首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The origins of increased stream flow and spring discharge following earthquakes have been the subject of controversy, in large part because there are many models to explain observations and few measurements suitable for distinguishing between hypotheses. On October 30, 2007 a magnitude 5.5 earthquake occurred near the Alum Rock springs, California, USA. Within a day we documented a several‐fold increase in discharge. Over the following year, we have monitored a gradual return towards pre‐earthquake properties, but for the largest springs there appears to be a permanent increase in discharge. The Alum Rock springs discharge waters that are a mixture between modern (shallow) meteoric water and old (deep) connate waters expelled by regional transpression. After the earthquake, there was a small and temporary decrease in the fraction of connate water in the largest springs. Accompanying this geochemical change was a small (1–2°C) temperature decrease. Combined with the rapid response, this implies that the increased discharge has a shallow origin. Increased discharge at these springs occurs both for earthquakes that cause static volumetric expansion and for those that cause contraction, supporting models in which dynamic strains are responsible for the subsurface changes that cause flow to increase. We make a quantitative comparison between the observed changes and model predictions for three types of models: (i) a permanent increase in permeability; (ii) an increase in permeability followed by a gradual decrease to its pre‐earthquake value; and (iii) an increase of hydraulic head in the groundwater system discharging at the springs. We show that models in which the permeability of the fracture system feeding the springs increases after the earthquake are in general consistent with the changes in discharge. The postseismic decrease in discharge could either reflect the groundwater system adjusting to the new, higher permeability or a gradual return of permeability to pre‐earthquake values; the available data do not allow us to distinguish between these two scenarios. However, the response of these springs to another earthquake will provide critical constraints on the changes that occur in the subsurface and should permit a test of all three types of models.  相似文献   

2.
Thermal springs are poorly known in the sedimentary sites of the Pyrenees. In this paper, we describe the ‘Bagnères‐de‐Bigorre’ springs which occur in a remarkably active seismotectonic context. A chemical and isotopic study of 15 spring waters (both cold and thermal, ranging in temperature from 7.0 to 49.9°C), and continuous monitoring of a single spring allow us to characterise water–rock interactions, fluids paths and mixing processes. Three groups of waters are distinguished: (I) SO42+–Ca2+–Cl thermal waters (II) SO42+–Cl–Ca2+ thermal waters and (III) HCO3–Ca2+ cold shallow waters. Their characteristics suggest interactions with Mesozoic evaporite and carbonate formations. O and D isotopes from thermal waters indicate a local meteoric origin of Atlantic signature and a recharge elevation of 800 to 1000 m, which corresponds to a single feeding area. Their δ13C values (?2.8 to ?9.6‰) are consistent with carbonate dissolution, slight fractionation and a surficial organic input leading to δ13C depletion. Sr isotopes (0.70751 to 0.70777), Na+/Cl and (Ca2+ + Mg2+)/SO42– ratios as well as thermodynamic calculations show that the dissolution of anhydrite and halite‐bearing Triassic layers control the chemical composition of group‐I and ‐II waters. The contrasting trends of cation/Cl ratios and TDS of waters from groups I and II suggest the existence of two different circulation paths at depth as well as dilution with surficial waters similar to group III. Calculated mixing proportions show that three waters from group I are diluted from 17 to 66%, whereas all waters from group II are mixed. The aquifer temperature is estimated to be in the range 55–64°C using the retrograde and prograde solubilities of anhydrite and chalcedony, respectively. Accordingly, the mean depth of the reservoir is around 1.7 km, which allows us to constrain the depth of the Triassic layer.  相似文献   

