首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analyse the isotopic values (δ13C, δ15N) of the diet of pre-Columbian horticulturalist populations from tropical and subtropical areas of southeastern South America, belonging to the Guarani and Taquara archaeological units. The data indicate different trends in each one (T?=?4.21; P?=?0.0004), showing a mixed diet with maize consumption in the Guarani samples (δ13Cco?=??15.5?±?1.8‰; δ13Cap ?10.4?±?0.8‰) and a depleted one in the Taquara ones (δ13Cco ?18.2?±?1.7‰; δ13Cap ?11.9?±?0.9‰), with a significant internal dispersion in both populations. The first population has higher nitrogen values (δ15N 11.1?±?0.6‰) compared to the Taquara samples (δ15N 9.3?±?1‰), suggesting a more carnivorous diet. The recognition of these pre-Columbian mixed diets involves the identification of maize cultivation on the Atlantic side of the southernmost area of South America (Parana Delta, 34° SL). Through the analysis of δ18O we have identified two isotopic ecozones, the first along the Paraná River Valley, with an average value of δ18O ?3.7?±?0.5‰ (CV?=?13.5%; CI?=??3.83 / ?3.16), and the second one, located in the Planalto of southern Brazil (Araucaria Forest), with a mean value of δ18O ?1.5?±?0.3‰ (CV?=?16.5%; CI?=??1.69 / ?1.29). The isotopic data (δ13C, δ15N and δ18O) suggest human movements between these two ecozones.  相似文献   

2.
Stable oxygen isotopes from estuarine bivalve carbonate from Saxidomus gigantea were analysed combined with high‐resolution sclerochronology from modern and archaeological shells from British Columbia, Canada, to determine the seasonality of shellfish collection from the archaeological site of Namu. The combination of high‐resolution sclerochronology and a micro‐milled sampling strategy for δ18O analysis permits a precise estimate of archaeological seasonality, because seasonal freshwater influxes and changes in temperature have dual effects on the δ18O value of the shell. Sclerochronological analysis identifies the timing and duration of growth that is temporally aligned to stable oxygen isotope results, since δ18Oshell appears to be strongly influenced by seasonal inputs of very low δ18O snowmelt‐water from adjacent coastal mountain ranges. The results show that shellfish were collected year‐round at this site over a 4000‐year period, and these data combined with other zooarchaeological lines of evidence support the interpretation of year‐round occupation.  相似文献   

3.
The Krafla geothermal system is located in Iceland's northeastern neovolcanic zone, within the Krafla central volcanic complex. Geothermal fluids are superheated steam closest to the magma heat source, two‐phase at higher depths, and sub‐boiling at the shallowest depths. Hydrogen isotope ratios of geothermal fluids range from ?87‰, equivalent to local meteoric water, to ?94‰. These fluids are enriched in 18O relative to the global meteoric line by +0.5–3.2‰. Calculated vapor fractions of the fluids are 0.0–0.5 wt% (~0–16% by volume) in the northwestern portion of the geothermal system and increase towards the southeast, up to 5.4 wt% (~57% by volume). Hydrothermal epidote sampled from 900 to 2500 m depth has δD values from ?127 to ?108‰, and δ18O from ?13.0 to ?9.6‰. Fluids in equilibrium with epidote have isotope compositions similar to those calculated for the vapor phase of two‐phase aquifer fluids. We interpret the large range in δDEPIDOTE and δ18OEPIDOTE across the system and within individual wells (up to 7‰ and 3.3‰, respectively) to result from variable mixing of shallow sub‐boiling groundwater with condensates of vapor rising from a deeper two‐phase reservoir. The data suggest that meteoric waters derived from a single source in the northwest are separated into the shallow sub‐boiling reservoir, and deeper two‐phase reservoir. Interaction between these reservoirs occurs by channelized vertical flow of vapor along fractures, and input of magmatic volatiles further alters fluid chemistry in some wells. Isotopic compositions of hydrothermal epidote reflect local equilibrium with fluids formed by mixtures of shallow water, deep vapor condensates, and magmatic volatiles, whose ionic strength is subsequently derived from dissolution of basalt host rock. This study illustrates the benefits of combining phase segregation effects in two‐phase systems during analysis of wellhead fluid data with stable isotope values of hydrous alteration minerals when evaluating the complex hydrogeology of volcano‐hosted geothermal systems.  相似文献   

