首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We documented the porosity, permeability, pore geometry, pore type, textural anisotropy, and capillary pressure of carbonate rock samples collected along basin‐bounding normal faults in central Italy. The study samples consist of one Mesozoic platform carbonate host rock with low porosity and permeability, four fractured host rocks of the damage zones, and four fault rocks of the fault cores. The four fractured samples have high secondary porosity, due to elongated, connected, soft pores that provide fluid pathways in the damage zone. We modeled this zone as an elastic cracked medium, and used the Budiansky–O'Connell correlation to compute its permeability from the measured elastic moduli. This correlation can be applied only to fractured rocks with large secondary porosity and high‐aspect ratio pores. The four fault rock samples are made up of survivor clasts embedded in fine carbonate matrices and cements with sub‐spherical, stiff pores. The low porosity and permeability of these rocks, and their high values of capillary pressure, are consistent with the fault core sealing as much as 77 and 140 m of gas and oil columns, respectively. We modeled the fault core as a granular medium, and used the Kozeny–Carmen correlation, assigning the value of 5 to the Kozeny constant, to compute its permeability from the measured porosities and pore radii. The permeability structure of the normal faults is composed of two main units with unique hydraulic characteristics: a granular fault core that acts as a seal to cross‐fault fluid flow, and an elastic cracked damage zone that surrounds the core and forms a conduit for fluid flow. Transient pathways for along‐fault fluid flow may form in the fault core during seismic faulting due to the formation of opening‐mode fractures within the cemented fault rocks.  相似文献   

2.
The Miocene siliciclastic sediments infilling the Vallès‐Penedès half‐graben are affected by two sets of structures developed during the extensional tectonics that created the basin. The first set, represented by extension fractures infilled with mud and sands, is attributed to seismically induced liquefaction. The second set, represented by normal faults, corresponds to a high‐permeability horsetail extensional fracture mesh developed near the surface in the hanging walls of normal faults. The incremental character of the vein‐fills indicates episodic changes in the tectonic stress state and fault zone permeability. Two episodes of fluid migration are recorded. The first episode occurred prior to consolidation and lithification when shallow burial conditions allowed oxidizing meteoric waters to flow horizontally through the more porous and permeable sandy layers. Development of clastic dikes allowed local upward flow and dewatering of the sandy beds. Liquefaction and expulsion of fluids were probably driven by seismic shaking. During the first episode of fluid migration there was no cementation of the sandstone or within the fractures, probably because little fluid was mobilized by the predominantly compaction‐driven flow regime. The second episode of fluid migration occurred synchronously with normal fault development, during which time the faults acted as fluid conduits. Fluids enriched in manganese, probably leached from local manganese oxyhydroxides soon after sedimentation, moved laterally and produced cementation in the sandstone layers, eventually arriving at the more porous and permeable fault pathways that connected compartments of different porosities and permeabilities. Carbonate probably precipitated in fractures saturated with meteoric water near the ground surface at a transitional redox potential. Once the faults became occluded by calcite cement, shortly after fault development, they became barriers to both vertical and horizontal fluid flow.  相似文献   

3.
Strong feedbacks link temperature (T), hydrologic flow (H), mechanical deformation (M), and chemical alteration (C) in fractured rock. These processes are interconnected as one process affects the initiation and progress of another. Dissolution and precipitation of minerals are affected by temperature and stress, and can result in significant changes in permeability and solute transport characteristics. Understanding these couplings is important for oil, gas, and geothermal reservoir engineering, for CO2 sequestration, and for waste disposal in underground repositories and reservoirs. To experimentally investigate the interactions between THMC processes in a naturally stressed fracture, we report on heated (25°C up to 150°C) flow‐through experiments on fractured core samples of Westerly granite. These experiments examine the influence of thermally and mechanically activated dissolution of minerals on the mechanical (stress/strain) and transport (permeability) responses of fractures. The evolutions of the permeability and relative hydraulic aperture of the fracture are recorded as thermal and stress conditions' change during the experiments. Furthermore, the efflux of dissolved mineral mass is measured periodically and provides a record of the net mass removal, which is correlated with observed changes in relative hydraulic fracture aperture. During the experiments, a significant variation of the effluent fluid chemistry is observed and the fracture shows large changes in permeability to the changing conditions both in stress and in temperature. We argue that at low temperature and high stresses, mechanical crushing of the asperities and the production of gouge explain the permeability decrease although most of the permeability is recoverable as the stress is released. While at high temperature, the permeability changes are governed by mechanical deformation as well as chemical processes, in particular, we infer dissolution of minerals adjacent to the fracture and precipitation of kaolinite.  相似文献   

