首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M. A. Simms  G. Garven 《Geofluids》2004,4(2):109-130
Thermal convection has the potential to be a significant and widespread mechanism of fluid flow, mass transport, and heat transport in rift and other extensional basins. Based on numerical simulation results, large‐scale convection can occur on the scale of the basin thickness, depending on the Rayleigh number for the basin. Our analysis indicates that for syn‐rift and early post‐rift settings with a basin thickness of 5 km, thermal convection can occur for basal heat flows ranging from 80 to 150 mW m?2, when the vertical hydraulic conductivity is on the order of 1.5 m year?1 and lower. The convection cells have characteristic wavelengths and flow patterns depending on the thermal and hydraulic boundary conditions. Steeply dipping extensional faults can provide pathways for vertical fluid flow across large thicknesses of basin sediments and can modify the dynamics of thermal convection. The presence of faults perturbs the thermal convective flow pattern and can constrain the size and locations of convection cells. Depending on the spacing of the faults and the hydraulic properties of the faults and basin sediments, the convection cells can be spatially organized to align with adjacent faults. A fault‐bounded cell occurs when one convection cell is constrained to occupy a fault block so that the up‐flow zone converges into one fault zone and the down‐flow zone is centred on the adjacent fault. A fault‐bounded cell pair occurs when two convection cells occupy a fault block with the up‐flow zone located between the faults and the down‐flow zones centred on the adjacent faults or with the reverse pattern of flow. Fault‐bounded cells and cell pairs can be referred to collectively as fault‐bounded convective flow. The flow paths in fault‐bounded convective flow can be lengthened significantly with respect to those of convection cells unperturbed by the presence of faults. The cell pattern and sense of circulation depend on the fault spacing, sediment and fault permeabilities, lithologic heterogeneity, and the basal heat flow. The presence of fault zones also extends the range of conditions for which thermal convection can occur to basin settings with Rayleigh numbers below the critical value for large‐scale convection to occur in a basin without faults. The widespread potential for the occurrence of thermal convection suggests that it may play a role in controlling geological processes in rift basins including the acquisition and deposition of metals by basin fluids, the distribution of diagenetic processes, the temperature field and heat flow, petroleum generation and migration, and the geochemical evolution of basin fluids. Fault‐bounded cells and cell pairs can focus mass and heat transport from longer flow paths into fault zones, and their discharge zones are a particularly favourable setting for the formation of sediment‐hosted ore deposits near the sea floor.  相似文献   

2.
H. A. SHELDON  A. ORD 《Geofluids》2005,5(4):272-288
Mineralization of brittle fault zones is associated with sudden dilation, and the corresponding changes in porosity, permeability and fluid pressure, that occur during fault slip events. The resulting fluid pressure gradients cause fluid to flow into and along the fault until it is sealed. The volume of fluid that can pass through the deforming region depends on the degree of dilation, the porosity and permeability of the fault and wall rocks, and the rate of fault sealing. A numerical model representing a steep fault cutting through a horizontal seal is used to investigate patterns of fluid flow following a dilatant fault slip event. The model is initialized with porosity, permeability and fluid pressure representing the static mechanical state of the system immediately after such an event. Fault sealing is represented by a specified evolution of porosity, coupled to changes in permeability and fluid pressure, with the rate of porosity reduction being constrained by independent estimates of the rate of fault sealing by pressure solution. The general pattern of fluid flow predicted by the model is of initial flow into the fault from all directions, followed by upward flow driven by overpressure beneath the seal. The integrated fluid flux through the fault after a single failure event is insufficient to account for observed mineralization in faults; mineralization would require multiple fault slip events. Downward flow is predicted if the wall rocks below the seal are less permeable than those above. This phenomenon could at least partially explain the occurrence of uranium deposits in reactivated basement faults that cross an unconformity between relatively impermeable basement and overlying sedimentary rocks.  相似文献   

3.
Stratiform sediment‐hosted Zn–Pb–Ag mineral deposits constitute about 40% of the Earth's zinc resources ( Allen 2001 ), and in most cases their genesis involves the discharge of basinal brines near or on the seafloor through syndepositional faults ( Sangster 2002 ). From the point of view of base metal exploration, it is therefore essential to identify all possible faults that formerly carried the upwelling ore‐forming solutions during mineralising events. This paper presents a numerical investigation of the relative importance of various physical parameters in controlling fluid discharge, recharge and heat transport in faults. A two‐dimensional, free convection of pure water, hydrogeological model is developed for the McArthur basin in northern Australia based on the surface geology, known stratigraphic and structural relationships and regional geophysical interpretations. Numerical experiments and sensitivity analyses reveal that faults with strong initial heat input, due to depth of penetration or magmatic activity, are the most likely candidates to carry discharge fluids to the sites of metal precipitation. Deeper, wider and more permeable faults are more likely to behave as the fluid discharge pathways, whereas shallow, narrow or less permeable faults act as marine water recharge pathways. Compared with these fault‐related factors, aquifer physical properties are less important in determining fluid flow patterns and the geothermal regime. These results are an important step in understanding hydrothermal fluid flow in sedimentary basins in order to develop effective exploration criteria for the location of stratiform Zn–Pb–Ag deposits.  相似文献   

