empire were analysed. Analytical data were obtained by means of a scanning electron microscope – energy‐dispersive system (SEM–EDS, 63 samples analysed) and laser ablation – inductively coupled plasma – mass spectrometry (LA–ICP–MS, 41 samples analysed). Among the glass fragments analysed, dark brown, dark purple and dark green hues could be distinguished. Only among the dark green fragments could a clear compositional distinction be observed between fragments dated to the periods before and after ad 150. In the early samples (first century bc to first century ad ), iron, responsible for the green hue, was introduced by using impure sand containing relatively high amounts of Ti. In contrast, a Ti‐poor source of iron was employed, containing Sb, Co and Pb in trace quantities, in order to obtain the dark green colour in the later glass samples. The analytical results obtained by combining SEM–EDS and LA–ICP–MS are therefore consistent with a differentiation of glassmaking recipes, detectable in glass composition, occurring in the period around ad 150.  相似文献   

10.
This paper reports the results of elemental analysis, using laser ablation – inductively coupled plasma – mass spectrometry (LA–ICP–MS), of 30 glass beads from an assemblage of beads excavated at medieval al‐Basra, Morocco. Six chemical glass types are represented and their characteristics and geographical origins are discussed, with reference also to the techniques used to make the beads. The presence of numerous beads of lead–silica glasses is of particular interest. The morphological, technological and chemical analyses of the bead assemblage shed light on al‐Basra's trade connections.  相似文献   

11.
O. MECKING 《Archaeometry》2013,55(4):640-662
In Trommsdorfstraße, Erfurt, a glass‐processing workshop has been excavated, which produced lead glass rings and beads in the 13th century. This workshop produced two different lead glasses. The first, a high‐lead glass, could be found throughout Europe, from England to Russia. However, another newly defined type of glass could be identified (Central European lead–ash glass). This can be demonstrated by analysing the literature, and it has been found in eastern Germany, Poland, Slovakia and the Czech Republic. A Slavic lead–ash glass with the same ash content as the Central European lead–ash glass but lower amounts of lead was produced in Eastern Europe. In western Germany, another type of ash (beech ash) was used to produce a wood‐ash lead glass. Lead‐isotope analysis proved that the same source of lead was used for the wood‐ash lead glass and the high‐lead glass in western Germany and the two types of glass from Erfurt.  相似文献   

12.
An integrated, multi‐analytical approach combining the high sensitivity of SR‐μXRF, the light element capability of PIXE/PIGE under a helium flux and the spatial resolution of BSEM + EDS was used to characterize chemical composition and corrosion of glass samples (first to fourth centuries ad ) from an important, but scarcely investigated, Roman region of south‐west Iberia (southern Portugal). The geochemical trends and associations of major, minor and trace elements were investigated to shed light on production techniques, the provenance of raw materials and decay mechanisms. The results, while confirming a production technique common to Roman glasses throughout the Empire—that is, a silica‐soda‐lime low‐Mg, low‐K composition, with glass additives as colouring and/or decolouring agents (Fe, Cu, Mn, Sb)—show at one site high Zr–Ti contents, suggesting a more precise dating for these glasses to the second half of the fourth century. The Ti–Fe–Zr–Nb geochemical correlations in the pristine glass indicate the presence of minerals such as ilmenite, zircon, Ti‐rich Fe oxides and columbite in the sands used as raw materials for the glass former: these minerals are typical of granitic‐type source rocks. The unusually high K content in the corrosion layers is consistent with burial conditions in K‐rich soils derived from the alteration of 2:1 clays in K‐bearing rock sequences.  相似文献   

13.
Sets of 20 soda ash, 16 soda lime and 23 wood ash glasses mainly from excavations in Europe were analysed by microprobe and LA–ICP‐MS for 61 elements and are presented as average concentrations with standard deviations. Concentrations of sodium, potassium and magnesium allow the major glass type to be identified. Specific compositions of the raw materials of glass production indicate certain sources, technical processes and ages. Heavy minerals etc. of quartz sands contain rare earth elements (REE) from crustal fractionations that are different for the three major glass types. Accumulations of P, B, Ba, Mn and K in wood from soils by organic processes can characterize glass from certain regions.  相似文献   