4.
H. A. SHELDON  A. ORD 《Geofluids》2005,5(4):272-288
Mineralization of brittle fault zones is associated with sudden dilation, and the corresponding changes in porosity, permeability and fluid pressure, that occur during fault slip events. The resulting fluid pressure gradients cause fluid to flow into and along the fault until it is sealed. The volume of fluid that can pass through the deforming region depends on the degree of dilation, the porosity and permeability of the fault and wall rocks, and the rate of fault sealing. A numerical model representing a steep fault cutting through a horizontal seal is used to investigate patterns of fluid flow following a dilatant fault slip event. The model is initialized with porosity, permeability and fluid pressure representing the static mechanical state of the system immediately after such an event. Fault sealing is represented by a specified evolution of porosity, coupled to changes in permeability and fluid pressure, with the rate of porosity reduction being constrained by independent estimates of the rate of fault sealing by pressure solution. The general pattern of fluid flow predicted by the model is of initial flow into the fault from all directions, followed by upward flow driven by overpressure beneath the seal. The integrated fluid flux through the fault after a single failure event is insufficient to account for observed mineralization in faults; mineralization would require multiple fault slip events. Downward flow is predicted if the wall rocks below the seal are less permeable than those above. This phenomenon could at least partially explain the occurrence of uranium deposits in reactivated basement faults that cross an unconformity between relatively impermeable basement and overlying sedimentary rocks.  相似文献   

5.
This study presents application of an efficient approach to simulate fluid flow and heat transfer in naturally fractured geothermal reservoirs. Fluid flow is simulated by combining single continuum and discrete fracture approaches. The local thermal nonequilibrium approach is used to simulate heat transfer by conduction in the rock matrix and convection (including conduction) in the fluid. Fluid flow and heat transfer models are integrated within a coupled poro‐thermo‐elastic framework. The developed model is used to evaluate the long‐term response of a geothermal reservoir with specific boundary conditions and injection/production schedule. A comparative study and a sensitivity analysis are carried out to evaluate the capability of the integrated approach and understand the degree by which different reservoir parameters affect thermal depletion of Soultz geothermal reservoir, respectively. Also observed, there exists an optimum fracture permeability after which the reservoir stimulation does not change the recovery factor significantly. Estimation of fluid temperature by the assumption of local thermal nonequilibrium heat transfer between the fracture fluid and the rock matrix gives fluid temperature of about 3°C less than that of estimated by thermal equilibrium heat transfer at early stage of hot water production.  相似文献   