4.
Spacing between stable isotope values in bones and teeth is a valuable tool for examining dietary influences and diagenesis. This study examines carbon and oxygen isotope values from collagen and hydroxyapatite (structural carbonate and phosphate) in archaeological human bones and teeth to derive species‐specific correlation equations and isotope spacing values. The δ13Ccollagen and δ13Cstructural carbonate in bone and dentin collagen show a strong correlation (R = 0.87, 0.90, respectively) with an average Δ13Ccarb‐coll spacing of 5.4‰. The consistency of this isotope spacing with other large mammals and in humans with both low and high protein intake (as indicated by enriched δ15N values) suggests a similar allocation of protein‐derived carbon and whole diet‐derived carbon to collagen and structural carbonates, respectively, as other terrestrial mammals regardless of absolute meat intake. The δ18Ostructural carbonate and δ18Ophosphate show the strongest correlation in enamel (R = 0.65), weaker correlations in dentin (R = 0.59) and bone (R = 0.35), with an average Δ18Ocarb‐phos of 7.8‰. This isotope spacing is slightly lower than previously reported for large mammals and limited available data for humans. The results potentially indicate species‐specific fractionations and differing access to body water and blood‐dissolved inorganic carbonates in the presence of collagen formation. The use of correlation between δ18Ostructural carbonate and δ18Ophosphate to determine diagenetic state is not recommended. The strength of this correlation observed in bones and teeth is variable and alternate indicators of diagenetic state (i.e. C:N ratios of collagen) provide more robust and independent evidence of isotope preservation despite presence/absence of a strong isotope correlation. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

5.
We present a structural, microstructural, and stable isotope study of a calcite vein mesh within the Cretaceous Natih Formation in the Oman Mountains to explore changes in fluid pathways during vein formation. Stage 1 veins form a mesh of steeply dipping crack‐seal extension veins confined to a 3.5‐m‐thick stratigraphic interval. Different strike orientations of Stage 1 veins show mutually crosscutting relationships. Stage 2 veins occur in the dilatant parts of a younger normal fault interpreted to penetrate the stratigraphy below. The δ18O composition of the host rock ranges from 21.8‰ to 23.7‰. The δ13C composition ranges from 1.5‰ to 2.3‰. This range is consistent with regionally developed diagenetic alteration at top of the Natih Formation. The δ18O composition of vein calcite varies from 22.5‰ to 26.2‰, whereas δ13C composition ranges from ?0.8‰ to 2.1‰. A first trend observed in Stage 1 veins involves a decrease of δ13C to compositions nearly 1.3‰ lower than the host rock, whereas δ18O remains constant. A second trend observed in Stage 2 calcite has δ18O values up to 3.3‰ higher than the host rock, whereas the δ13C composition is similar. Stable isotope data and microstructures indicate an episodic flow regime for both stages. During Stage 1, formation of a stratabound vein mesh involved bedding‐parallel flow, under near‐lithostatic fluid pressures. The 18O fluid composition was host rock‐buffered, whereas 13C composition was relatively depleted. This may reflect reaction of low 13C CO2 derived by fluid interaction with organic matter in the limestones. Stage 2 vein formation is associated with fault‐controlled fluid flow accessing fluids in equilibrium with limestones about 50 m beneath. We highlight how evolution of effective stress states and the growth of faults influence the hydraulic connectivity in fracture networks and we demonstrate the value of stable isotopes in tracking changes in fluid pathways.  相似文献   

6.
Oxygen isotope analysis was performed on the enamel of the first and third permanent molars of 60 individuals excavated from the Kalfata-Budjaka necropolis associated with the ancient Greek colony of Apollonia Pontica (5th–3rd centuries BC) on the Black Sea coast of Bulgaria. The objective of this study was to examine the geographic origins and residential histories of these individuals and to compare the isotopic data with archaeological evidence derived from the burials in an attempt to distinguish ‘locals’ from ‘non-locals’. The analysis revealed that 55 of the 60 individuals sampled were either locally born or came from areas outside of Apollonia with isotopically similar δ18O values. Five individuals were identified as ‘non-local’, and their isotope values suggest that they originated from areas with higher δ18Ow of precipitation, most likely the Aegean region. Unfortunately, the archaeological evidence associated with these five skeletons provides no clues as to their place of origin.  相似文献   