3.
Fluid chemistry and microbial community patterns in chimney habitats were investigated in two hydrothermal fields located at the Central Indian Ridge. Endmember hydrothermal fluid of the Solitaire field, located ~3 km away from the spreading center, was characterized by moderately high temperature (307°C), Cl depletion (489 mm ), mildly acidic pH (≥4.40), and low metal concentrations (Fe ≤ 105 μm and Mn = 78 μm ). Chloride depletion indicates that the subseafloor source fluid had undergone phase separation at temperatures higher than ~390°C while the metal depletion was likely attributable to fluid alteration occurring at a venting temperature of around 307°C. These different temperature conditions suggested from fluid chemistry might be associated with an off‐spreading center location of the field that allows subseafloor fluid cooling prior to seafloor discharge. The microbial community in the chimney habitat seemed comparable to previously known patterns in typical basalt‐hosted hydrothermal systems. Endmember hydrothermal fluid of the Dodo field, standing on center of the spreading axis, was characterized by high H2 concentration of 2.7 mm . The H2 enrichment was likely attributable to fresh basalt–fluid interaction, as suggested by the nondeformed sheet lava flow expansion around the vents. Thermodynamic calculation of the reducing pyrite–pyrrhotite–magnetite (PPM) redox buffer indeed reproduced the H2 enrichment. The quantitative cultivation test revealed that the microbial community associated with the hydrothermal fluid hosted abundant populations of (hyper)thermophilic hydrogenotrophic chemolithoautotrophs such as methanogens. The function of subseafloor hydrogenotrophic methanogenic populations dwelling around the H2‐enriched hydrothermal fluid flows was also inferred from the 13C‐ and D‐depleted signature of CH4 in the collected fluids. It was observed that the hydrothermal activity of the Dodo field had ceased until 2013.  相似文献   

4.
Barite–(pyrite) mineralizations from the thermal springs of Wiesbaden, Rhenish Massif, Germany, have been studied to place constraints on the geochemical evolution of the hydrothermal system in space and time. The thermal springs, characterized by high total dissolved solids (TDS) contents and predominance of NaCl, ascend from aquifers at 3–4 km depth and discharge at a temperature of 65–70°C. The barite–(pyrite) mineralization is found in upflow and discharge zones of the present‐day thermal springs as well as at elevations up to 50 m above the current water table. Hence, this mineralization style constitutes a continuous record of the hydrothermal activity, linking the past evolution with the present state of this geothermal system. The sulphur isotope signatures of the mineralization indicate a continuous decrease of the δ34S of sulphate from +16.9‰ in the oldest barite to +10.1‰ in the present‐day thermal water. The δ34S values of barite closely resemble various recently active thermal springs along the southern margin of the Rhenish Massif and contrast strongly with different regional ground and mineral waters. The mineralogical and isotopic signatures, combined with calculations based on uplift rates and the regional geological history, indicate a minimum activity of the thermal spring system at Wiesbaden of about 500 000 years. This timeframe is considerably larger than conservative models, which estimate the duration of thermal spring systems in continental intraplate settings to last for several 10 000 years. The calculated equilibrium sulphur isotope temperatures of coexisting barite and pyrite range between 65 and 80°C, close to the discharge temperature of the springs, which would indicate apparent equilibrium precipitation. Kinetic modelling of the re‐equilibration of the sulphate–sulphide pair during water ascent shows that this process would require 220 Myr. Therefore, we conclude that pyrite is formed from precursor Fe monosulphide phases, which rapidly precipitate in the near‐surface environment, preserving the isotope fractionation between dissolved sulphate and sulphide established in the deep aquifer. Equilibrium modelling of water–mineral reactions shows slight supersaturation of barite at the discharge temperature. Pyrite is already strongly supersaturated at the temperatures estimated for the aquifer (110°C) and processes in the near‐surface environment are most probably related to contact of the thermal water with atmospheric oxygen, resulting in formation of oxidized intermediate sulphur species and precipitation of Fe monosulphide phases, which subsequently recrystallize to pyrite.  相似文献   