14.
The chemical analysis of excavated glass fragments from dated archaeological contexts in Raqqa, Syria, has provided a detailed picture of the chemical compositions of artefacts deriving from eighth to ninth and 11th century glassmaking and glassworking activities. Evidence for primary glass production has been found at three excavated sites, of eighth to ninth, 11th and 12th century dates; the first two are discussed here. The 2 km long industrial complex at al‐Raqqa was associated with an urban landscape consisting of two Islamic cities (al‐Raqqa and al‐Rafika) and a series of palace complexes. The glass fused and worked there was presumably for local as well as for regional consumption. Al‐Raqqa currently appears to have produced the earliest well‐dated production on record in the Middle East of an Islamic high‐magnesia glass based on an alkaline plant ash flux and quartz. An eighth to ninth century late ‘Roman’/Byzantine soda–lime recipe of natron and sand begins to be replaced in the eighth to ninth century by a plant ash – quartz Islamic soda–lime composition. By the 11th century, this process was nearly complete. The early Islamic natron glass compositional group from al‐Raqqa shows very little spread in values, indicating a repeatedly well‐controlled process with the use of chemically homogeneous raw materials. A compositionally more diffuse range of eighth to ninth century plant ash glass compositions have been identified. One is not only distinct from established groups of plant ash and natron glasses, but is believed to be the result of experimentation with new raw material combinations. Compositional analysis of primary production waste including furnace glass (raw glass adhering to furnace brick) shows that contemporary glasses of three distinct plant ash types based on various combinations of plant ash, quartz and sand were being made in al‐Raqqa during the late eighth to ninth centuries. This is a uniquely wide compositional range from an ancient glass production site, offering new insights into the complexity of Islamic glass technology at a time of change and innovation.  相似文献   

15.
A collection of window‐panes, vessels and alleged waste from Thamusida has been investigated by OM, SEM–EDS, ICP–MS, ICP–OES and XAS at the Fe–K and Mn–K edges. Glass samples have been characterized as natron‐based soda–lime–silica glasses, with low magnesium and low potassium. The results have been compared with 43 reference groups available for ‘naturally coloured’ and colourless glasses of both Roman and later ages. Two main types were distinguished: RBGY 1 (R oman B lue–G reen and Y ellow 1) and RBGY 2 (R oman B lue–G reen and Y ellow 2). Given their compositional similarity to the Levantine I or, to a lesser extent, HIMT glasses, the Syrian–Palestinian coast for RBGY 2 and Egypt for the RBGY 1 have been suggested for their provenance. Most Thamusida samples have been assigned to the RBGY 2 type. A small group of Thamusida colourless vessels was included into the RC (R oman‐C olourless) compositional field; the latter still being defined. The alleged waste pieces may define a local production that should have been of secondary type. The investigations performed on local raw materials seem to discount the possibility of a primary glass‐making site. XAS measurements determined that Fe2+ contents ranging between 30 and 52% are able to assure an aqua blue colour; below 30%, the glasses turn light green or light yellow.  相似文献   

16.
Previous research has established that Iznik pottery differs from other Islamic stonepaste pottery in that its stonepaste bodies contain lead oxide as well as soda and lime, and that a significant proportion of the tin oxide in its glaze is present in solution rather than as tin oxide particles. In order to better understand these distinguishing features, the chemical compositions and microstructures of Iznik pottery and tile samples, together with those of lumps of glass found in association, were investigated using both scanning electron and optical microscopy. These data have been supplemented by the study of replicate lead–alkali glazes produced in the laboratory with a range of different compositions. The results demonstrate that separate soda–lime and high‐lead glasses were used in the production of Iznik stonepaste bodies, and that the total glass contents of the bodies were significantly higher than those quoted by Abū’l‐Qāsim, who was writing in about ad 1300. The very high purity of the lead–soda Iznik glazes indicated that the alkali flux used was either a purified plant ash or an as yet unidentified mineral source of soda. Replication experiments established that the high solubility of tin oxide in the glaze was due to the high purity of the glaze constituents. Furthermore, it is suggested that tin oxide was added to the glaze in order to give it a very slight opacity and thus obscure any blemishes in the underlying body.  相似文献   

