首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
El Chichón is an active volcano located in the north‐western Chiapas, southern Mexico. The crater hosts a lake, a spring, named Soap Pool, emerging from the underlying volcanic aquifer and several mud pools/hot springs on the internal flanks of the crater which strongly interact with the current fumarolic system (steam‐heated pools). Some of these pools, the crater lake and a cold spring emerging from the 1982 pumice deposits, have been sampled and analysed. Water–volcanic gas interactions determine the heating (43–99°C) and acidification (pH 2–4) of the springs, mainly by H2S oxidation. Significantly, in the study area, a significant NH3 partial pressure has been also detected. Such a geochemically aggressive environment enhances alteration of the rock in situ and strongly increases the mineralization of the waters (and therefore their electrical conductivity). Two different mineralization systems were detected for the crater waters: the soap pool‐lake (Na+/Cl? = 0.4, Na/Mg>10) and the crater mud pools (Na+/Cl? > 10, Na/Mg < 4). A deep boiling, Na+‐K+‐Cl?‐rich water reservoir generally influences the Soap Pool‐lake, while the mud pool is mainly dominated by water‐gas–rock interactions. In the latter case, conductivity of sampled water is directly proportional to the presence of reactive gases in solution. Therefore, chemical evolution proceeds through neutralization due to both rock alteration and bacterial oxidation of ammonium to nitrate. The chemical compositions show that El Chichón aqueous fluids, within the crater, interact with gases fed by a geothermal reservoir, without clear additions of deep magmatic fluids. This new geochemical dataset, together with previously published data, can be used as a base line with which to follow‐up the activity of this deadly volcano.  相似文献   

2.
X. WANG  S. WU  S. YUAN  D. WANG  Y. MA  G. YAO  Y. GONG  G. ZHANG 《Geofluids》2010,10(3):351-368
Interpretation of high‐resolution two‐dimensional (2D) and three‐dimensional (3D) seismic data collected in the Qiongdongnan Basin, South China Sea reveals the presence of polygonal faults, pockmarks, gas chimneys and slope failure in strata of Pliocene and younger age. The gas chimneys are characterized by low‐amplitude reflections, acoustic turbidity and low P‐wave velocity indicating fluid expulsion pathways. Coherence time slices show that the polygonal faults are restricted to sediments with moderate‐amplitude, continuous reflections. Gas hydrates are identified in seismic data by the presence of bottom simulating reflectors (BSRs), which have high amplitude, reverse polarity and are subparallel to seafloor. Mud diapirism and mounded structures have variable geometry and a great diversity regarding the origin of the fluid and the parent beds. The gas chimneys, mud diapirism, polygonal faults and a seismic facies‐change facilitate the upward migration of thermogenic fluids from underlying sediments. Fluids can be temporarily trapped below the gas hydrate stability zone, but fluid advection may cause gas hydrate dissociation and affect the thickness of gas hydrate zone. The fluid accumulation leads to the generation of excess pore fluids that release along faults, forming pockmarks and mud volcanoes on the seafloor. These features are indicators of fluid flow in a tectonically‐quiescent sequence, Qiongdongnan Basin. Geofluids (2010) 10 , 351–368  相似文献   

3.
S. SAKATA  T. MAEKAWA  S. IGARI  Y. SANO 《Geofluids》2012,12(4):327-335
Previous geochemical studies indicated that most natural gases dissolved in brines in Japan are of microbial origin, consisting of methane produced via carbonate reduction. However, some of those from gas fields in southwest Japan contain methane relatively enriched in 13C, whose origin remains to be clarified. To address this issue, chemical and isotopic analyses were performed on natural gases and brines from the gas fields in Miyazaki and Shizuoka prefectures, southwest Japan. Methane isotopic signatures (δ13C ≈ ?68‰ to ?34‰ VPDB; δ2H ≈ ?183‰ to ?149‰ VSMOW) suggest that these gases are of microbial (formed via carbonate reduction) or of mixed microbial and thermogenic origin. The relatively high δ2H‐CH4 values and their relationship with the δ2H‐H2O values argue against the possibility of their formation via acetate fermentation. The δ13C‐CO2 values (≈?5‰), together with the slope of the correlation between δ2H‐CH4 and δ13C‐CH4δ2H‐CH4δ13C‐CH4 ≈ 1), contradict the possibility of their formation via carbonate reduction followed by partial oxidation by methanotrophs. The 3He/4He ratios of the gases from Miyazaki (≈0.11–1.3 Ra) and their low correlation with δ13C‐CH4 values do not support an abiogenic origin. It is inferred therefore that the high δ13C‐CH4 values of natural gases dissolved in brines from gas fields in southwest Japan are indications of the contribution of thermogenic hydrocarbons, although whether abiogenic hydrocarbons contribute significantly to the gases from Shizuoka requires further investigation. This study has clarified that, for the future exploration of natural gases in southwest Japan, we should adopt the strategies for conventional thermogenic gas accumulations, such as checking the content, type and maturity of organic matter in the underlying sedimentary rocks.  相似文献   