5.
A combined clay mineralogical, fluid inclusion, and K‐Ar study of Upper Jurassic metasediments at the Gehn (Lower Saxony Basin, Germany) provides evidence for a transient hydrothermal event during Upper Cretaceous basin inversion centered on a prominent gravimetric anomaly. Kaolinite and smectite in Oxfordian pelitic parent rocks that cap a deltaic sandstone unit were locally transformed into pyrophyllite, 2M1 illite, R3 illite–smectite, chlorite, and berthierine at the Ueffeln quarry. The pyrophyllite‐bearing metapelites lack bedding‐parallel preferred orientation of sheet silicates and experienced peak temperatures of about 260–270°C consistent with microthermometric data on quartz veins in the underlying silicified sandstones. The presence of expandable layers in illite–smectite and high Kübler Index values indicate that the thermal event was rather short‐lived. K‐Ar dating of the <0.2 μm fraction of the pyrophyllite‐bearing Ueffeln metapelite yields a maximum illitization age of 117 ± 2 Ma. Lower trapping temperatures of aqueous fluid inclusions in quartz veins and the absence of pyrophyllite in metapelites of the Frettberg quarry in a distance of about 2.5 km from the Ueffeln quarry infer maximum paleotemperatures of only 220°C. The highly localized thermal anomaly at Ueffeln suggests fault‐controlled fluid migration and heat transfer that provided a thermal aureole for pyrophyllite formation in the metapelites rather than metamorphism due to deep burial. A pH neutral hydrothermal fluid that formed by devolatilization reactions or less likely by mixing of meteoric and marine waters that interacted at depth with shales is indicated by the low salinity (3–5 wt. % NaCl equiv.) of aqueous inclusions, their coexistence with methane–carbon dioxide‐dominated gas inclusions as well as carbon, hydrogen, and oxygen isotope data. The upwelling zone of hydrothermal fluids and the thermal maximum is centered on a gravimetric anomaly interpreted as an igneous intrusion (‘Bramsche Massif’) providing the heat source for the intrabasinal hydrothermal system.  相似文献   

6.
Hydrogeochemical monitoring of a basalt‐hosted aquifer, which contains Ice Age meteoric water and is situated at 1220 m below sea level in the Tjörnes Fracture Zone, northern Iceland, has been ongoing since July 2002. Based on hydrogeochemical changes following an earthquake of magnitude (Mw) 5.8 on 16 September 2002, we constrained the timescales of post‐seismic fault sealing and water–rock interaction. We interpret that the earthquake ruptured a hydrological barrier, permitting a rapid influx of chemically and isotopically distinct Ice Age meteoric water from a second aquifer. During the two subsequent years, we monitored a chemical and isotopic recovery towards pre‐earthquake aquifer compositions, which we interpret to have been mainly facilitated by fault‐sealing processes. This recovery was interrupted in November 2004 by a second rupturing event, which was probably induced by two minor earthquakes and which reopened the pathway to the second aquifer. We conclude that the timescale of fault sealing was approximately 2 years and that the approach to isotopic equilibrium (from global meteoric water line) was approximately 18% after >104 years.  相似文献   

7.
The quantitative assessment of COH fluids is crucial in modeling geological processes. The composition of fluids, and in particular their H2O/CO2 ratio, can influence the melting temperatures, the location of hydration or carbonation reactions, and the solute transport capability in several rock systems. In the scientific literature, COH fluids speciation has been generally assumed on the basis of thermodynamic calculations using equations of state of simple H2O–nonpolar gas systems (e.g., H2O–CO2–CH4). Only few authors dealt with the experimental determination of high‐pressure COH fluid species at different conditions, using diverse experimental and analytical approaches (e.g., piston cylinder + capsule piercing + gas chromatography/mass spectrometry; cold seal + silica glass capsules + Raman). In this contribution, we present a new methodology for the synthesis and the analysis of COH fluids in experimental capsules, which allows the quantitative determination of volatiles in the fluid by means of a capsule‐piercing device connected to a quadrupole mass spectrometer. COH fluids are synthesized starting from oxalic acid dihydrate at = amb and = 250°C in single capsules heated in a furnace, and at = 1 GPa and = 800°C using a piston‐cylinder apparatus and the double‐capsule technique to control the redox conditions employing the rhenium–rhenium oxide oxygen buffer. A quantitative analysis of H2O, CO2, CH4, CO, H2, O2, and N2 along with associated statistical errors is obtained by linear regression of the m/z data of the sample and of standard gas mixtures of known composition. The estimated uncertainties are typically <1% for H2O and CO2, and <5% for CO. Our results suggest that the COH fluid speciation is preserved during and after quench, as the experimental data closely mimic the thermodynamic model both in terms of bulk composition and fluid speciation.  相似文献   