7.
Maize played a major role in Chaco's interaction with outlying communities in the southern Colorado Plateau. This paper seeks to determine where archaeological corn cobs brought to Chaco Canyon were grown. Strontium-isotope and trace-metal ratios of 180 soil-water and 18 surface-water sites in the Southern Colorado Plateau have revealed possible source areas for some of 37 archaeological corn cobs from Chaco Canyon and 10 archaeological corn cobs from Aztec Ruin, New Mexico. The most probable source areas for cobs that predate the middle-12th-century drought include several Upper Rio Chaco sites (not including Chaco Canyon). There are many potential source areas for cobs that date to the late A.D. 1100s and early 1200s, all of which lie in the eastern part of the study area. Some Athapascan-age cobs have potential source areas in the Totah, Lobo Mesa, and Dinetah regions. One Gallo Cliff Dwelling cob has a strontium-isotope ratio that exceeds all measured soil-water values. Field sites for this cob may exist in association with Paleozoic and Precambrian rocks found 80–90 km from Chaco Canyon. Potential source areas for most Aztec Ruin cobs (many of which were found in rooms dating to the first half of the 13th-century) appear to be associated with a loess deposit that blankets the Mesa Verde and McElmo Dome regions.  相似文献   

8.
Stable isotope analyses of human tooth enamel have allowed us to reconstruct the isotope composition of dietary carbon, changes in the oxygen isotope composition of drinking water and the possible migration of humans in ancient Terqa and Tell Masaikh (SE Syria). δ18Ocarbonate values of human tooth enamel from the interval comprising the Neo‐Assyrian to the modern Islamic periods (from 900 BC to AD 1949) generally mirror the isotope composition of Euphrates water, which is believed to have been a major drinking water source. Lower δ18Ocarbonate values of human Bronze Age apatite are linked to a different hydrologic system that was present in the Middle Euphrates valley at that time (2650–1700 BC). Higher δ18Ocarbonate values of some individuals in the Neo‐Assyrian (900–700 BC) and Islamic periods (AD 600–1200) may indicate human migration from the interior of the Near East. Low δ13Ccarbonate values (−11.3 to −12.4‰) of human tooth enamel from the interval comprising the Early Bronze to the Islamic periods (from 2650 BC to AD 1200) indicate C3 plants as a predominant source of dietary carbon. Changes in human dietary customs in SE Syria (with inferred usage of C4 plants) occurred in the modern Islamic period only (AD 1850–1949). Oxygen and carbon isotope data of sheep enamel show the usage of water bodies characterised by an enhanced evaporation rate during the Neo‐Assyrian time (900–700 BC) and grazing sheep herds on drier areas during the Islamic and the modern Islamic periods (after AD 600). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Seasonality determination using stable oxygen isotope (δ18O) analyses in archaeological mollusk shell has been largely limited to aquatic settings where one of the two factors that control shell δ18O – water δ18O (or salinity) and temperature – is assumed to be constant. Open coastal marine environments reflect the former situation, and tropical estuaries constitute the latter. In an effort to expand stable isotope seasonality to an ecological setting where neither variable remains constant, we present a model of annual shell δ18O cycle of aragonite deposition derived from instrumental data on salinity and temperature from San Francisco Bay, California. The predicted range of modeled shell δ18O is consistent with observed δ18O values in prehistoric and modern shells when local conditions are considered. Measurements of δ18O taken at 0 mm and 2 mm from the terminal growth margin were made on 36 archaeological specimens of Macoma nasuta from a late Holocene hunter-gatherer site CA-ALA-17, and season of collection was inferred using the shell δ18O model. We conclude that shellfish exploitation occurred through the year with the exception of fall, which may indicate scheduling conflicts with acorn harvesting or other seasonally abundant resources elsewhere. The model supports the feasibility of stable isotope seasonality studies in temperate estuaries, provided that instrumental records are available to quantify the relevant water conditions at appropriate spatial and temporal scales.  相似文献   