4.
High mole fraction CO2 gases pose a significant risk to hydrocarbon exploration in some areas. The generation and movement of CO2 are also of scientific interest, particularly because CO2 is an important greenhouse gas. We have developed a model of CO2 generation, migration, and titration in basins in which a high mole fraction CO2 gas is generated by the breakdown of siderite (FeCO3) and magnesite (MgCO3) where parts of the basin are being heated above approximately 330°C. The CO2 reacts with Fe‐, Mg‐, and Ca‐silicates as it migrates upward and away from the generation zone (CO2‐kitchen). Near the kitchen, where the Fe‐, Mg‐, and Ca‐silicates have been titrated and destroyed by previous packets of migrating CO2, gas moves upward without lowering its CO2 mole fraction. Further on, where Fe‐ and Mg‐silicates are still present but Ca‐silicates are absent in the sediments, the partial pressure of CO2 is constrained to 0.1–30 bars and reservoirs contain a few mole percent CO2 as described by Smith & Ehrenberg (1989) . Still further from the source, where Ca‐silicates have not been titrated, partial pressure of CO2 in migrating methane gas are orders of magnitude lower. A 2D numerical model of CO2 generation, migration, and titration quantifies these buffer relations and makes predictions of CO2 risk in the South China Sea that are compatible with exploration experience. Reactive CO2 transport models of the kind described could prove useful in determining how gases migrate in faulted sedimentary basins.  相似文献   

5.
Half of the topseals to the world's largest oilfields are evaporites. Rock salt has a thermal conductivity two to four times greater than that of other sedimentary rocks found in oil‐ and gas‐bearing basins. Strong heat conduction through evaporites can increase the geothermal gradient above evaporite deposits, resulting in a positive thermal anomaly and above‐average temperature while simultaneously decreasing the geothermal gradient below evaporites, resulting in a negative thermal anomaly. Most Triassic–Jurassic hydrocarbon source rocks in the Kuqa Basin, western China, are overlain by ~1500‐m‐thick Tertiary evaporites with underlying Cretaceous sandstones and mudstones. Directly measured strata temperatures indicate an obvious break in the steepness of the geothermal gradient above and below Paleogene evaporites, with a significantly steeper geothermal gradient above the evaporites. Simulations of the thermal evolution of source rocks based on data collected from well Kela‐2 indicate that if the thickness of evaporites (mainly rock salt and anhydrite rock) in overlying rocks above source rocks increases compared with the thickness of siliciclastic rocks in the overlying rocks, then strata temperatures and vitrinite reflectance in Jurassic source rocks will decrease accordingly. Our thermal simulations based on the thickness and thermal conductivity of evaporites accurately coincide with previous studies based on homogenization temperatures, hydrocarbon–water contact retrospection, and carbon isotope results from natural gases. The gas generation center located in the Kalasu Tectonic Belt today is also sealed in an evaporite‐related structural trap that formed at this time. Therefore, the speculated natural gas generation times not only correlate with the evaporite‐related structural trap formation, but the calculated maturity of deep source rocks below the evaporites also coincides with current gas reserves. And our studies can help to find the deep oils and gases under thick evaporites.  相似文献   

6.
The permeability of continental crust is so highly variable that it is often considered to defy systematic characterization. However, despite this variability, some order has been gleaned from globally compiled data. What accounts for the apparent coherence of mean permeability in the continental crust (and permeability–depth relations) on a very large scale? Here we argue that large‐scale crustal permeability adjusts to accommodate rates of internal and external forcing. In the deeper crust, internal forcing – fluxes induced by metamorphism, magmatism, and mantle degassing – is dominant, whereas in the shallow crust, external forcing – the vigor of the hydrologic cycle – is a primary control. Crustal petrologists have long recognized the likelihood of a causal relation between fluid flux and permeability in the deep, ductile crust, where fluid pressures are typically near‐lithostatic. It is less obvious that such a relation should pertain in the relatively cool, brittle upper crust, where near‐hydrostatic fluid pressures are the norm. We use first‐order calculations and numerical modeling to explore the hypothesis that upper‐crustal permeability is influenced by the magnitude of external fluid sources, much as lower‐crustal permeability is influenced by the magnitude of internal fluid sources. We compare model‐generated permeability structures with various observations of crustal permeability.  相似文献   