8.
Analysis of the Byzantine primary and secondary sources for identifying the historical earthquakes in Syria and Lebanon reveals that a large earthquake (M s =7.2) occurred in July 9, 551 AD along the Lebanese littoral and was felt over a very large area in the eastern Mediterranean region. It was a shallow-focus earthquake, associated with a regional tsunami along the Lebanese coast, a local landslide near Al-Batron town, and a large fire in Beirut. It caused heavy destruction with great loss of lives to several Lebanese cities, mainly Beirut, with a maximum intensity between IX-X (EMS-92). The proposed epicentre of the event is offshore of Beirut at about 34.00°N, 35.50° E, indicating that the earthquake appears to be the result of movement along the strike-slip left-lateral Roum fault in southern Lebanon.  相似文献   

9.
We reappraise the material needed to assess the 20th-century seismicity of Switzerland and of the adjacent areas of the Alps in terms of magnitude. For this we make use of macroseismic reports and literature and by calculating the surface-wave magnitude from the Prague formula of all significant earthquakes in the region. No attempt is made to relocate earthquake positions; instead their reliability is ranked using existing solutions and macroseismic observations We find that for small earthquakes (M s >4.5), which constitute the bulk of the events in the region, the calculation of M s observed at relatively short distances, requires station and distance corrections which can be significant. Also we find that recomputed Ms estimates differ from those reported in other earthquake catalogues. From this reappraisal of M s and from a uniform re-evaluation of the associated macroseismic data, we derive a stable correlations between M s and felt areas that can be used to assess the magnitude of historical, pre-instrumental, events for which only isoseismal radii (r i ) and the associated intensities (I i ) are available. We examined the conversion of surface-wave magnitude into moment magnitude, a conversion that presents some interesting problems for relatively small events for which the M s -log(Mo) scaling changes. We conclude that the rate of moment release derived from events of M s >4.0 is small, and that it should be associated with horizontal and vertical velocity rates of less than 1 mm/yr, too small vo be confirmed by GPS measurements over short periods of time so that can be used to constrain hazard assessment.  相似文献   