10.
L. Jia  C. Cai  H. Yang  H. Li  T. Wang  B. Zhang  L. Jiang  X. Tao 《Geofluids》2015,15(3):421-437
Petrographic features, C, O, S, and Sr isotopes were determined, and fluid inclusions (FI) were analyzed on various stages of vug‐ and fracture‐fillings from the Cambrian and Lower Ordovician reservoirs in the Tazhong area, Tarim basin, NW China. The aim was to assess the origin of pyrite and anhydrite and the processes affecting sulfur during diagenesis of the carbonates. Pyrite from seven wells has δ34S values from ?22‰ to +31‰. The pyrites with low δ34S values from ?21.8‰ to ?12.3‰ were found close to fracture‐filling calcites with vapor‐liquid double‐phase aqueous fluid inclusions homogenization temperatures (FI‐Th) from 55.7 to 73.2°C, salinities from 1.4wt% to 6.59wt% NaCl equiv and δ13C values from ?2.3‰ to ?14.2‰, indicating an origin from bacterial sulfate reduction by organic matter. Other sulfides with heavier δ34S values may have formed by thermochemical sulfate reduction (TSR) during two episodes. The earlier TSR in the Middle and Lower Cambrian resulted in pyrites and H2S having δ34S values from 30 to 33‰, close to those of bedded anhydrite and oilfield water (approximately 34‰). The later TSR is represented by calcites with δ13C values as light as ?17.7‰ and FI‐Th of about 120–145°C, and pyrite and H2S with δ34S values close to those of the Upper Cambrian burial‐diagenetic anhydrite (between +14.8‰ and +22.6‰). The values of the anhydrite are significantly lighter than contemporary seawater sulfates. This together with 87Sr/86Sr values of anhydrite and TSR calcites from 0.7091 to 0.7125 suggests a source from the underlying Ediacaran seawater sulfate and detrital Sr contribution.  相似文献   

11.
An integrated fluid inclusion and stable isotope study was carried out on hydrothermal veins (Sb‐bearing quartz veins, metal‐bearing fluorite–barite–quartz veins) from the Schwarzwald district, Germany. A total number of 106 Variscan (quartz veins related to Variscan orogenic processes) and post‐Variscan deposits were studied by microthermometry, Raman spectroscopy, and stable isotope analysis. The fluid inclusions in Variscan quartz veins are of the H2O–NaCl–(KCl) type, have low salinities (0–10 wt.% eqv. NaCl) and high Th values (150–350°C). Oxygen isotope data for quartz range from +2.8‰ to +12.2‰ and calculated δ18OH2O values of the fluid are between ?12.5‰ and +4.4‰. The δD values of water extracted from fluid inclusions vary between ?49‰ and +4‰. The geological framework, fluid inclusion and stable isotope characteristics of the Variscan veins suggest an origin from regional metamorphic devolatilization processes. By contrast, the fluid inclusions in post‐Variscan fluorite, calcite, barite, quartz, and sphalerite belong to the H2O–NaCl–CaCl2 type, have high salinities (22–25 wt.% eqv. NaCl) and lower Th values of 90–200°C. A low‐salinity fluid (0–15 wt.% eqv. NaCl) was observed in late‐stage fluorite, calcite, and quartz, which was trapped at similar temperatures. The δ18O values of quartz range between +11.1‰ and +20.9‰, which translates into calculated δ18OH2O values between ?11.0‰ and +4.4‰. This range is consistent with δ18OH2O values of fluid inclusion water extracted from fluorite (?11.6‰ to +1.1‰). The δD values of directly measured fluid inclusion water range between ?29‰ and ?1‰, ?26‰ and ?15‰, and ?63‰ and +9‰ for fluorite, quartz, and calcite, respectively. Calculations using the fluid inclusion and isotope data point to formation of the fluorite–barite–quartz veins under near‐hydrostatic conditions. The δ18OH2O and δD data, particularly the observed wide range in δD, indicate that the mineralization formed through large‐scale mixing of a basement‐derived saline NaCl–CaCl2 brine with meteoric water. Our comprehensive study provides evidence for two fundamentally different fluid systems in the crystalline basement. The Variscan fluid regime is dominated by fluids generated through metamorphic devolatilization and fluid expulsion driven by compressional nappe tectonics. The onset of post‐Variscan extensional tectonics resulted in replacement of the orogenic fluid regime by fluids which have distinct compositional characteristics and are related to a change in the principal fluid sources and the general fluid flow patterns. This younger system shows remarkably persistent geochemical and isotopic features over a prolonged period of more than 100 Ma.  相似文献   