7.
Geological methane, generated by microbial decay and the thermogenic breakdown of organic matter, migrates towards the surface (seabed) to be trapped in reservoirs, sequestered by gas hydrates or escape through natural gas seeps or mud volcanoes (via ebullition). The total annual geological contribution to the atmosphere is estimated as 16–40 Terragrammes (Tg) methane; much of this natural flux is ‘fossil’ in origin. Emissions are affected by surface conditions (particularly the extent of ice sheets and permafrost), eustatic sea‐level and ocean bottom‐water temperatures. However, the different reservoirs and pathways are affected in different ways. Consequently, geological sources provide both positive and negative feedback to global warming and global cooling. Gas hydrates are not the only geological contributors to feedback. It is suggested that, together, these geological sources and reservoirs influence the direction and speed of global climate change, and constrain the extremes of climate.  相似文献   

8.
D. BROSETA  N. TONNET  V. SHAH 《Geofluids》2012,12(4):280-294
The various modes of acid gas storage in aquifers, namely structural, residual, and local capillary trapping, are effective only if the rock remains water‐wet. This paper reports an evaluation, by means of the captive‐bubble method, of the water‐wet character in presence of dense acid gases (CO2, H2S) of typical rock‐forming minerals such as mica, quartz, calcite, and of a carbonate‐rich rock sampled from the caprock of a CO2 storage reservoir in the South‐West of France. The method, which is improved from that previously implemented with similar systems by Chiquet et al. (Geofluids 2007; 7 : 112), allows the advancing and receding contact angles, as well as the adhesion behavior of the acid gas on the mineral substrate, to be evaluated over a large range of temperatures (up to 140°C), pressures (up to 150 bar), and brine salinities (up to NaCl saturation) representative of various geological storage conditions. The water‐receding (or gas‐advancing) angle that controls structural and local capillary trapping is observed to be not significantly altered in the presence of dense CO2 or H2S. In contrast, some alteration of the water‐advancing (or gas‐receding) angle involved in residual trapping is observed, along with acid gas adhesion, particularly on mica. A spectacular wettability reversal is even observed with mica and liquid H2S. These results complement other recent observations on similar systems and present analogies with the wetting behavior of crude oil/brine/mineral systems, which has been thoroughly studied over the past decades. An insight is given into the interfacial forces that govern wettability in acid gas‐bearing aquifers, and the consequences for acid gas geological storage are discussed along with open questions for future work.  相似文献   

9.
F. Simpson 《Geofluids》2001,1(2):123-136
The brittle–ductile transition has been suggested to provide a mechanical trap to deep crustal fluids. The mechanism was advanced as a way of reconciling the geophysical case for a wet lower crust, founded on the revelation of deep crustal electrical conductors and seismic reflectors, with the problem of maintaining interconnected, low‐density fluids in stable crust for geologically significant timescales. Although some deep crustal conductors are now attributed to graphite, the hypothesis of fluid trapping at the brittle–ductile transition has been widely adopted in electromagnetic literature, with no regard to tectonic regime, and in association with standardized temperatures of 300–450°C. Meanwhile, petrologists continue to argue that the lower crust is dry. This paper re‐examines the arguments on which the hypothesis of fluid trapping at the brittle–ductile transition has been founded, and concludes that there is a geophysical case for a dry lower crust based on electromagnetic studies. The magnetotelluric (MT) technique yields electrical conductances (conductivity–thickness products) that are direction dependent (or anisotropic). The necessity of considering direction‐dependent conductances, rather than a bulk conductance, is demonstrated using data from Saxothuringia, Germany. A quantitative model is developed to facilitate joint interpretation of the maximum conductance and the anisotropy of conductance (ratio of maximum to minimum conductance). The model yields quantitative arguments against fluids being the principal cause of deep crustal electrical conductivity, because unreasonably thick layers and unreasonably high porosities are required.  相似文献   