17.
The chemical composition of potassium–calcium ‘wood‐ash’ glass reflects the elemental pattern of the involved non‐volatile base materials in quartz sand, wood ash and possibly potash. The essential elemental ratio K2O/CaO of wood ash varies between 0.2 and 0.8, and depends on the habitat and geological substratum of the wood rather than on the tree species; ratios between 1.0 and 3.0 in wood‐ash glass are only possible when potash is added as a third base material. Melting temperatures of wood‐ash glass sensu stricto, termed K–Ca‐2, produced with the two raw materials quartz sand and wood ash, are between 1250°C and 1400°C, while those of three‐component‐glasses, termed K–Ca‐3, are between 900°C and 1250°C, according to the amount of added potash. Experimentally produced glass displays different hues, from colourless to brown, olive‐green and pink, according to the chemical composition of the wood ash. Elevated MnO concentrations between 0.5 and 3 wt% may originate from wood ash and are hence not necessarily an indicator of colour‐inhibiting additives. Phosphate stemming from wood ash is an essential discriminator between wood‐ash glass and potash–lime glass. Because wood ash contains only minor amounts of sodium, wood‐ash glass with equal concentrations of potassium and sodium is a hybrid glass type, where besides quartz sand, wood ash, possibly potash and also soda‐rich cullet have been applied for glass production.  相似文献   

18.
The degradation mechanisms of glass in a buried context result in surfaces that have been depleted in various elements. The stability of the glass is primarily affected by the burial environment and the glass composition. However, in all archaeological glasses, the corroded layer that is formed on the surface tends to be low in alkalis, high in silica and lacking in cohesion. The extent to which the material has degraded, along with the physical nature of the corrosion, has a profound effect upon a wide range of factors affecting the stability of artefacts, as well as the choice of conservation techniques to be employed. This study has a number of objectives: determination of the morphology of the surface of the leached layer in glasses of two different compositions with different surface finishes; examination of the transition between the corroded material and the unaffected substrate; and investigation of concentration profile of different elements within the surface layers, as a function of depth. The study uses two glasses, fabricated under laboratory conditions, to replicate two common glass types found in the historical environment; a soda–lime–silica glass typical of those found in the Roman period throughout the Mediterranean and northwestern Europe, and high‐lime–potash glasses typical of those of Western Europe in the late medieval period. Three different surfaces have been prepared to mimic alternative manufacturing techniques such as blown, cast and ground surfaces for each composition. The glasses have been corroded under controlled laboratory conditions to replicate the buried environment. Imaging and chemical information is obtained using SEM–EDX and morphological information using IFM to produce 3‐D mapping from topographical surfaces.  相似文献   

19.
This study discusses the relevance of compositions obtained using laser ablation – inductively coupled plasma – mass spectrometry (LA–ICP–MS) for the purpose of identifying the provenance of copper‐based artefacts found in Virginia at Native American sites dated from the 16th to the 18th centuries. Ten artefacts were investigated by scanning electron microscopy – energy dispersive spectrometry (SEM–EDS) to visualize the corrosion and characterize the heterogeneities in the metal and electron probe micro‐analysis (EPMA) to determine separately the compositions of the intact metal and of the corrosion product. It is shown that the corroded surfaces are highly depleted in zinc but that representative concentrations can be determined by sampling the deeper, uncorroded metal. In contrast, lead values are highly variable because of the heterogeneous distribution of this metal within the bulk copper. Despite these problems, brass is easily identifiable and American native copper and European smelted copper can be unambiguously distinguished with LA–ICP–MS on unprepared artefacts using As, Ag, Ni and Sb trace elements.  相似文献   

20.
Previous research has shown that Iznik glazes are characterized by low potash and magnesia contents. It was therefore suggested that the flux used was either a purified plant ash or some unidentified mineral source of soda. More recently, as a result of the detection of small, but significant, amounts of boron and lithium in Byzantine glasses from western Turkey, which also exhibit low potash and magnesia contents, it has been suggested that the source of the flux used was a soda‐rich evaporite associated in some way with the extensive borax deposits in the region. LA–ICP–MS has been used to establish that Iznik glazes also contain similarly small amounts of boron and lithium. The Na/K, Na/Mg, Na/Ca and Na/B ratios for these Iznik glazes are shown to be comparable to the equivalent ratios calculated from published data for waters from a range of Na–HCO3 type hot springs in western Turkey, with the closest match being to the hot springs around Afyon‐Gazligöl, which is consistent with documentary evidence. It is therefore proposed that the soda‐rich salts produced by evaporating water from these springs to dryness would have provided the flux required for the production of Iznik glazes and high‐boron Byzantine glasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号