10.
Highly saline, deep‐seated basement brines are of major importance for ore‐forming processes, but their genesis is controversial. Based on studies of fluid inclusions from hydrothermal veins of various ages, we reconstruct the temporal evolution of continental basement fluids from the Variscan Schwarzwald (Germany). During the Carboniferous (vein type i), quartz–tourmaline veins precipitated from low‐salinity (<4.5wt% NaCl + CaCl2), high‐temperature (≤390°C) H2O‐NaCl‐(CO2‐CH4) fluids with Cl/Br mass ratios = 50–146. In the Permian (vein type ii), cooling of H2O‐NaCl‐(KCl‐CaCl2) metamorphic fluids (T ≤ 310°C, 2–4.5wt% NaCl + CaCl2, Cl/Br mass ratios = 90) leads to the precipitation of quartz‐Sb‐Au veins. Around the Triassic–Jurassic boundary (vein type iii), quartz–haematite veins formed from two distinct fluids: a low‐salinity fluid (similar to (ii)) and a high‐salinity fluid (T = 100–320°C, >20wt% NaCl + CaCl2, Cl/Br mass ratios = 60–110). Both fluids types were present during vein formation but did not mix with each other (because of hydrogeological reasons). Jurassic–Cretaceous veins (vein type iv) record fluid mixing between an older bittern brine (Cl/Br mass ratios ~80) and a younger halite dissolution brine (Cl/Br mass ratios >1000) of similar salinity, resulting in a mixed H2O‐NaCl‐CaCl2 brine (50–140°C, 23–26wt% NaCl + CaCl2, Cl/Br mass ratios = 80–520). During post‐Cretaceous times (vein type v), the opening of the Upper Rhine Graben and the concomitant juxtaposition of various aquifers, which enabled mixing of high‐ and low‐salinity fluids and resulted in vein formation (multicomponent fluid H2O‐NaCl‐CaCl2‐(SO4‐HCO3), 70–190°C, 5–25wt% NaCl‐CaCl2 and Cl/Br mass ratios = 2–140). The first occurrence of highly saline brines is recorded in veins that formed shortly after deposition of halite in the Muschelkalk Ocean above the basement, suggesting an external source of the brine's salinity. Hence, today's brines in the European basement probably developed from inherited evaporitic bittern brines. These were afterwards extensively modified by fluid–rock interaction on their migration paths through the crystalline basement and later by mixing with younger meteoric fluids and halite dissolution brines.  相似文献   

11.
El Chichón is an active volcano located in the north‐western Chiapas, southern Mexico. The crater hosts a lake, a spring, named Soap Pool, emerging from the underlying volcanic aquifer and several mud pools/hot springs on the internal flanks of the crater which strongly interact with the current fumarolic system (steam‐heated pools). Some of these pools, the crater lake and a cold spring emerging from the 1982 pumice deposits, have been sampled and analysed. Water–volcanic gas interactions determine the heating (43–99°C) and acidification (pH 2–4) of the springs, mainly by H2S oxidation. Significantly, in the study area, a significant NH3 partial pressure has been also detected. Such a geochemically aggressive environment enhances alteration of the rock in situ and strongly increases the mineralization of the waters (and therefore their electrical conductivity). Two different mineralization systems were detected for the crater waters: the soap pool‐lake (Na+/Cl? = 0.4, Na/Mg>10) and the crater mud pools (Na+/Cl? > 10, Na/Mg < 4). A deep boiling, Na+‐K+‐Cl?‐rich water reservoir generally influences the Soap Pool‐lake, while the mud pool is mainly dominated by water‐gas–rock interactions. In the latter case, conductivity of sampled water is directly proportional to the presence of reactive gases in solution. Therefore, chemical evolution proceeds through neutralization due to both rock alteration and bacterial oxidation of ammonium to nitrate. The chemical compositions show that El Chichón aqueous fluids, within the crater, interact with gases fed by a geothermal reservoir, without clear additions of deep magmatic fluids. This new geochemical dataset, together with previously published data, can be used as a base line with which to follow‐up the activity of this deadly volcano.  相似文献   