10.
Eastern Sicily (southern Italy) is characterised by the presence of many natural gas emissions (mofettes, mud volcanoes). These gases are mostly carbon dioxide and methane, with minor amounts of helium, hydrogen, carbon monoxide and hydrocarbons. In this study, the extent and orientation of soil gas anomalies (He and CO2) were investigated on a wide area (approximately 110 km2) located just SW of Mt. Etna. From a structural point of view, this area lays on a typical foredeep–foreland system that marks the boundary between the southern part of the Eurasian plate and the northern part of the African plate in the central Mediterranean. No tectonic structure was revealed in this area by surface geological surveys. Very high soil emissions were found, and their spatial pattern reveals the existence of some active faults all directed about N50°E. This direction coincides with that of two major fault systems that cut eastern Sicily and are evident, respectively, NE and SW of the study area. Soil gas data suggest that these fault systems are the expression of a single continuous structural line which is probably responsible for the past and present magma uprise in eastern Sicily. Isotopic values of carbon of CO2 suggest a minor contribution of organic carbon. Moreover, in the highest degassing sites the isotopic values of He found in association with CO2 (He abundance = 11–70 p.p.m.; R/Ra between 6.0 and 6.2) suggest that both gases are mantle derived. The extent of the areas affected by high gas emissions and the amounts of deep CO2 emitted in the investigated area (several hundred tonnes per day) may provide additional supporting evidence of a mantle upwelling taking place beneath this region.  相似文献   

11.
Permeability and diffusivity are critical parameters of tight reservoir rocks that determine their viability for commercial development. Current methods for measuring permeability and/or diffusivity may lead to erroneous results when applied to very tight rocks including gas shales, coal, and tight gas sands, as well as rocks considered as seals for nuclear waste repositories and strata for geological sequestration of CO2. The use of He as routinely applied to measure porosity, permeability, and diffusivity may result in non-systematic errors because of the molecular sieving effect of the fine pore structure to larger molecules such as reservoir gases. Utilizing gases with larger adsorption potentials than He, such as N2, and including all reservoir gases to measure porosity or permeability of rocks with high surface area is a viable alternative, but requires correcting for adsorption in the analyses. This study expands several approaches to measure permeability and diffusivity with considerations for gas adsorption, which has not been explicitly considered in previous studies. We present new models that explicitly correct for adsorption during pulse-decay measurements of core under reservoir conditions, as well as on crushed samples used to approximate permeability or diffusivity. We also present a method to determine permeability or diffusivity from on-site drill-core desorption test data as carried out to determine gas in place in coals or gas shales. Our new approach utilizes late-time data from experimental pressure-decay tests, which we show to be more reliable and theoretically (and practically) accurate than the early-time approach commonly used to estimate gas-transport properties.  相似文献   

12.
Residents of northeastern British Columbia's Peace River region concurrently confront intensifying oil/gas drilling, reinvigorated coal mining and the construction of a third massive hydroelectric dam. After years of approaching industrial impacts as temporally and spatially isolatable, calls to acknowledge cumulative ecological effects are finally being heard. Yet the sociocultural disruptions that accompany biophysical alterations are equally essential components of a comprehensive cumulative effects agenda. This article considers how frameworks for comprehending the consequences of landscape‐altering, life‐changing projects could be expanded to address both the complex realities of ecological degradation and the entangled cultural and political transformations that contour local communities and lives. Ultimately, the resource extraction experiences at the forefront of regional residents’ minds must be recognized as key determinants of forthcoming socio‐natural worlds, as they arise and aggregate out of countless culturally constituted and politically mediated decisions to embrace, accept or oppose extractive schemes.  相似文献   

13.
To quantify and rank gas wettability of coal as a key parameter affecting the extent of CO2 sequestration in coal and CH4 recovery from coal, we developed a contact angle measuring system based on a captive gas bubble technique. We used this system to study the gas wetting properties of an Australian coal from the Sydney Basin. Gas bubbles were generated and captivated beneath a coal sample within a distilled water‐filled (pH 5.7) pressurised cell. Because of the use of distilled water, and the continuous dissolution and shrinkage of the gas bubble in water during measurement, the contact angles measured correspond to a ‘transient receding’ contact angle. To take into account the mixed‐gas nature (CO2, CH4, and to a lesser extent N2) of coal seam gas in the basin, we evaluated the relative wettability of coal by CH4, CO2 and N2 gases in the presence of water. Measurements were taken at various pressures of up to 15 MPa for CH4 and N2, and up to 6 MPa for CO2 at a constant temperature of 22°C. Overall, our results show that CO2 wets coal more extensively than CH4, which in turn wets coal slightly more than N2. Moreover, the contact angle reduces as the pressure increases, and becomes < 90° at various pressures depending on the gas type. In other words, all three gases wet coal better than water under sufficiently high pressure.  相似文献   