6.
The aim of this study was to determine the process–structure–property relationships between the pre‐ and post‐CO2 injection pore network geometry and the intrinsic permeability tensor for samples of core from low‐permeability Lower Triassic Sherwood Sandstone, UK. Samples were characterised using SEM‐EDS, XRD, MIP, XRCT and a triaxial permeability cell both before and after a three‐month continuous‐flow experiment using acidic CO2‐rich saline fluid. The change in flow properties was compared to those predicted by pore‐scale numerical modelling using an implicit finite volume solution to the Navier–Stokes equations. Mass loss and increased secondary porosity appeared to occur primarily due to dissolution of intergranular cements and K‐feldspar grains, with some associated loss of clay, carbonate and mudstone clasts. This resulted in a bulk porosity increase from 18 to 25% and caused a reduction in mean diameter of mineral grains with an increase in apparent pore wall roughness, where the fractal dimension, Df, increased from 1.68 to 1.84. All significant dissolution mass loss occurred in pores above c. 100 μm mean diameter. Relative dilation of post‐treatment pore area appeared to increase in relation to initial pore area, suggesting that the rate of dissolution mass loss had a positive relationship with fluid flow velocity; that is, critical flow pathways are preferentially widened. Variation in packing density within sedimentary planes (occurring at cm‐scale along the ‐z plane) caused the intrinsic permeability tensor to vary by more than a factor of ten. The bulk permeability tensor is anisotropic having almost equal value in ‐z and ‐y planes but with a 68% higher value in the ‐x plane (parallel to sedimentary bedding planes) for the pretreated sample, reducing to only 30% higher for the post‐treated sample. The intrinsic permeability of the post‐treatment sample increased by one order of magnitude and showed very close agreement between the modelled and experimental results.  相似文献   

7.
Shale gas reservoirs like coalbed methane (CBM) reservoirs are promising targets for geological sequestration of carbon dioxide (CO2). However, the evolution of permeability in shale reservoirs on injection of CO2 is poorly understood unlike CBM reservoirs. In this study, we report measurements of permeability evolution in shales infiltrated separately by nonsorbing (He) and sorbing (CO2) gases under varying gas pressures and confining stresses. Experiments are completed on Pennsylvanian shales containing both natural and artificial fractures under nonpropped and propped conditions. We use the models for permeability evolution in coal (Journal of Petroleum Science and Engineering, Under Revision) to codify the permeability evolution observed in the shale samples. It is observed that for a naturally fractured shale, the He permeability increases by approximately 15% as effective stress is reduced by increasing the gas pressure from 1 MPa to 6 MPa at constant confining stress of 10 MPa. Conversely, the CO2 permeability reduces by a factor of two under similar conditions. A second core is split with a fine saw to create a smooth artificial fracture and the permeabilities are measured for both nonpropped and propped fractures. The He permeability of a propped artificial fracture is approximately 2‐ to 3fold that of the nonpropped fracture. The He permeability increases with gas pressure under constant confining stress for both nonpropped and propped cases. However, the CO2 permeability of the propped fracture decreases by between one‐half to one‐third as the gas pressure increases from 1 to 4 MPa at constant confining stress. Interestingly, the CO2 permeability of nonpropped fracture increases with gas pressure at constant confining stress. The permeability evolution of nonpropped and propped artificial fractures in shale is found to be similar to those observed in coals but the extent of permeability reduction by swelling is much lower in shale due to its lower organic content. Optical profilometry is used to quantify the surface roughness. The changes in surface roughness indicate significant influence of proppant indentation on fracture surface in the shale sample. The trends of permeability evolution on injection of CO2 in coals and shales are found analogous; therefore, the permeability evolution models previously developed for coals are adopted to explain the permeability evolution in shales.  相似文献   

8.
In polyorogenic regions, the superposition of structures during a protracted tectonic history produces complex fractured bedrock aquifers. Thrust‐faulted regions, in particular, have complicated permeability patterns that affect groundwater flow paths, quantity, and quality. In the Appalachian foreland of northwestern Vermont, numerous bedrock wells that are spatially related to the Paleozoic Hinesburg thrust have elevated naturally occurring radioactivity and/or low yields. The association of groundwater quality and quantity issues with this thrust was a unique opportunity to investigate its structural and hydrogeologic framework. The Hinesburg thrust juxtaposed metamorphic rocks of the hanging wall with sedimentary rocks of the footwall during the Ordovician. It was then deformed by two orthogonal Devonian fold sets and was fractured during the Cretaceous. Median well yields in the hanging wall aquifer are significantly lower than those of the footwall aquifer, consistent with the respective permeability contrast between metamorphic and carbonate rocks. For wells drilled through the Hinesburg thrust, those completed closest (vertically) to the thrust have the highest median yields, whereas others completed farther below have yields in the footwall range. The geochemical signature of the hanging wall and footwall aquifers correlates with their whole‐rock geochemistry. The hanging wall aquifer is enriched in alpha radiation, Na+K‐Cl, Ba, and Sr, whereas the footwall aquifer is enriched in Ca‐Mg‐HCO3 and alkalinity. Wells that penetrated the Hinesburg thrust generally have hanging wall geochemical signatures. A simple hydrogeologic model for the permeability evolution of the Hinesburg thrust involves the ductile emplacement of a low‐K hanging wall onto a high‐K footwall, with subsequent modification by fractures.  相似文献   

