首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This article proposes a damage index for the seismic analysis of Reinforced Concrete members using the hysteretic energy dissipated by a structural member and a drift ratio related to failure in the structure. The index was calibrated against observed damage in laboratory tests of 76 RC column units under various protocols. Values obtained in this calibration had acceptable agreement with the levels of damage observed in the test specimens. An analysis of the parameters involved in the definition of the proposed damage index shows the importance of displacement history in the drift ratio capacity of structures.  相似文献   

2.
Although a significant number of studies have been conducted on the behavior of the reinforced concrete beam-column joints retrofitted with FRP materials, limited investigation considered the overall seismic behavior of the retrofitted frames. In this article, experimental and numerical studies are performed on a scaled-down eight-story and two full scaled low-rise ordinary moment resisting frames (OMRFs) retrofitted with FRP at the joints. Additional, rotational stiffness of the joints is implemented into pushover models to predict seismic performance and behavior factor of the retrofitted frames. Results indicate that FRP retrofitting is more effective than steel braces for low- and medium-rise OMRFs.  相似文献   

3.
The feasibility of using output-only model-free wavelet-based techniques for damage detection in reinforced concrete structures subjected to seismic loads is explored through the analysis of the results of a full scale shake table test of a reinforced concrete bridge column recently performed at the NEES Large High Performance Outdoor Shake Table. The evaluated approaches are based solely in the analysis of the acceleration time histories recorded in the structure. The viability of using numerical models to validate this type of damage detection methodologies is also evaluated. Wavelet analyses were capable of identifying the rebar fracture episodes and partially identified the frequency shifts in the structure as the inelastic demand increased. It was also found that, depending on the methodology employed, the use of numerical models to validate damage detection techniques can oversimplify the actual problem and/or induce spurious irregularities.  相似文献   

4.
Development of fragility functions is a pertinent stage in seismic performance assessment of structures. A database of lightly Reinforced Concrete (RC) walls under simulated seismic loading is compiled from the literature to establish the drift-based seismic fragility functions. To classify the damage states experienced by RC walls, the Park-Ang Damage model is amended in this research. Then, the modified Bouc-Wen-Baber-Noori hysteresis model is implemented in ABAQUS to predict the hysteresis behavior of RC walls. Thereafter, the proposed hysteresis model is employed to develop the seismic fragility curves of low to mid-rise RC walls in Singapore using incremental dynamic analysis approach.  相似文献   

5.
The damaging effects of aftershocks are overlooked by current building codes and not properly accounted for in commercial seismic loss assessment software. In this paper, an evaluation of the seismic fragility relationships for reinforced concrete (RC) frame systems prone to mainshock-aftershocks sequences is conducted. Fiber-based finite element models for different types of RC frames are established and subjected to a suite of ground motions obtained from the Tohoku sequence. Fragility relationships are derived with and without consideration to multiple earthquake effects. The results from this study confirm that multiple earthquakes have significant effects on the vulnerability relationships of RC frames.  相似文献   

6.
Concrete shear walls are widely employed in buildings as a main resistance system against lateral loads. Early identification of seismic damage to concrete shear walls is vital for deciding post-earthquake occupancy in these structures. In this article, a method based on artificial neural networks for real-time identification of seismic damage to concrete shear walls was proposed. Inter-story drifts and plastic hinge rotation of concrete walls were used as the inputs and outputs of a MLP neural network. Modal Pushover Analysis was employed to prepare well-distributed data sets for training the neural network. The proposed method was applied to a five-story concrete shear wall building. The results from the network were compared with those obtained from Nonlinear Time History Analysis. It was observed that the trained neural network successfully detected damage to concrete shear walls and accurately estimated the severity of seismic-induced damage.  相似文献   

7.
Previous experimental research on shear walls has mainly focused on load carrying capacity, deformation, or hysteretic characteristics, with relatively little attention paid to individual damage states and their corresponding responses during the entire loading process until failure. The damage behavior of seven reinforced concrete shear wall specimens subjected to cyclic loading is presented in this study. The effects of the axial load ratio, transverse reinforcement ratio of confining boundary elements, and cross-section shape on damage characteristics, ductility, shear deformation, and crack width of the specimens were analyzed comprehensively.  相似文献   