4.
Quartz veins hosted by the high‐grade crystalline rocks of the Modum complex, Southern Norway, formed when basinal fluids from an overlying Palaeozoic foreland basin infiltrated the basement at temperatures of c. 220°C (higher in the southernmost part of the area). This infiltration resulted in the formation of veins containing both two‐phase and halite‐bearing aqueous fluid inclusions, sometimes with bitumen and hydrocarbon inclusions. Microthermometric results demonstrate a very wide range of salinities of aqueous fluids preserved in these veins, ranging from c. 0 to 40 wt% NaCl equivalent. The range in homogenization temperatures is also very large (99–322°C for the entire dataset) and shows little or no correlation with salinity. A combination of aqueous fluid microthermometry, halogen geochemistry and oxygen isotope studies suggest that fluids from a range of separate aquifers were responsible for the quartz growth, but all have chemistries comparable to sedimentary formation waters. The bulk of the quartz grew from relatively low δ18O fluids derived directly from the basin or equilibrated in the upper part of the basement (T < 200°C). Nevertheless, some fluids acquired higher salinities due to deep wall‐rock hydration reactions leading to salt saturation at high temperatures (>300°C). The range in fluid inclusion homogenization temperatures and densities, combined with estimates of the ambient temperature of the basement rocks suggests that at different times veins acted as conduits for influx of both hotter and colder fluids, as well as experiencing fluctuations in fluid pressure. This is interpreted to reflect episodic flow linked to seismicity, with hotter dry basement rocks acting as a sink for cooler fluids from the overlying basin, while detailed flow paths reflected local effects of opening and closing of individual fractures as well as reaction with wall rocks. Thermal considerations suggest that the duration of some flow events was very short, possibly in the order of days. As a result of the complex pattern of fracturing and flow in the Modum basement, it was possible for shallow fluids to penetrate basement rocks at significantly higher temperatures, and this demonstrates the potential for hydrolytic weakening of continental crust by sedimentary fluids.  相似文献   

5.
Mineralised vein systems have been investigated at nine localities at the southern margin of the Anglo‐Brabant fold belt in Belgium. During the late Silurian to early Middle Devonian Caledonian orogeny, shear zones formed, inferred to be associated with granitoid basement blocks in the subsurface. The circulation of a metamorphic fluid, possibly originating in the Cambrian core of the fold belt, along these shear zones resulted in the formation of mesozonal orogenic mineralisation at the southern margin of the Anglo‐Brabant fold belt. The fluid had a composition dominated by H2O–CO2–X–NaCl–KCl. The shear zones form part of a greater fault zone, the Nieuwpoort–Asquempont fault zone, which is characterised by normal faulting that started before the Givetian and by the reactivation of the shear zones. Two fluid generations are associated with this normal faulting. First, a low salinity H2O–NaCl(–KCl) fluid migrated through the Palaeozoic rocks after the Silurian. Based on the isotopic composition, this fluid could be a late‐metamorphic Caledonian fluid or a younger fluid that originated from the Rhenohercynian basin and interacted with Lower Devonian rocks along its migration path. Second, a high salinity H2O–NaCl–CaCl2 fluid was identified in the fault systems. Similar fluids have been found in southern and eastern Belgium, where they produced Mississippi Valley‐type Zn–Pb deposits. These fluids are interpreted as evaporative brines that infiltrated the Lower Palaeozoic basement, from where they were expelled during extensional tectonism in the Mesozoic.  相似文献   