9.
World‐class unconformity‐related U deposits in the Athabasca Basin (Saskatchewan, Canada) are generally located within or near fault zones that intersect the unconformity between the Athabasca Group sedimentary basin rocks and underlying metamorphic basement rocks. Two distinct subtypes of unconformity‐related uranium deposits have been identified: those hosted primarily in the Athabasca Group sandstones (sediment‐hosted) and those hosted primarily in the underlying basement rocks (basement‐hosted). Although significant research on these deposits has been carried out, certain aspects of their formation are still under discussion, one of the main issues being the fluid flow mechanisms responsible for uranium mineralization. The intriguing feature of this problem is that sediment‐hosted and basement‐hosted deposits are characterized by oppositely directed vectors of fluid flow via associated fault zones. Sediment‐hosted deposits formed via upward flow of basement fluids, basement‐hosted deposits via downward flow of basinal fluids. We have hypothesized that such flow patterns are indicative of the fluid flow self‐organization in fault‐bounded thermal convection (Transport in Porous Media, 110, 2015, 25). To explore this hypothesis, we constructed a simplified hydrogeologic model with fault‐bounded thermal convection of fluids in the faulted basement linked with fluid circulation in the overlying fault‐free sandstone horizon. Based on this model, a series of numerical experiments was carried out to simulate the hypothesized fluid flow patterns. The results obtained are in reasonable agreement with the concept of fault‐bounded convection cells as an explanation of focused upflow and downflow across the basement/sandstone unconformity. We then discuss application of the model to another debated problem, the uranium source for the ore‐forming basinal brines.  相似文献   

10.
B. Jung  G. Garven  J. R. Boles 《Geofluids》2014,14(2):234-250
Fault permeability may vary through time due to tectonic deformations, transients in pore pressure and effective stress, and mineralization associated with water‐rock reactions. Time‐varying permeability will affect subsurface fluid migration rates and patterns of petroleum accumulation in densely faulted sedimentary basins such as those associated with the borderland basins of Southern California. This study explores the petroleum fluid dynamics of this migration. As a multiphase flow and petroleum migration case study on the role of faults, computational models for both episodic and continuous hydrocarbon migration are constructed to investigate large‐scale fluid flow and petroleum accumulation along a northern section of the Newport‐Inglewood fault zone in the Los Angeles basin, Southern California. The numerical code solves the governing equations for oil, water, and heat transport in heterogeneous and anisotropic geologic cross sections but neglects flow in the third dimension for practical applications. Our numerical results suggest that fault permeability and fluid pressure fluctuations are crucial factors for distributing hydrocarbon accumulations associated with fault zones, and they also play important roles in controlling the geologic timing for reservoir filling. Episodic flow appears to enhance hydrocarbon accumulation more strongly by enabling stepwise build‐up in oil saturation in adjacent sedimentary formations due to temporally high pore pressure and high permeability caused by periodic fault rupture. Under assumptions that fault permeability fluctuate within the range of 1–1000 millidarcys (10?15–10?12 m2) and fault pressures fluctuate within 10–80% of overpressure ratio, the estimated oil volume in the Inglewood oil field (approximately 450 million barrels oil equivalent) can be accumulated in about 24 000 years, assuming a seismically induced fluid flow event occurs every 2000 years. This episodic petroleum migration model could be more geologically important than a continuous‐flow model, when considering the observed patterns of hydrocarbons and seismically active tectonic setting of the Los Angeles basin.  相似文献   