12.
J. Chen  D. Liu  P. Peng  C. Yu  B. Zhang  Z. Xiao 《Geofluids》2013,13(3):381-394
The most important petroleum exploration target in the Tarim Basin, northwest China, is the paleokarst reservoir. To understand the source and evolution of brine in this type of reservoir, a total of 37 formation‐water samples were collected from the Middle‐Lower Ordovician paleokarst reservoir in the Lunnan oilfield. The δD‐δ18O correlation and Cl/Br ratios reflect the mixture of two fluids: meteoric water and evaporated seawater. The different degree of mixture divided samples into two groups. Group 1 samples, from deep strata (5150–6667 m.b.s.l.) in the east of the field, with elevated δD (?53.5 to ?38.0‰), δ18O values (0.66–5.99‰), and lower Cl/Br ratios (336–478 for Cl/Br, except LN634‐1 and LN631‐1) were formed by evaporation of seawater plus a small contribution from meteoric water. Group 2 samples, from shallow strata (5038–6067 m.b.s.l.), in the west of the field, have contrasting features (?59.6 to ?48.5‰ for δD, ?0.47 to 2.17‰ for δ18O, and 501 to 871 for Cl/Br), which reflect a mixture of evaporated seawater with a high proportion of meteoric water. Both of the fluid types exchanged oxygen isotope with minerals. The investigation into cation composition reveals that, before entering into the current reservoir, waters suffered albitization of plagioclase; moreover, meteoric water dissolved evaporites and seawater experienced dolomitization. A mixing trend showed by strontium isotopes (0.709801–0.711628) gave further evidence for the mixture of two fluid types. Based on the correlation of geological history with our data, two infiltration models of meteoric waters can be constructed. According to the chemical and isotopic compositions of the waters, an east fluid regime (Group 1) and a west fluid regime (Group 2) have thus been defined. Better understanding of the subsurface fluid movement patterns may be helpful for the local exploration.  相似文献   

13.
Stable oxygen isotope ratios in archaeological human dental enamel represent an under‐utilised tool in the examination of changing climatic patterns in the ancient world. In the Oman Peninsula at the end of the third millennium bc , rapid aridification was accompanied by a breakdown in interregional trade relations; however, the human response to these changes is poorly understood. At the Bronze Age necropolis at Shimal in the United Arab Emirates, dental enamel from individuals interred in both Umm an‐Nar (ca 2700–2000 bc ) and Wadi Suq (ca 2000–1300 bc ) tombs underwent oxygen, strontium and carbon isotope analyses to examine how local inhabitants of southeastern Arabia responded to both environmental and socioeconomic change. While individuals from Shimal exhibit a clear shift in mean δ18Oc(VPDB) values from the Umm an‐Nar (−3.5 ± 0.6‰, 1σ) to the Wadi Suq (−2.4 ± 0.9‰, 1σ), corresponding 87Sr/86Sr and δ13Cap signatures display homogeneity indicative of continuity in Bronze Age lifeways. Together, these data highlight the ability of local communities to successfully adapt to their changing environs (in lieu of societal collapse or a shift to a more mobile lifestyle) in an effort to maintain their way of life. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
We report δ18O and δ13C data from modern carbonate in soils and dung samples from 3 recently abandoned livestock corrals in northern Kenya. Calcium carbonate content is higher within ∼5 cm depth that contains a mixture of dung and surface soils of corrals than in soils below 5 cm depth. We radiocarbon dated carbonates from 0.5 to 40 cm depths in two corrals and one control site. Surface carbonates (0.5 cm) from the two corrals were formed from modern carbon (>1955) when the corrals were active, while all other carbon is >16,000 years (BP) old. Shallow carbonate is also enriched in 18O (δ18O up to 3.0‰) and depleted in 13C (δ13C up to −12.0‰) with respect to carbonate at deeper levels and at two control sites. The δ18O and δ13C of soil carbonates (δ18OSC and δ13CSC respectively) in corrals are inversely correlated for depths up to about 15 cm where organic carbon is greater than 0.5%. Below that depth, there is a positive correlation between δ18OSC and δ13CSC values, similar to that observed in a control site.  相似文献   