6.
Many faults in active and exhumed hydrocarbon‐generating basins are characterized by thick deposits of carbonate fault cement of limited vertical and horizontal extent. Based on fluid inclusion and stable isotope characteristics, these deposits have been attributed to upward flow of formation water and hydrocarbons. The present study sought to test this hypothesis by using numerical reactive transport modeling to investigate the origin of calcite cements in the Refugio‐Carneros fault located on the northern flank of the Santa Barbara Basin of southern California. Previous research has shown this calcite to have low δ13C values of about ?40 to ?30‰PDB, suggesting that methane‐rich fluids ascended the fault and contributed carbon for the mineralization. Fluid inclusion homogenization temperatures of 80–125°C in the calcite indicate that the fluids also transported significant quantities of heat. Fluid inclusion salinities ranging from fresh water to seawater values and the proximity of the Refugio‐Carneros fault to a zone of groundwater recharge in the Santa Ynez Mountains suggest that calcite precipitation in the fault may have been induced by the oxidation of methane‐rich basinal fluids by infiltrating meteoric fluids descending steeply dipping sedimentary layers on the northern basin flank. This oxidation could have occurred via at least two different mixing scenarios. In the first, overpressures in the central part of the basin may have driven methane‐rich formation waters derived from the Monterey Formation northward toward the basin flanks where they mixed with meteoric water descending from the Santa Ynez Mountains and diverted upward through the Refugio‐Carneros fault. In the second scenario, methane‐rich fluids sourced from deeper Paleogene sediments would have been driven upward by overpressures generated in the fault zones because of deformation, pressure solution, and flow, and released during fault rupture, ultimately mixing with meteoric water at shallow depth. The models in the present study were designed to test this second scenario, and show that in order for the observed fluid inclusion temperatures to be reached within 200 m of the surface, moderate overpressures and high permeabilities were required in the fault zone. Sudden release of overpressure may have been triggered by earthquakes and led to transient pulses of accelerated fluid flow and heat transport along faults, most likely on the order of tens to hundreds of years in duration. While the models also showed that methane‐rich fluids ascending the Refugio‐Carneros fault could be oxidized by meteoric water traversing the Vaqueros Sandstone to form calcite, they raised doubts about whether the length of time and the number of fault pulses needed for mineralization by the fault overpressuring mechanism were too high given existing geologic constraints.  相似文献   

7.
P. W. Cromie  Khin Zaw 《Geofluids》2003,3(2):133-143
Carlin‐type gold deposits in southern China are present in Palaeozoic to Mesozoic siliciclastic and carbonate rocks. The border region of Yunnan, Guizhou and Guangxi Provinces contains gold deposits on the south‐western margin of the Pre‐Cambrian South China Craton in south‐eastern Yunnan Province. The Fu Ning gold deposits host epigenetic, micron‐sized disseminated gold in: (i) Middle Devonian (D1p) black carbonaceous mudstone at the Kuzhubao gold deposit and (ii) fault breccia zones at the contact between Triassic gabbro (β ) and the Devonian mudstone (D1p) at the Bashishan gold deposit. The deposits are associated with zones of intense deformation with enhanced permeability and porosity that focused hydrothermal fluid flow, especially where low‐angle N‐S striking thrust faults are cut by NW striking strike‐slip and/or NE striking normal faults. Major sulphide ore minerals in the Fu Ning gold deposits are pyrite, arsenopyrite, arsenic‐rich pyrite, stibnite and minor iron‐poor sphalerite. Gangue minerals are quartz, sericite, calcite, ankerite and chlorite. Hypogene ore grades range from 1 to 7 g t?1 Au and up to 18 g t?1 Au at the Kuzhubao gold deposit and are generally less than 3 g t?1 Au at the Bashishan gold deposit. Sub‐microscopic gold mineralization is associated with finely disseminated arsenic‐rich pyrite in the Stage III mineral assemblage. Two types of primary fluid inclusions have been recorded: Type I liquid–vapour inclusions with moderate‐to‐high liquid/vapour ratios, and Type II inclusions containing moderate liquid/vapour ratios with CO2 as determined from laser Raman analysis. Temperature of homogenization (Th) data collected from these primary fluid inclusions in gold‐ore Stage III quartz ranged from 180 to 275°C at the Kuzhubao gold deposit and 210 to 330°C at the Bashishan gold deposit. Salinity results indicate that there were possibly two fluids present during gold deposition, including: (i) an early fluid with 0.8–6.5 wt.% NaCl equivalent, similar to salinity in shear‐zone‐hosted gold deposits with metamorphic derived fluids; and (ii) a late fluid with 11.8–13.4 wt.% NaCl equivalent, indicating possible derivation from connate waters and/or brine sources. CO2 and trace CH4 were only detected by laser Raman spectrometry in gold‐ore‐stage primary fluid inclusions. Results of sulphur isotope studies showed that δ34S values for pyrite and arsenopyrite associated with gold‐ore mineralization during Stage III at the Kuzhubao and Bashishan gold deposits are isotopically similar and moderately heavy with a range from +9 to +15 per mil, and also fall into the range of δ34S values reported for Carlin‐type gold deposits. Sulphur isotopes suggest that the Fu Ning gold deposits were formed from connate waters and/or basinal brines. Fluid geochemistry data from the Fu Ning gold deposits suggest a Carlin‐type genetic model, involving fluid mixing between: (i) deep CO2‐rich metamorphic fluids, (ii) moderately saline, reduced connate waters and/or basinal brines; and (iii) evolved meteoric waters.  相似文献   