11.
Pleistocene melting of kilometer‐thick continental ice sheets significantly impacted regional‐scale groundwater flow in the low‐lying stable interiors of the North American and Eurasian cratons. Glacial meltwaters penetrated hundreds of meters into the underlying sedimentary basins and fractured crystalline bedrock, disrupting relatively stagnant saline fluids and creating a strong disequilibrium pattern in fluid salinity. To constrain the impact of continental glaciation on variable density fluid flow, heat and solute transport in the Michigan Basin, we constructed a transient two‐dimensional finite‐element model of the northern half of the basin and imposed modern versus Pleistocene recharge conditions. The sag‐type basin contains up to approximately 5 km of Paleozoic strata (carbonates, siliciclastics, and bedded evaporites) overlain by a thick veneer (up to 300 m) of glacial deposits. Formation water salinity increases exponentially from <0.5 g l?1 total dissolved solids (TDS) near the surface to >350 g l?1 TDS at over 800 m depth. Model simulations show that modern groundwater flow is primarily restricted to shallow glacial drift aquifers with discharge to the Great Lakes. During the Pleistocene, however, high hydraulic heads from melting of the Laurentide Ice Sheet reversed regional flow patterns and focused recharge into Paleozoic carbonate and siliciclastic aquifers. Dilute waters (<20 g l?1 TDS) migrated approximately 110 km laterally into the Devonian carbonate aquifers, significantly depressing the freshwater‐saline water mixing zones. These results are consistent with 14C ages and oxygen isotope values of confined groundwaters in Devonian carbonates along the basin margin, which reflect past recharge beneath the Laurentide Ice Sheet (14–50 ka). Constraining the paleohydrology of glaciated sedimentary basins, such as the Michigan Basin, is important for determining the source and residence times of groundwater resources, in addition to resolving geologic forces responsible for basinal‐scale fluid and solute migration.  相似文献   

12.
Numerical simulations of multiphase CO2 behavior within faulted sandstone reservoirs examine the impact of fractures and faults on CO2 migration in potential subsurface injection systems. In southeastern Utah, some natural CO2 reservoirs are breached and CO2‐charged water flows to the surface along permeable damage zones adjacent to faults; in other sites, faulted sandstones form barriers to flow and large CO2‐filled reservoirs result. These end‐members serve as the guides for our modeling, both at sites where nature offers ‘successful’ storage and at sites where leakage has occurred. We consider two end‐member fault types: low‐permeability faults dominated by deformation‐band networks and high‐permeability faults dominated by fracture networks in damage zones adjacent to clay‐rich gouge. Equivalent permeability (k) values for the fault zones can range from <10?14 m2 for deformation‐band‐dominated faults to >10?12 m2 for fracture‐dominated faults regardless of the permeability of unfaulted sandstone. Water–CO2 fluid‐flow simulations model the injection of CO2 into high‐k sandstone (5 × 10?13 m2) with low‐k (5 × 10?17 m2) or high‐k (5 × 10?12 m2) fault zones that correspond to deformation‐band‐ or fracture‐dominated faults, respectively. After 500 days, CO2 rises to produce an inverted cone of free and dissolved CO2 that spreads laterally away from the injection well. Free CO2 fills no more than 41% of the pore space behind the advancing CO2 front, where dissolved CO2 is at or near geochemical saturation. The low‐k fault zone exerts the greatest impact on the shape of the advancing CO2 front and restricts the bulk of the dissolved and free CO2 to the region upstream of the fault barrier. In the high‐k aquifer, the high‐k fault zone exerts a small influence on the shape of the advancing CO2 front. We also model stacked reservoir seal pairs, and the fracture‐dominated fault acts as a vertical bypass, allowing upward movement of CO2 into overlying strata. High‐permeability fault zones are important pathways for CO2 to bypass unfaulted sandstone, which leads to reduce sequestration efficiency. Aquifer compartmentalization by low‐permeability fault barriers leads to improved storativity because the barriers restrict lateral CO2 migration and maximize the volume and pressure of CO2 that might be emplaced in each fault‐bound compartment. As much as a 3.5‐MPa pressure increase may develop in the injected reservoir in this model domain, which under certain conditions may lead to pressures close to the fracture pressure of the top seal.  相似文献   