14.
The machinery manufacturing industry in the Ob'-Irtysh complex, as in other economic regions of the USSR, works mainly for the national market. Only a fraction of most machinery needs of the Ob'-Irtysh are being met by local production, concentrated at Tomsk, Omsk, and Tyumen'. In view of the current oil and gas development program in the region, it is suggested that plants for the manufacturing and, especially, the overhauling of oil and gas equipment and drilling rigs be constructed at Tyumen' as well as at Tobol'sk, which is closer to the oil and gas fields. At the present time more than 90 percent of the oil equipment and drilling rigs are supplied from outside the region. A number of regional centers are found suitable for expansion of machinery manufacturing. In the future the region's machine-building industry is expected to perform the dual function of supplying the eastern zone of the Soviet Union and of satisfying local machinery requirements to a greater extent, particularly the needs of the oil and gas industries.  相似文献   

15.
The oceanic upper crustal reservoir is a 600‐m thick layer of porous and permeable basaltic rock that forms the uppermost igneous basement underlying the global ocean. Pore spaces within this fluid aquifer contain a significant fraction of the global seawater, and active circulation through this reservoir has profound influence on the chemical composition of the ocean, strongly impacting the biological environment near the sea surface. Because of the relative inaccessibility of the deep seafloor, where hydrothermal fluid discharges and seawater re‐charges the oceanic crustal aquifer, our understanding of the dynamic physical, chemical and biological processes is strongly dependent on our ability to obtain uncontaminated samples from this challenging environment. Recent technological advances have addressed some, but certainly not all of these sampling problems, providing new data and samples that test our current hypotheses about the crustal fluid reservoir. Current scientific interest in the sub‐seafloor biosphere has focused on the uppermost igneous oceanic crust as likely to be one of the most habitable environments, because of its porosity and locus of hydrothermal circulation of chemical nutrients. Recent observations indicate that sub‐seafloor crustal environments harbor novel CO2‐utilizing bacteria (primary producers) that could be a significant source of carbon‐fixation in the ocean, thus broadening possible habitable zones both on Earth and elsewhere where microbial life could exist independent of nutrient input from photosynthesis.  相似文献   

16.
X. Xie  S. Li  H. He  X. Liu 《Geofluids》2003,3(4):245-253
Overpressured systems and intense, anomalously hot fluid expulsion in the Yinggehai Basin of the South China Sea offer an opportunity to understand the history of fluid flow and the process of hydrocarbon accumulation in overpressured environments. Fluid migration pathways from overpressured compartments in the basin are largely controlled by the distribution of faults and fractures. Episodic opening of these faults are related to the dynamics of an overpressured system and tectonic movements during basin evolution. At the crests of diapiric structures, fluid expulsion is seismically imaged as chimney‐ or plume‐like features, low to middle seismic amplitudes, and intermittently chaotic and blank reflecting seismic facies. These fluid pathways are controlled by vertical faults, which commonly penetrate overpressured and overlying normally pressured zones. Fluid expulsion is also observed near the main faults, such as the No. 1 Fault at the north‐eastern margin of the basin. Investigation by sidescan sonar on onshore and offshore Hainan Island indicates that there are more than 100 gas seepages adjacent to the No. 1 Fault. Migration pathways in the diapiric structures are controlled by three types of fault and fracture. Penetrative faults formed by dextral strike‐slip movement of the Red River faults commonly occur in the centre of the diapirs, and may have been a triggering factor for the diapirism, and controlled their distribution. Hydrofractures occur in certain mud‐rich layers and may have been generated by hydraulic fracturing. Radial normal faults occur at the top of diapirs and were formed by the intrusive process. These fluid migration pathways played an important role in regional hydrocarbon accumulation.  相似文献   

17.
摘要文物展柜为文物的展示和保存提供了一个相对独立的空间,展柜密封度的高低影响着展柜内微环境调控的效果。为评价文物展柜的密封度,用示踪气体法检测展柜换气率,从检测便捷、安全和实验数据可靠角度分析比较了二氧化碳和乙烯的实验结果。结果显示,两种示踪气体均可用于检测展柜的密封度。其中,二氧化碳气体检测法比较方便,但其密度较大,易于沉降,检测结果偏低。环境湿度对二氧化碳示踪气体法检测的结果有一定影响。应用二氧化碳示踪气体法测试了多种展柜的换气率表明,各展柜的密封度有较大差别,每天换气率从0.1次到37次不等。检测结果提示,二氧化碳示踪气体法为评价展柜的密封度提供了一个简便易行的方法。  相似文献   