15.
The present paper reports results from a systematic study of oxygen isotopic compositions for glass samples from various archaeological sites (i.e., Iulia Felix, Grado, Vicenza, Pozzuoli and Modena in Italy, and Derrière Sairoche in Switzerland) and dated from the Roman period to the 18th century AD, as well as of some raw materials that may have been used for their production. The analysed samples differ essentially in the type of flux, using Roman and high Medieval glass natron and late Medieval and modern glass plant ash, soda and potash, respectively. The aim of this study was to amplify the database of oxygen isotope data for various archaeological glasses and to identify isotopic trends indicating different raw materials, production technology, and/or provenance. Results indicate that natron glass samples of various provenance and age have consistently higher δ18O values than plant ash ones (about 15.5‰ vs 13.0‰), probably due to the different flux, highly 18O-enriched in the case of natron. Isotopic data on Belus and Campanian sands, the types mentioned by Pliny for glass production, show that they have similar isotopic composition. Taking into account the oxygen isotopic composition of Roman glass, the “positive natron effect”, and the negligible influence of small amounts of manganese and antimony containing decolourisers, the suitability of both sources for glass production is verified, supporting the hypothesis of multiple sand sources. Notwithstanding this, the isotopic similarity between Belus and Campanian sands prevents us from identifying the starting material from the δ18O of the final product. In the case of plant ash used as flux, it is not possible to distinguish between soda and potash plant ash, because the addition of ash did not contribute isotopically heavy oxygen and the silica source is presumed to be comparable in the analysed samples. The isotopic data of the present study are also compared with those already published in the literature, and possible interpretations on their analogies and differences are discussed.  相似文献   

16.
The Devonian Antrim Shale is an organic‐rich, naturally fractured black shale in the Michigan Basin that serves as both a source and reservoir for natural gas. A well‐developed network of major, through‐going vertical fractures controls reservoir‐scale permeability in the Antrim Shale. Many fractures are open, but some are partially sealed by calcite cements that retain isotopic evidence of widespread microbial methanogenesis. Fracture filling calcite displays an unusually broad spectrum of δ13C values (+34 to ?41‰ PDB), suggesting that both aerobic and anaerobic bacterial processes were active in the reservoir. Calcites with high δ13C values (>+15‰) record cementation of fractures from dissolved inorganic carbon (DIC) generated during bacterial methanogenesis. Calcites with low δ13C values (13C values between ?10 and ?30‰ can be attributed to variable organic matter oxidation pathways, methane oxidation, and carbonate rock buffering. Identification of 13C‐rich calcite provides unambiguous evidence of biogenic methane generation and may be used to identify gas deposits in other sedimentary basins. It is likely that repeated glacial advances and retreats exposed the Antrim Shale at the basin margin, enhanced meteoric recharge into the shallow part of the fractured reservoir, and initiated multiple episodes of bacterial methanogenesis and methanotrophic activity that were recorded in fracture‐fill cements. The δ18O values in both formation waters and calcite cements increase with depth in the basin (?12 to ?4‰ SMOW, and +21 to +27‰ PDB, respectively). Most fracture‐fill cements from outcrop samples have δ13C values between ?41 and ?15‰ PDB. In contrast, most cement in cores have δ13C values between +15 and +34‰ PDB. Radiocarbon and 230Th dating of fracture‐fill calcite indicates that the calcite formed between 33 and 390 ka, well within the Pleistocene Epoch.  相似文献   

17.
The development of complex societies, irrigation agriculture and sociopolitical transitions are of interest to researchers working in the Nasca region on the south coast of Peru. Occupied for thousands of years, many questions regarding the circumstances of these changes in the area are being investigated. Oxygen isotope analysis provides a method for exploring residential mobility of past peoples during these transitions. This study presents new δ18O data from water sources that would have been used by the ancient inhabitants, providing important information regarding the oxygen isotope variability in the region and the necessary baseline data for migration studies in this region. Our results suggest that the isotopic composition of water sources in the Nasca region is not highly variable. In addition, archaeological human tooth enamel samples from the sites of La Tiza and Pajonal Alto are analysed. The δ18Oc results of the human enamel samples confirm the local nature of the burial population, as suggested by previous strontium isotope analysis (87Sr/86Sr). Copyright © 2010 John Wiley & Sons, Ltd. This article was published online on 13 January 2010. An error was subsequently identified. This notice is included in the online and print versions to indicate that both have been corrected 15 January 2010.  相似文献   