12.
Ongoing (1996–present) volcanic unrest near South Sister, Oregon, is accompanied by a striking set of hydrothermal anomalies, including elevated temperatures, elevated major ion concentrations, and 3He/4He ratios as large as 8.6 RA in slightly thermal springs. These observations prompted the US Geological Survey to begin a systematic hydrothermal‐monitoring effort encompassing 25 sites and 10 of the highest‐risk volcanoes in the Cascade volcanic arc, from Mount Baker near the Canadian border to Lassen Peak in northern California. A concerted effort was made to develop hourly, multiyear records of temperature and/or hydrothermal solute flux, suitable for retrospective comparison with other continuous geophysical monitoring data. Targets included summit fumarole groups and springs/streams that show clear evidence of magmatic influence in the form of high 3He/4He ratios and/or anomalous fluxes of magmatic CO2 or heat. As of 2009–2012, summit fumarole temperatures in the Cascade Range were generally near or below the local pure water boiling point; the maximum observed superheat was <2.5°C at Mount Baker. Variability in ground temperature records from the summit fumarole sites is temperature‐dependent, with the hottest sites tending to show less variability. Seasonal variability in the hydrothermal solute flux from magmatically influenced springs varied from essentially undetectable to a factor of 5–10. This range of observed behavior owes mainly to the local climate regime, with strongly snowmelt‐influenced springs and streams exhibiting more variability. As of the end of the 2012 field season, there had been 87 occurrences of local seismic energy densities approximately ≥ 0.001 J/m3 during periods of hourly record. Hydrothermal responses to these small seismic stimuli were generally undetectable or ambiguous. Evaluation of multiyear to multidecadal trends indicates that whereas the hydrothermal system at Mount St. Helens is still fast‐evolving in response to the 1980–present eruptive cycle, there is no clear evidence of ongoing long‐term trends in hydrothermal activity at other Cascade Range volcanoes that have been active or restless during the past century (Baker, South Sister, and Lassen). Experience gained during the Cascade Range hydrothermal‐monitoring experiment informs ongoing efforts to capture entire unrest cycles at more active but generally less accessible volcanoes such as those in the Aleutian arc.  相似文献   

13.
Thermal springs commonly occur along faults because of the enhanced vertical permeability afforded by fracture zones. Field and laboratory studies of fault zone materials document substantial heterogeneities in fracture permeabilities. Modeling and field studies of springs suggest that spatial variations in permeability strongly influence spring locations, discharge rates and temperatures. The impact of heterogeneous permeability on spring geochemistry, however, is poorly documented. We present stable isotope and water chemistry data from a series of closely spaced thermal springs associated with the Hayward Fault, California. We suggest that substantial spatial variations observed in δ18O and chloride values reflect subsurface fluid transport through a poorly connected fracture network in which mixing of subsurface waters remains limited. Our measurements provide insight into the effect of fracture zone heterogeneities on spring geochemistry, offer an additional tool to intuit the nature of tectonically induced changes in fault zone plumbing, and highlight the need to consider local variations when characterizing fracture zone fluid geochemistry from spring systems with multiple discharge sites.  相似文献   

14.
Due to lack of strong motion records, point-source and finite-fault models have been used to simulate far-field motions at Memphis and St. Louis Cities from earthquake events in the New Madrid Seismic Zone. However, near-field rock motions and their associated uncertainties have never been studied within this zone. The objectives of this study are to develop a simple procedure to account for the uncertainty effect of earthquake source parameters, to analyze the sensitivity of near-field rock motions to input source parameters, and finally, to generate rock motions at two sites located within 11 km from the southwestern segment (strike-fault) and a third site bove the Reelfoot Rift (reverse fault) using a well-validated finite-fault simulation program; FINSIM. An equal-weight logic tree was developed to ensure that the assumed uncertainties are within physical, geological, and seismological constraints. For each site, 100 acceleration time histories with various combinations of parameter uncertainties were respectively simulated for an earthquake of M w 7.0, 7.5, and 8.0 from each of the two faults. Their average spectral accelerations were in good agreement with those derived from the attenuation relation-ships representative to the Central and Eastern United States. Numerical simulations indicated that spectral accelerations are sensitive to the slip velocity, depth to top of fault, fault strike, slip distribution, and hypocentre location along the strike.  相似文献   