18.
Shale gas reservoirs like coalbed methane (CBM) reservoirs are promising targets for geological sequestration of carbon dioxide (CO2). However, the evolution of permeability in shale reservoirs on injection of CO2 is poorly understood unlike CBM reservoirs. In this study, we report measurements of permeability evolution in shales infiltrated separately by nonsorbing (He) and sorbing (CO2) gases under varying gas pressures and confining stresses. Experiments are completed on Pennsylvanian shales containing both natural and artificial fractures under nonpropped and propped conditions. We use the models for permeability evolution in coal (Journal of Petroleum Science and Engineering, Under Revision) to codify the permeability evolution observed in the shale samples. It is observed that for a naturally fractured shale, the He permeability increases by approximately 15% as effective stress is reduced by increasing the gas pressure from 1 MPa to 6 MPa at constant confining stress of 10 MPa. Conversely, the CO2 permeability reduces by a factor of two under similar conditions. A second core is split with a fine saw to create a smooth artificial fracture and the permeabilities are measured for both nonpropped and propped fractures. The He permeability of a propped artificial fracture is approximately 2‐ to 3fold that of the nonpropped fracture. The He permeability increases with gas pressure under constant confining stress for both nonpropped and propped cases. However, the CO2 permeability of the propped fracture decreases by between one‐half to one‐third as the gas pressure increases from 1 to 4 MPa at constant confining stress. Interestingly, the CO2 permeability of nonpropped fracture increases with gas pressure at constant confining stress. The permeability evolution of nonpropped and propped artificial fractures in shale is found to be similar to those observed in coals but the extent of permeability reduction by swelling is much lower in shale due to its lower organic content. Optical profilometry is used to quantify the surface roughness. The changes in surface roughness indicate significant influence of proppant indentation on fracture surface in the shale sample. The trends of permeability evolution on injection of CO2 in coals and shales are found analogous; therefore, the permeability evolution models previously developed for coals are adopted to explain the permeability evolution in shales.  相似文献   

19.
M. LIOTTA  M. MARTELLI 《Geofluids》2012,12(3):236-244
An improved method based on equilibrium partitioning between water samples and an inert host gas, introduced after sampling, is proposed for determining multiple species of dissolved gases in brackish water. The method itself, and the most convenient equations for describing gas solubilities in brackish waters, is described in detail. The method allows the rapid characterization of several sites and represents a useful tool for geochemical surveys. A comparison between replicate samples analyzed using different procedures demonstrates the efficiency of the method and indicates that the abundances of the main dissolved gases can be obtained, which can then be used to determine underlying geochemical processes. A Microsoft Excel worksheet is provided to easily calculate the concentration of dissolved gas species.  相似文献   

20.
The storage spaces within deeply buried Ordovician paleokarst reservoirs in the Tarim Basin are mostly secondary and characterized by strong heterogeneity and some degree of anisotropy. The types of fluids that fill the spaces within these reservoirs are of great importance for hydrocarbon exploration and exploitation. However, fluid identification from seismic data is often controversial in this area because the seismic velocity for this particular reservoir could be significantly influenced by many factors, including pore shapes, porosity, fluid types, and mineral contents. In this study, we employ the differential effective medium‐Gassmann rock physics model to interpret and discuss the characteristics of conventional karstic carbonate reservoirs in the Tarim Basin that are filled with different fluids (oil, gas, and water) using logging data and thus objectively build corresponding fluid identification criteria. These criteria are subsequently evaluated by amplitude versus offset (AVO) forward analysis based on typical logging data and further applied to ascertain the reservoir fluid types in two different areas in the Tarim Basin based on prestack inversion results. For conventional carbonate reservoirs, gas can be distinguished from heavy oil and water, but heavy oil and water are broadly similar on seismic data. For condensate carbonate reservoirs, water can be differentiated from light oil (i.e., condensates) and gas, but light oil and gas demonstrate substantial similarities in terms of their seismic responses. The predicted fluid results are in good agreement with the results of drilling and oil testing. In particular, modeling the seismically resolvable reservoirs in the carbonate strata in the Tarim Basin, which have needle‐ and sphere‐shaped storage spaces (pore aspect ratio > 0.3) and clay content that is lower than 5%, indicates that fluid properties could be properly evaluated if the porosity is larger than 5% for conventional carbonate reservoirs and >7% for condensate carbonate reservoirs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号