8.
Uranium/thorium (U/Th)‐rich bitumen has been discovered within both Palaeoproterozoic black pelites and the Archean granitic basement of the Rum Jungle Mineral Field, Northern Territory, Australia. Granite‐hosted bitumen occurs as small (up to 400‐µm diameter) discrete individual nodules, which exhibit many morphological similarities to those observed in Phanerozoic siliciclastic rocks. Thorium, the dominant radioelement, occurs primarily as a hydrated Th–Y–Si–P phase. Uranium‐rich inclusions are rare, and correspond to a hydrated U–Th–Y–Si–P phase, identified as coffinite–thorogummite. Metasediment‐hosted bitumen is more variable in morphology, occurring as massive (<2 cm in width) veins that cross‐cut all foliations, as discrete individual nodules or as elongate seams (up to 500 µm in length), interpreted to represent a series of coalesced individual nodules. In all examples, uranium, the dominant radioelement in the metasediment‐hosted bitumen, is present as Th‐poor uraninite, with variable Y2O3 contents (up to 3.21 wt.%). Raman investigation of all types of bitumen indicates that it is a poorly organized carbonaceous matter, which has not been subjected to metamorphism. Consequently, a post‐metamorphic timing for hydrocarbon emplacement can be inferred and a magmatic origin can be precluded. Potential source rocks for the bitumen are black shales of the Whites Formation (up to 8 wt.% total organic carbon (TOC)) and the Koolpin Formation (approximately 13 wt.% TOC). Post‐metamorphic sericitization of rocks within the Whites Formation is accompanied by a near‐complete removal of organic matter. Alteration was possibly the catalyst for hydrocarbon generation. The Th–Y–Si–P phase within the granite‐hosted nodules is interpreted to be the result of the alteration of antecedent monazite. During this alteration, U, LREE and P were fractionated and removed, while Th, Y and Si remained immobile, and recombined to form a hydrated Th–Y–Si phase. This pervasive alteration within the basement U/Th‐rich granites is proposed as a genetic model for the formation of uranium deposits in the Rum Jungle Mineral Field and possibly unconformity associated uranium deposits on a global scale.  相似文献   

9.
Vigorous hydrothermal convection transfers 10 times the average continental heat flow through the central Taupo Volcanic Zone (TVZ), a region of active extension (approximately 8 mm year?1) and productive rhyolitic volcanism. Over 20 high‐temperature (>250°C) geothermal fields occur within Quaternary pyroclastic basins, with convective circulation to depths of 7–8 km presumably extending through basement rocks. Parallel‐striking normal faults, fractures and dikes dissect the convective regime, interacting with fluids to either enhance or restrict flow according to the relative permeability of structure and host rock. In the basement, high bulk permeability is maintained by focussed flow through faults and associated fractures well oriented for reactivation in the prevailing stress field. In contrast, distributed flow through fault‐bounded compartments prevails within Quaternary basins, masking any signal of deeper structural control. Exceptions occur where more competent rocks are exposed at the surface. As in narrow magmatic rifts elsewhere, the extensional fabric is partitioned into discrete rift segments linked along strike by accommodation zones. Eighty per cent of TVZ geothermal fields correlate spatially with rift architecture, with 60% located in accommodation zones. We suggest that segmented rift fabrics generate bulk permeability anisotropy that is to some extent predictable, with rift segments characterized by enhanced axial flow, and accommodation zones characterized by locally enhanced vertical permeability that is tectonically maintained. This provides a plausible explanation for the common occurrence of geothermal fields within accommodation zones and their notable absence within densely faulted rift segments. Maintenance of structural permeability in zones of active hydrothermal precipitation necessarily requires repeated brittle failure. Geothermal plumes therefore exploit tectonically maintained permeability within accommodation zones, with rift segments functioning mostly as drawdown regions. The influence of rift architecture on flow paths has important implications for geothermal extraction and epithermal mineral exploration within the TVZ and other structurally segmented hydrothermal systems, both active and extinct.  相似文献   