15.
A gas geochemical precursor anomaly was identified prior to the October 2008 Nový Kostel (Czech Republic) earthquake swarm with a peak magnitude ML of 3.8. This anomaly was observed as a deviation of CO2 concentrations from the long‐term annual CO2 concentration trend in the gas extracted from the scree at the Nový Kostel and Old?i?ská gas monitoring stations, which are directly above the Plesná valley‐Po?átky and Mariánské Lázně fault systems. Both sites are located within the major focal zone of the NW Bohemian swarm earthquake region at the northern edge of the Cheb Basin. A decrease in CO2 concentration started at Nový Kostel in September 2008, 17 days before the swarm, opposite to the usually increasing annual trend in the autumn period, and ended with a nearly coseismic drop immediately prior to the onset of the first swarm. The CO2 concentrations at Old?i?ská, deviating from the annual trend, did not further increase after August 2008. The calculated horizontal strain field, based on the data of two permanent Global Navigation Satellite Systems stations, proved there was horizontal compression in this period. The increasing compression along the Plesná valley‐Po?átky and Mariánské Lázně fault systems during the stress build‐up reduced the fault permeability prior to this earthquake swarm as indicated by the decrease in CO2 concentration. The 17‐day duration of the earthquake precursor at Nový Kostel and about 65 days at Old?i?ská lie within the range of the precursor times that are hypothesized worldwide for an ML = 3.8 earthquake. The nature of earthquake precursors and their origin are discussed, for example, as an indication of changed fault permeability by stress build‐up in the case of the Nový Kostel swarm earthquake precursor or as fault opening in other cases.  相似文献   

16.
Fault intersections are the locus of hot spring activity and Carlin‐type gold mineralization within the Basin and Range, USA. Analytical and numerical solutions to Stokes equation suggest that peak fluid velocities at fault intersections increase between 20% and 47% when fracture apertures have identical widths but increase by only about 1% and 8% when aperture widths vary by a factor of 2. This suggests that fault zone intersections must have enlarged apertures. Three‐dimensional finite element models that consider intersecting 10‐ to 20‐m wide fault planes resulted in hot spring activity being preferentially located at fault zone intersections when fault zones were assigned identical permeabilities. We found that the onset of convection at the intersections of the fault zones occurred in our hydrothermal model over a narrow permeability range between 5 × 10?13 and 7 × 10?13 m2. Relatively high vertical fluid velocities (0.3–3 m year?1) extended away from the fault intersections for about 0.5–1.5 km. For the boundary conditions and fault plane dimensions used, peak discharge temperatures of 112°C at the water table occurred with an intermediate fault zone permeability of 5 × 10?13 m2. When fault plane permeability differed by a factor of 2 or more, the locus of hot spring activity shifted away from the intersections. However, increasing the permeability at the core of the fault plane intersection by 40% shifted the discharge back to the intersections. When aquifer units were assigned a permeability value equal to those of the fault planes, convective rolls developed that extend about 3 km laterally along the fault plane and into the adjacent aquifer.  相似文献   

17.
Transport properties of reduced carbonic fluid have been studied experimentally at P = 2 kbar and T = 700–1000°C in internally heated pressure vessel (IHPV). Synthetic FeCO3 and natural siderite were used to generate fluid during experiments using a platinum double‐capsule technique. A natural CaTiSiO5 aggregate was placed into the inner capsule as an additional source of trace elements. The outer capsule was loaded with albite glass. No water was introduced to the system and oxygen fugacity was established near to graphite–oxygen (CCO) buffer due to transformation of FeCO3 into a magnetite aggregate during decarbonation to yield CO and CO2. The carbonates decomposed during initial heating of the experiments, causing their some constituent components to be dissolved in and transferred by the fluid to the pore space of the albite glass matrix. After temperature reached 1000°C glass, the shards annealed and then melted, as evidenced by a vesiculated glass in the quench products. Micro‐Raman investigation of the fluid in bubbles in the albite glass in experiments with decomposition of natural siderite yielded CO–CO2 mixture where CO mole fraction was 0.15–0.16. We observe significant concentrations of Pt, Mn, P, and REE in the albite glass; in contrast, no Fe or Mg transfer was detected. LA‐ICP‐MS analysis of the albite glass product yielded the average Pt content of 2 ppm. Such high Pt signal came from Pt particles (100–500 nm in size), which were observed on the walls of the bubbles embedded in the glass. Olivines and aluminous spinel were observed in the Fe‐oxide aggregate, demonstrating transfer of SiO2 and Al2O3 from the albite melt by the reduced carbonic fluid from the albite glass (large capsule). Our results demonstrate that dry CO–CO2 fluid can be important agents of dissolution and transport, especially for Pt and other metals. The data imply that metals are chiefly dissolved as carbonyl complexes.  相似文献   