13.
I. Stober  K. Bucher 《Geofluids》2004,4(2):143-151
The Urach 3 research borehole in south‐west (SW) Germany has been drilled through the sedimentary cover, and the gneisses of the Variscian crystalline basement at 1600 m below the surface (Black Forest basement) has been reached. An additional 2800 m has been drilled through the fractured crystalline rocks, and the borehole has been used for a number of hydraulic tests in the context of a ‘hot‐dry rock’ (HDR) project exploring for geothermal energy. The fracture system of the basement is saturated with a NaCl brine with about 70 g L?1 dissolved solids. Water table measurements in the borehole cover a period of 13 years of observation, during which the water table continuously dropped and did not reach a steady‐state level. This unique set of data shows that the hydraulic potential decreases with depth, causing a continuous flow of fluid to the deeper parts of the upper continental crust. The potential decrease and the associated downward migration of fluid is an evidence for the progress of water (H2O)‐consuming reactions in the crystalline rocks. Computed stability relations among relevant phases at the pressure temperature (PT) conditions in the fracture system and documented fossil fracture coatings in granites and gneisses suggest that the prime candidate for the H2O‐consuming reaction is the zeolitization of feldspar. The potential of the gneisses to chemically bind H2O matches the estimated amount of migrating H2O.  相似文献   

14.
Thermal springs commonly occur along faults because of the enhanced vertical permeability afforded by fracture zones. Field and laboratory studies of fault zone materials document substantial heterogeneities in fracture permeabilities. Modeling and field studies of springs suggest that spatial variations in permeability strongly influence spring locations, discharge rates and temperatures. The impact of heterogeneous permeability on spring geochemistry, however, is poorly documented. We present stable isotope and water chemistry data from a series of closely spaced thermal springs associated with the Hayward Fault, California. We suggest that substantial spatial variations observed in δ18O and chloride values reflect subsurface fluid transport through a poorly connected fracture network in which mixing of subsurface waters remains limited. Our measurements provide insight into the effect of fracture zone heterogeneities on spring geochemistry, offer an additional tool to intuit the nature of tectonically induced changes in fault zone plumbing, and highlight the need to consider local variations when characterizing fracture zone fluid geochemistry from spring systems with multiple discharge sites.  相似文献   

15.
Geological storage of CO2 in depleted oil and gas reservoirs is one of the most promising options to reduce atmospheric CO2 concentrations. Of great importance to CO2 mitigation strategies is maintaining caprock integrity. Worldwide many current injection sites and potential storage sites are overlain by anhydrite‐bearing seal formations. However, little is known about the magnitude of the permeability change accompanying dilatation and failure of anhydrite under reservoir conditions. To this extent, we have performed triaxial compression experiments together with argon gas permeability measurements on Zechstein anhydrite, which caps many potential CO2 storage sites in the Netherlands. Our experiments were performed at room temperature at confining pressures of 3.5–25 MPa. We observed a transition from brittle to semi‐brittle behaviour over the experimental range, and peak strength could be described by a Mogi‐type failure envelope. Dynamic permeability measurements showed a change from ‘impermeable’ (<10?21 m2) to permeable (10?16 to 10?19 m2) as a result of mechanical damage. The onset of measurable permeability was associated with an increase in the rate of dilatation at low pressures (3.5–5 MPa), and with the turning point from compaction to dilatation in the volumetric versus axial strain curve at higher pressures (10–25 MPa). Sample permeability was largely controlled by the permeability of the shear faults developed. Static, postfailure permeability decreased with increasing effective mean stress. Our results demonstrated that caprock integrity will not be compromised by mechanical damage and permeability development. Geofluids (2010) 10 , 369–387  相似文献   