10.
The currently active fluid regime within the outboard region of the Southern Alps, New Zealand was investigated using a combination of field observations, carbon‐ and oxygen‐stable isotopes from fault‐hosted calcites and interpretation of magnetotelluric (MT) data. Active faulting in the region is dominated by NE striking and N striking, oppositely dipping thrust fault pairs. Stable isotopic analyses of calcites hosted within these fault zones range from 10 to 25‰δ18O and from ?33 to 0‰δ13C. These values reflect mixing of three parent fluids: meteoric water, carbon‐exchanged groundwater and minor deeper rock‐exchanged fluids, at temperatures of 10–90°C in the upper 3–4 km of the crust. A broad, ‘U‐shaped’ zone of high electrical conductivity (maximum depth c. 28 km) underlies the central Southern Alps. In the ductile region of the crust, the high‐conductivity zone is subhorizontal. Near‐vertical zones of high conductivity extend upward to the surface on both sides of the conductive zone. On the outboard side of the orogen, the conductive zone reaches the surface coincident with the trace of the active Forest Creek Faults. Near‐surface flow is shown to dominate the outboard region. Topographically driven meteoric water interacts, on a kilometre scale, with either carbon‐exchanged groundwater or directly with organic material within Pliocene gravels, resulting in a distinctive low 13C signal within fault‐hosted calcites of the outboard region. The high‐strain zone in the lower crust focuses the migration of deeply sourced fluids upward to the base of the brittle–ductile transition. Interconnected fluid is imaged as a narrow vertical zone of high conductivity in the upper crust, implying continuous permeability and possibly buoyancy‐driven flow of deeply sourced fluids to higher levels of the crust where they are detected by the isotopic analysis of the fault‐hosted calcites.  相似文献   

11.
The fluorite deposits of Asturias (northern Iberian Peninsula) are hosted by rocks of Permo‐Triassic and Palaeozoic age. Fluid inclusions in ore and gangue minerals show homogenization temperatures from 80 to 170°C and the presence of two types of fluids: an H2O–NaCl low‐salinity fluid (<8 eq. wt% NaCl) and an H2O–NaCl–CaCl2 fluid (7–13 wt% NaCl and 11–14 wt% CaCl2). The low salinity and the Cl/Br and Na/Br ratios (Cl/Brmolar 100–700 and Na/Brmolar 20–700) are consistent with an evaporated sea water origin of this fluid. The other end‐member of the mixture was highly saline brine with high Cl/Br and Na/Br ratios (Cl/Brmolar 700–13 000 and Na/Brmolar 700–11 000) generated after dissolution of Triassic age evaporites. LA‐ICP‐MS analyses of fluid inclusions in fluorite reveal higher Zn, Pb and Ba contents in the high‐salinity fluids (160–500, 90–170, 320–480 p.p.m. respectively) than in the low‐salinity fluid (75–230, 25–150 and 100–300 p.p.m. respectively). The metal content of the fluids appears to decrease from E to W, from Berbes to La Collada and to Villabona. The source of F is probably related to leaching of volcanic rocks of Permian age. Brines circulated along faults into the Palaeozoic basement. Evaporated sea water was present in permeable rocks and faults along or above the unconformity between the Permo‐Triassic sediments and the Palaeozoic basement. Mineralization formed when the deep brines mixed with the surficial fluids in carbonates, breccias and fractures resulting in the formation of veins and stratabound bodies of fluorite, barite, calcite, dolomite and quartz and minor amounts of sulphides. Fluid movement and mineralization occurred between Late Triassic and Late Jurassic times, probably associated with rifting events related to the opening of the Atlantic Ocean. This model is also consistent with the geodynamic setting of other fluorite‐rich districts in Europe.  相似文献   

12.
T. K. KYSER 《Geofluids》2007,7(2):238-257
Sedimentary basins are the largest structures on the surface of our planet and the most significant sources of energy‐related commodities. With time, sedimentary successions in basins normally are subjected to increasingly intense diagenesis that results in differential evolution of basin hydrology. This hydrologic structure is in turn vitally important in determining how and where deposition of metals may occur. Fluids in all basins originate and flow as a result of sedimentological and tectonic events, so that fluid histories should reflect the control of both lithology and tectonism on ore deposition. Sandstone lithologies, in particular, reflect fluid‐flow events because they are normally the major aquifers in basins. However, early cementation results in occlusion of primary permeability in some facies (diagenetic aquitards) whereas in others, permeability develops due to the dissolution of unstable grains (diagenetic aquifers). Particularly for ore deposits in Precambrian basins, identification of paleohydrologic systems during basin evolution requires the integration of data derived from tectonics, sedimentology, stratigraphy, diagenesis, geochemistry and geology. Assessment of all these data is a prerequisite for the ‘holistic basin analysis’ needed to guide the search for basin‐hosted ores. Recent results from the Paleoproterozoic Mt Isa and McArthur basins in northern Australia serve as a template for exploring for mineral deposits in basins. Basinal fluids were saline, 200–300°C and evolved primarily from meteoric water in the Mt Isa Basin and from seawater in the McArthur Basin during burial to depths of 4–12 km. The δDfluid and δ18Ofluid values in these brines were isotopically identical to those in the Zn‐Pb, Cu and U deposits. Geochemical changes of various lithologies during alteration support detrital minerals as the major source of the U, and volcanic units proximal to diagenetic aquifers as a source for the transition metals. Ages of diagenetic phases extracted from aquifer lithologies reveal that fluid migration from the diagenetic aquifers effectively covers the period of formation for U, Zn‐Pb and Cu mineralization, and that the deposits formed in response to tectonic events reflected in the apparent polar wandering path for the area. Sequence stratigraphic analysis and models of fluid flow also indicate that basinal reservoirs were likely sources for the mineralizing fluids. Thus, diagenetic aquifer lithologies were being drained of fluids at the same time as the deposits were forming from fluids that were chemically and isotopically similar, linking diagenesis and fluid events within the basin to the formation of the deposits.  相似文献   