18.
The Dongsheng uranium deposit, the largest in situ leach uranium mine in the Ordos Basin, geometrically forms a roll‐front type deposit that is hosted in the Middle Jurassic Zhiluo Formation. The genesis of the mineralization, however, has long been a topic of great debate. Regional faults, epigenetic alterations in surface outcrops, natural oil seeps, and experimental findings support a reducing microenvironment during ore genesis. The bulk of the mineralization is coffinite. Based on thin‐section petrography, some of the coffinite is intimately intergrown with authigenic pyrite (ore‐stage pyrite) and is commonly juxtaposed with some late diagenetic sparry calcite (ore‐stage calcite) in primary pores, suggesting simultaneous precipitation. Measured homogenization temperatures of greater than 100°C from fluid inclusions indicate circulation of low‐temperature hydrothermal fluids in the ore zone. The carbon isotopic compositions of late calcite cement (δ13CVPDB = ?31.0 to ?1.4‰) suggest that they were partly derived from sedimentary organic carbon, possibly from deep‐seated petroleum fluids emanating from nearby faults. Hydrogen and oxygen isotope data from kaolinite cement (δD = ?133 to ?116‰ and δ18OSMOW = 12.6–13.8‰) indicate that the mineralizing fluids differed from magmatic and metamorphic fluids and were more depleted in D (2H) than modern regional meteoric waters. Such a strongly negative hydrogen isotopic signature suggests that there has been selective modification of δD by CH4±H2S±H2 fluids. Ore‐stage pyrite lies within a very wide range of δ34S (?39.2 to 26.9‰), suggesting that the pyrite has a complex origin and that bacterially mediated sulfate reduction cannot be precluded. Hydrocarbon migration and its role in uranium reduction and precipitation have here been unequivocally defined. Thus, a unifying model for uranium mineralization can be established: Early coupled bacterial uranium mineralization and hydrocarbon oxidation were followed by later recrystallization of ore phases in association with low‐temperature hydrothermal solutions under hydrocarbon‐induced reducing conditions.  相似文献   

19.
A multi‐isotope fingerprint consisting of δ18Ophosphate, 87Sr/86Sr, 208Pb/204Pb, 207Pb/204Pb, 206Pb/204Pb, 208Pb/207Pb and 206Pb/207Pb was established in the bioapatite of 219 individual archaeofaunal remains (cattle, pig, red deer) excavated from sites located along a specific transect of the European Alps, namely the Inn–Eisack–Adige–Brenner Passage, that has been of eminent importance since European prehistory. This reference area is vertically stratified, and since δ18O in the skeleton is influenced by climate, water source, physiology and even culture, we tested the relative contribution and importance of δ18O as a component of the multi‐isotope fingerprint for provenance analysis in this alpine region by a novel mathematical approach. In particular, we adapted a supervised learning approach through expectation–maximization (EM) clustering for fingerprint extraction and evaluated the contribution of each isotopic ratio to the data structure. While an altitude effect was evident in δ18O, its overall structural importance in the complete isotopic fingerprint was rather low. Therefore, provenance analysis of bioarchaeological finds in this region is possible by measuring stable Sr and Pb ratios alone, which is of considerable importance when δ18O values are not available, e.g., in cremated finds, although some information is lost. Whether this is tolerable depends on the scientific question to be solved.  相似文献   

20.
Central western Argentina is the southern boundary of prehispanic maize in the archaeological record. This paper explores the stable isotope information from human bone (δ13C, from collagen and δ13C from apatite) and tooth (δ13C from enamel) samples in order to characterize the temporal and spatial trends of these isotopes and to understand them in terms of human diet. We analyzed 104 human individuals from the last 6000 years. Using the Kellner and Schoeninger (2007) model the results shows a high variation in human diet with few human individuals with a notably high significance of C4 plants (probably maize) as an energy source and these samples have a chronology around ca. 1000 years BP. On the other hand a high variation in an individual’s dietary life history is shown by differences between δ13C collagen, apatite and enamel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号