18.
The time series of two continuously operating gas monitoring stations at Oldřišská and Nový Kostel located along seismoactive faults in the epicentral area of the NW Bohemian swarm earthquakes (Czech Republic) are compared with water level fluctuations in two boreholes positioned along these faults and with gas flux variations of a mofette at the Soos mofette field at 9 km distance. The seasonal trend of the monitored CO2 concentration with a maximum in November and a minimum in March/April is governed by groundwater temperatures, superimposed in spring by soil temperatures. CO2 concentration variations identified at Oldřišská are also reflected in gas flux variations in the Soos mofette and/or water level fluctuations of two boreholes. Variations in the gas monitoring recordings of station at Nový Kostel are also linked with variations at Oldřišská. In all data sets, diurnal variations generated by earth tides occur, reflecting a daily stress – fault permeability cycle. Additional stress interferes with this cycle. Significant, abrupt changes are attributed to geodynamic processes linked with seismic events, as revealed by local seismicity or by the transient of waves of a strong remote earthquake. Simultaneous variations of the gas concentrations in the Nový Kostel area and in the gas flux in the Soos point to an interconnected hydraulic conductive fault systems present in the northern part of the Cheb Basin. Sharp falls in gas concentration, during or subsequent to, earthquake swarms may reflect fault compression associated with impeded gas migration. However, gas variations also occur in periods without seismic activity, indicating changes in fault permeability were caused by local aseismic fault movements, as revealed by events with opposite trends in the gas recordings at Oldřišská, Nový Kostel and the Soos. Therefore, a mathematical approach to establish a correlation between seismicity and gas geochemical variations is not possible.  相似文献   

19.
20.
Northwestern Italian weak-motion data were used to study attenuation characteristics of horizontal peak ground acceleration (PGA) and horizontal peak ground velocity (PGV) from earthquakes of local magnitudes (M l ) up to 5.1. Data have been provided by the RSNI (Regional seismic network of Northwestern Italy) and RSLG (Regional seismic network of Lunigiana-Garfagnana) waveform database. The database consists of more than 14000 horizontal components recorded in the period 1999-2002 by both broadband and enlarged band seismometers. The accuracy of the procedure used to extract PGA values from the velocity recordings was verified comparing observed and derived PGA values at station STV2, which was equipped with both a temporary K2 Kinemctrtcs accelerometer and Guralp CMG40 broadband sensor. The attenuation of both peak ground acceleration and peak ground velocity was found to be logarithmically distributed with a strong attenuation for low distances (less than 50 km) and low M l values (<3.0). The resulting equations are:

Log(PGA)=?3.19+0.87M?0.042M 2?1.92 Log(R)+0.249S,

Log(PGA)=?4.23+0.76M?0.018M2?1.56 Log(R)+0.230S,

where PGA is expressed in g, PGV is expressed in m/s, M is local magnitude, R is the hypocentral distance in kilometers and S is a dummy variable assuming values of 0 and 1 for rock and soil respectively. For increasing distance and magnitude, both PGA and PGV values show a linear distribution. The validity range of the obtained attenuation relationships is 0–200 km for distances and M l up to 4.5. Sensitivity studies performed by analysis of residuals, showed that predicted PGA and PGV values are stable with respect to reasonable variations of the model and distances providing the data. Comparisons with attenuation relationships proposed for Italian region, derived from strong motion records, are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号