13.
A review of five different field areas in the Gulf of Mexico sedimentary basin (GOM) illustrates some of the potentially diverse chemical and physical processes which have produced basinal brines. The elevated salinities of most of the formation waters in the GOM are ultimately related to the presence of the Middle Jurassic Louann Salt. Some of these brines likely inherited their salinity from evaporated Mesozoic seawater, while other saline fluids have been produced by subsequent dissolution of salt, some of which is occurring today. The timing of the generation of brines has thus not been restricted to the Middle Jurassic. The mechanisms of solute transport that have introduced brines throughout much of the sedimentary section of the GOM are not entirely understood. Free convection driven by spatial variations in formation water temperature and salinity is undoubtedly occurring around some salt structures. However, the driving mechanisms for the broad, diffusive upward solute transport in the northern Gulf rim of Arkansas and northern Louisiana are not known. In the Lower Cretaceous of Texas, fluid flow was much more highly focused, and perhaps episodic. It is clear that many areas of the Gulf basin are hydrologically connected and that large‐scale fluid flow, solute transport, and dispersion have occurred. The Na‐Mg‐Ca‐Cl compositions of brines in the areas of the Gulf Coast sedimentary basin reviewed in this article are products of diagenesis and do not reflect the composition of the evaporated marine waters present at the time of sediment deposition. Large differences in Na, Ca, and Mg trends for waters hosted by Mesozoic versus Cenozoic sediments may reflect differences in: (i) the sources of salinity (evaporated seawater for some of the Mesozoic sediments, dissolution of salt for some of the Cenozoic sediments); (ii) sediment lithology (dominantly carbonates for much of the Mesozoic sediments, and dominantly siliciclastics for the Cenozoic sediments); or (iii) residence times of brines associated with these sediments (tens of millions of years versus perhaps days).  相似文献   

14.
Faults are often important in fuelling methane seep systems; however, little is known on how different components in fault zones control subsurface fluid circulation paths and how they evolve through time. This study provides insight into fault‐related fluid flow systems that operated in the shallow subsurface of an ancient methane seep system. The Pobiti Kamani area (NE Bulgaria) encloses a well‐exposed, fault‐related seep system in unconsolidated Lower Eocene sandy deposits of the Dikilitash Formation. The Beloslav quarry and Beloslav N faults displace the Dikilitash Formation and are typified by broad, up to 80 m wide, preferentially lithified hanging wall damage zones, crosscut by deformation bands and deformation band zones, smaller slip planes and fault‐related joints. The formation of a shallow plumbing system and chimney‐like concretions in the Dikilitash Formation was followed by at least two phases of fault‐related methane fluid migration. Widespread fluid circulation through the Dikilitash sands caused massive cementation of the entire damage zones in the fault hanging walls. During this phase, paths of ascending methane fluids were locally obstructed by decimetre‐thick, continuous deformation band zones that developed in the partly lithified sands upon the onset of deformation. Once the entire damage zone was pervasively cemented, deformation proceeded through the formation of slip planes and joints. This created a new network of more localized conduits in close vicinity to the main fault plane and around through‐going slip planes. 13C‐depleted crustiform calcite cements in several joints record the last phase of focused methane fluid ascent. Their formation predated Neogene uplift and later meteoric water infiltration along the joint network. This illustrates how fault‐related fluid pathways evolved, over time, from ‘plumes’ in unconsolidated sediments above damage zones, leading to chimney fields, over widespread fluid paths, deflected by early deformation structures, to localized paths along fracture networks near the main fault.  相似文献   