16.
Detailed information on the hydrogeologic and hydraulic properties of the deeper parts of the upper continental crust is scarce. The pilot hole of the deep research drillhole (KTB) in crystalline basement of central Germany provided access to the crust for an exceptional pumping experiment of 1‐year duration. The hydraulic properties of fractured crystalline rocks at 4 km depth were derived from the well test and a total of 23100 m3 of saline fluid was pumped from the crustal reservoir. The experiment shows that the water‐saturated fracture pore space of the brittle upper crust is highly connected, hence, the continental upper crust is an aquifer. The pressure–time data from the well tests showed three distinct flow periods: the first period relates to wellbore storage and skin effects, the second flow period shows the typical characteristics of the homogeneous isotropic basement rock aquifer and the third flow period relates to the influence of a distant hydraulic border, probably an effect of the Franconian lineament, a steep dipping major thrust fault known from surface geology. The data analysis provided a transmissivity of the pumped aquifer T = 6.1 × 10?6 m2 sec?1, the corresponding hydraulic conductivity (permeability) is K = 4.07 × 10?8 m sec?1 and the computed storage coefficient (storativity) of the aquifer of about S = 5 × 10?6. This unexpected high permeability of the continental upper crust is well within the conditions of possible advective flow. The average flow porosity of the fractured basement aquifer is 0.6–0.7% and this range can be taken as a representative and characteristic values for the continental upper crust in general. The chemical composition of the pumped fluid was nearly constant during the 1‐year test. The total of dissolved solids amounts to 62 g l?1 and comprise mainly a mixture of CaCl2 and NaCl; all other dissolved components amount to about 2 g l?1. The cation proportions of the fluid (XCa approximately 0.6) reflects the mineralogical composition of the reservoir rock and the high salinity results from desiccation (H2O‐loss) due to the formation of abundant hydrate minerals during water–rock interaction. The constant fluid composition suggests that the fluid has been pumped from a rather homogeneous reservoir lithology dominated by metagabbros and amphibolites containing abundant Ca‐rich plagioclase.  相似文献   

17.
An oil‐bearing sandstone unit within the Monterey Formation is exposed in the Los Angeles Basin along the Newport‐Inglewood fault zone in southern California. The unit preserves structures, some original fluids, and cements that record the local history of deformation, fluid flow, and cementation. The structures include two types of deformation bands, which are cut by later bitumen veins and sandstone dikes. The bands formed by dilation and by shear. Both types strike on average parallel to the Newport‐Inglewood fault zone (317°–332°) and show variable dip angles and directions. Generally the older deformation bands are shallow, and the younger bands are steep. The earlier set includes a type of deformation band not previously described in other field examples. These are thin, planar zones of oil 1–2 mm thick sandwiched between parallel, carbonate‐cemented, positively weathering ribs. All other deformation bands appear to be oil‐free. The undeformed sandstone matrix also contains some hydrocarbons. The oil‐cored bands formed largely in opening mode, similar to dilation bands. The oil‐cored bands differ from previously described dilation bands in the degree of carbonate cementation (up to 36% by volume) and in that some exhibit evidence for plane‐parallel shear during formation. Given the mostly oil‐free bands and oil‐rich matrix, deformation bands must have formed largely before the bulk of petroleum migration and acted as semi‐permeable baffles. Oil‐cored bands provide field evidence for early migration of oil into a potential reservoir rock. We infer a hydrofracture mechanism, probably from petroleum leaking out of a stratigraphically lower overpressured reservoir. The deformation bands described here provide a potential field example of a mechanism inferred for petroleum migration in modern systems such as in the Gulf of Mexico.  相似文献   