15.
The juxtaposition of fault‐bounded sedimentary basins, above crustal‐scale detachments, with warmer exhumed footwalls can lead to thermal convection of the fluids in the sediments. The Devonian basins of western Norway are examples of supradetachment basins that formed in the hanging wall of the Nordfjord‐Sogn Detachment Zone. In the central part of the Hornelen and Kvamshesten basins, the basin‐fill is chiefly represented by fluvial sandstones and minor lacustrine siltstones, whereas the fault margins are dominated by fanglomerates along the detachment contact. Prominent alteration and low‐greenschist facies metamorphic conditions are associated with the peak temperature estimates of the sediments close to the detachment shear zone. Fluid circulation may have been active during the burial of the sediments, and we quantify the potential role played by thermal convection in redistributing heat within the basins. Different models are tested with homogeneous and layered basin‐fill and with material transport properties corresponding to sandstones and siltstones. We found that thermally driven fluid flow is expected in supradetachment basins as a transient process during the exhumation of warmer footwalls. We demonstrate that the fluid flow may have significantly affected the temperature distribution in the upper five kilometers of the Devonian basins of western Norway. The temperature anomaly induced by the flow may locally reach about 80°C. The sedimentary layering formed by sand‐ and siltstones strata does not inhibit fluid circulation at the scale of the basin. The presence of fluid pathways along the detachment has an important impact on the flow and allows an efficient drainage of the basin by channelizing fluids upward along the detachment.  相似文献   

16.
The Pine Point region is a classic metallogenic mining camp that produced over 58 million short tons of Zn–Pb ore from approximately 40 base‐metal mineralized deposits hosted by Middle Devonian carbonates. The ore deposits are localized in paleokarstic features found in the epigenetic ‘Presqu'ile’ dolomite that preferentially replaced some of the upper barrier limestones. The main ore‐stage sulfides include galena, sphalerite, marcasite, and pyrite. A bulk fluid inclusion chemistry study was carried out on sulfide, coarse non‐saddle and saddle dolomite and calcite samples from the Pine Point and Great Slave Reef deposits, and unmineralized coarse non‐saddle and saddle dolomite samples from Hay West, Windy Point and Qito areas. Molar Cl/Br ratio data from Pine Point indicate the presence of four fluids at different stages of the paragenesis. The fluids trapped in sulfides and ore‐stage dolomites predominately consist of a Br‐rich fluid with a composition similar to that of evaporated seawater (fluid A), and a very Br‐enriched fluid of unknown origin (fluid B). Both these fluids are CaCl2–NaCl (Na to Ca ratios of 1:10)‐rich brines and have compositions unlike the modern formation waters in the Devonian aquifers in the basin today. A third, relatively Cl‐rich (or Br‐poor), fluid (fluid C) was identified in two samples and may have acquired some chlorinity by dissolving halide minerals. Mixing between the Br‐rich fluid A and a dilute fluid also occurred in the later stages of the paragenesis, resulting in the formation of calcite and native sulfur. Saddle and coarse dolomites not associated with significant sulfide mineralization have a narrow range of halogen compositions similar to fluid A. There is no evidence of fluid B or C in the unmineralized samples. Relative to a modern‐day seawater compositions all the fluids have had some modification of their cation compositions. There is some weak evidence for interactions with clastic units or crystalline basement rocks. It is also possible however, that the evaporative brines could have formed from a relatively CaCl2‐rich, NaCl‐depleted Devonian seawater, unlike the composition of modern‐day seawater.  相似文献   

17.
This paper explores the role of basin‐scale fluid migration in stratiform Pb–Zn ore formation in the southern McArthur Basin, Australia. Mathematical models are presented for coupled brine migration and heat transport in the basin. The models account for: (i) topographically driven flow (forced convection) during periods when parts of the McArthur Basin were subaerial and elevated above the central Batten Fault Zone; (ii) density‐driven flow (free convection) during periods when the basin was mostly submarine; and (iii) transient flows associated with fault rupture during periods of transpression. These hydrologic models help to compare and contrast a variety of hypotheses concerning deep fluid migration and the origin of base metal ores in the McArthur Basin. The numerical results exhibit a strong structural control on fluid flow caused by the north‐trending fault systems that characterize the Batten Fault Zone. As a result, fluids descend to depths of a few kilometers along the western side, migrate laterally to the east through the clastic and volcanic aquifers of the upper Tawallah and lowest McArthur Groups, and then ascend along the eastern side of the fault zone. This recharge–discharge pattern dominates all of the hydrogeologic models. The basin‐wide flow pattern suggests that Na–Ca–Cl brines acquired base metals in the deepest levels of the basin stratigraphy as the fluids migrated eastwards through the aquifer system. Upward flow was relatively rapid along the Emu Fault Zone, so much so that fluid temperatures likely approached 130°C in the muddy sediments near the sea floor due to upward flow and venting at the HYC (‘Here’s Your Chance'). Transient pulses of flow characterized periods of transpressional stress and subsequent faulting may have punctuated the basin history. Large‐scale free convection, however, characterized notably long periods of diagenesis and ore mineralization during the Proterozoic in the McArthur Basin.  相似文献   

18.
The North European Basin hosts mineral deposits like the Kupferschiefer and the Mississippi Valley Type deposits in the Silesian sub‐basin in Poland. The basement to this basin, exposed in the Harz Mts and in the Flechtingen and Calvörde Blocks, contains Mesozoic Pb–Zn vein mineralization and barite–fluorite deposits as well as massive hematite veins in the Rotliegend volcanics. A comparison of the mineralizing models of these deposits with results from a basin‐wide petrographic, fluid inclusion and stable isotope study shows that the genesis of the mineral deposits can be explained by fluid systems that were active during different stages of basin evolution. These comprise syn‐ to post‐magmatic fluids derived from or mobilized in the course of the Rotliegend magmatism, fluids convecting in the Rotliegend units during the extensional basin subsidence in the Permo‐Triassic and originating from progressive devolatilization of the basin sequence and fluids derived from the overlying Zechstein evaporites. Deep‐reaching fault systems developing during the Cretaceous tectonic reactivation enhanced fluid percolation from the surface to the deep sections of the basin sequence. Identification and correlation of these fluids across the basin and in the mineralizations provide the base for a basin‐wide metallogenetic model.  相似文献   

19.
The Trèves zinc–lead deposit is one of several Mississippi Valley‐type (MVT) deposits in the Cévennes region of southern France. Fluid inclusion studies show that the ore was deposited at temperatures between approximately 80 and 150°C from a brine that derived its salinity mainly from the evaporation of seawater past halite saturation. Lead isotope studies suggest that the metals were extracted from local basement rocks. Sulfur isotope data and studies of organic matter indicate that the reduced sulfur in the ores was derived from the reduction of Mesozoic marine sulfate by thermochemical sulfate reduction or bacterially mediated processes at a different time or place from ore deposition. The large range of δ34S values determined for the minerals in the deposit (12.2–19.2‰ for barite, 3.8–13.8‰ for sphalerite and galena, and 8.7 to ?21.2‰ for pyrite), are best explained by the mixing of fluids containing different sources of sulfur. Geochemical reaction path calculations, based on quantitative fluid inclusion data and constrained by field observations, were used to evaluate possible precipitation mechanisms. The most important precipitation mechanism was probably the mixing of fluids containing different metal and reduced sulfur contents. Cooling, dilution, and changes in pH of the ore fluid probably played a minor role in the precipitation of ores. The optimum results that produced the most metal sulfide deposition with the least amount of fluid was the mixing of a fluid containing low amounts of reduced sulfur with a sulfur‐rich, metal poor fluid. In this scenario, large amounts of sphalerite and galena are precipitated, together with smaller quantities of pyrite precipitated and dolomite dissolved. The relative amounts of metal precipitated and dolomite dissolved in this scenario agree with field observations that show only minor dolomite dissolution during ore deposition. The modeling results demonstrate the important control of the reduced sulfur concentration on the Zn and Pb transport capacity of the ore fluid and the volumes of fluid required to form the deposit. The studies of the Trèves ores provide insights into the ore‐forming processes of a typical MVT deposit in the Cévennes region. However, the extent to which these processes can be extrapolated to other MVT deposits in the Cévennes region is problematic. Nevertheless, the evidence for the extensive migration of fluids in the basement and sedimentary cover rocks in the Cévennes region suggests that the ore forming processes for the Trèves deposit must be considered equally viable possibilities for the numerous fault‐controlled and mineralogically similar MVT deposits in the Cévennes region.  相似文献   

20.
We documented the porosity, permeability, pore geometry, pore type, textural anisotropy, and capillary pressure of carbonate rock samples collected along basin‐bounding normal faults in central Italy. The study samples consist of one Mesozoic platform carbonate host rock with low porosity and permeability, four fractured host rocks of the damage zones, and four fault rocks of the fault cores. The four fractured samples have high secondary porosity, due to elongated, connected, soft pores that provide fluid pathways in the damage zone. We modeled this zone as an elastic cracked medium, and used the Budiansky–O'Connell correlation to compute its permeability from the measured elastic moduli. This correlation can be applied only to fractured rocks with large secondary porosity and high‐aspect ratio pores. The four fault rock samples are made up of survivor clasts embedded in fine carbonate matrices and cements with sub‐spherical, stiff pores. The low porosity and permeability of these rocks, and their high values of capillary pressure, are consistent with the fault core sealing as much as 77 and 140 m of gas and oil columns, respectively. We modeled the fault core as a granular medium, and used the Kozeny–Carmen correlation, assigning the value of 5 to the Kozeny constant, to compute its permeability from the measured porosities and pore radii. The permeability structure of the normal faults is composed of two main units with unique hydraulic characteristics: a granular fault core that acts as a seal to cross‐fault fluid flow, and an elastic cracked damage zone that surrounds the core and forms a conduit for fluid flow. Transient pathways for along‐fault fluid flow may form in the fault core during seismic faulting due to the formation of opening‐mode fractures within the cemented fault rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号