18.
Abundant illite precipitation in Proterozoic rocks from Northern Lawn Hill Platform, Mt Isa Basin, Australia, occurred in organic matter‐rich black shales rather than in sandstones, siltstones and organic matter‐poor shales. Sandstones and siltstones acted as impermeable rocks, as early diagenetic quartz and carbonate minerals reduced the porosity–permeability. Scanning and transmission electron microscopy (SEM and TEM) studies indicate a relation between creation of microporosity–permeability and organic matter alteration, suitable for subsequent mineral precipitation. K–Ar data indicate that organic matter alteration and the subsequent illite precipitation within the organic matter occurred during the regional hydrothermal event at 1172 ± 50 (2σ) Ma. Hot circulating fluids are considered to be responsible for organic matter alteration, migration and removal of volatile hydrocarbon, and consequently porosity–permeability creation. Those rocks lacking sufficient porosity–permeability, such as sandstones, siltstones and organic matter poor shales, may not have been affected by fluid movement. In hydrothermal systems, shales and mudstones may not be impermeable as usually assumed because of hydrocarbons being rapidly removed by fluid, even with relatively low total organic carbon.  相似文献   

19.
F. H. Weinlich 《Geofluids》2014,14(2):143-159
The ascent of magmatic carbon dioxide in the western Eger (Oh?e) Rift is interlinked with the fault systems of the Variscian basement. In the Cheb Basin, the minimum CO2 flux is about 160 m3 h?1, with a diminishing trend towards the north and ceasing in the main epicentral area of the Northwest Bohemian swarm earthquakes. The ascending CO2 forms Ca‐Mg‐HCO3 type waters by leaching of cations from the fault planes and creates clay minerals, such as kaolinite, as alteration products on affected fault planes. These mineral reactions result in fault weakness and in hydraulically interconnected fault network. This leads to a decrease in the friction coefficient of the Coulomb failure stress (CFS) and to fault creep as stress build‐up cannot occur in the weak segments. At the transition zone in the north of the Cheb Basin, between areas of weak, fluid conductive faults and areas of locked faults with frictional strength, fluid pressure can increase resulting in stress build‐up. This can trigger strike‐slip swarm earthquakes. Fault creep or movements in weak segments may support a stress build‐up in the transition area by transmitting fluid pressure pulses. Additionally to fluid‐driven triggering models, it is important to consider that fluids ascending along faults are CO2‐supersaturated thus intensifying the effect of fluid flow. The enforced flow of CO2‐supersaturated fluids in the transitional zone from high to low permeability segments through narrowings triggers gas exsolution and may generate pressure fluctuations. Phase separation starts according to the phase behaviour of CO2‐H2O systems in the seismically active depths of NW Bohemia and may explain the vertical distribution of the seismicity. Changes in the size of the fluid transport channels in the fault systems caused, or superimposed, by fault movements, can produce fluid pressure increases or pulses, which are the precondition for triggering fluid‐induced swarm earthquakes.  相似文献   

20.
The Monte Perdido thrust fault (southern Pyrenees) consists of a 6‐m‐thick interval of intensely deformed clay‐bearing rocks. The fault zone is affected by a pervasive pressure solution seam and numerous shear surfaces. Calcite extensional‐shear veins are present along the shear surfaces. The angular relationships between the two structures indicate that shear surfaces developed at a high angle (70°) to the local principal maximum stress axis σ1. Two main stages of deformation are present. The first stage corresponds to the development of calcite shear veins by a combination of shear surface reactivation and extensional mode I rupture. The second stage of deformation corresponds to chlorite precipitation along the previously reactivated shear surfaces. The pore fluid factor λ computed for the two deformation episodes indicates high fluid pressures during the Monte Perdido thrust activity. During the first stage of deformation, the reactivation of the shear surface was facilitated by a suprahydrostatic fluid pressure with a pore fluid factor λ equal to 0.89. For the second stage, the fluid pressure remained still high (with a λ value ranging between 0.77 and 0.84) even with the presence of weak chlorite along the shear surfaces. Furthermore, evidence of hydrostatic fluid pressure during calcite cement precipitation supports that incremental shear surface reactivations are correlated with cyclic fluid pressure fluctuations consistent with a fault‐valve model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号