8.
Fragility functions play an essential role in evaluating the seismic vulnerability of structures. To establish the seismic fragility functions of lightly Reinforced Concrete (RC) beam-column joints, the Park-Ang Damage model has been amended to quantify the damage states and the modified Bouc-Wen-Baber-Noori model has been employed and implemented in ABAQUS to predict the structural hysteresis behavior. Following successful calibration of the numerical results of a RC test frame from literature, the proposed model has been utilized to assess the seismic fragility curves of low to mid-rise RC frames in Singapore for 30 scaled ground motions using incremental dynamic analysis approach.  相似文献   

9.
Simplified expressions to estimate the behavior factor of plane steel moment resisting frames are proposed, based on statistical analysis of the results of thousands of nonlinear dynamic analyses. The influence on this factor of specific structural parameters, such as the number of stories, the number of bays, and the capacity design factor of a steel frame, is studied in detail. The proposed factor describes the seismic strength requirements in order to restrict maximum storey ductility to a predefined value. Interrelation studies between maximum storey ductility and the Park-Ang damage index are also provided for the damage-based interpretation of the performance levels under consideration. Realistic design examples serve to demonstrate the ability of the proposed factor to convert conventional force-based design to a direct performance-based seismic design procedure.  相似文献   

10.
The aim of this study was to propose an extension of the displacement-based assessment procedure for infilled reinforced concrete (RC) frames. Two fundamental steps of the displacement-based approach were studied: the determination of the equivalent viscous damping and the definition of the limit-state displacement profile. The proposed criteria were derived by examining the results of two different numerical investigations regarding the nonlinear seismic response of single- and multi-story infilled RC frames. Lastly, the effectiveness of the method was verified through comparisons, in terms of displacement demand, with the results of nonlinear dynamic analyses.  相似文献   

11.
T-shaped slender reinforced concrete (RC) structural walls are commonly used in medium-rise and high-rise buildings as part of lateral force resisting system. Compared to its popularity, experimental results on seismic performance of these walls are relatively sparse, especially for data regarding these walls in the non-principal bending directions. This article aims at providing additional experimental evidence on seismic performance of T-shaped RC structural walls. Experimental results of six T-shaped RC walls were presented. These walls resemble the structural walls found in existing buildings in Singapore and possess slightly inferior details compared to the requirements of modern design codes. The test variables were the loading direction and the axial load ratio. The experimental results were discussed in terms of the failure mechanisms, cracking patterns, hysteretic responses, curvature distributions, displacement components, and strain profiles. In addition, the experimental results were compared with methods commonly adopted in current design practice including the nonlinear section analyses, shear strength models and effective width of the tension flange. The experimental data illustrate that the shear lag effect not only was not accurately accounted for by the effective width method but also significantly affected the strength and stiffness of the tested specimens.  相似文献   

12.
ABSTRACT

The seldom investigation of variable length of damage region prevents the estimation of probabilistic drift limits of reinforced concrete columns at different performance levels for the performance-based seismic design. However, if using the numerical approach to predict the variability of damage region within the framework of force-based beam-column element, the current force-based beam-column element is unable to model the spreading of damage region. Therefore, a new numerical simulation method is proposed to compute the emergence, propagation and termination of damage region of reinforced concrete columns. Then, based on the developed numerical simulation method, the measured response of experimental testing is calibrated. From the calibration, it can be observed that there is a rapid increase on the variable length of damage region with the increasing of lateral displacement and then followed by a stable stage. The propagation of the longitudinal reinforcement yielding and concrete tensile cracking mainly occurs in the ascending branch of the load–displacement response. Then, based on the growth characteristic of the damage region from the numerical simulation, an empirical equation is proposed to describe the variable length of damage region by using the least-square regression analysis to fit the computed responses for its simplicity to use in engineering practices. Finally, the stable length of damage region is reinvestigated by carrying out a parametric study with the developed numerical simulation method, indicating that two critical design parameters, specifically the axial load ratio and the shear span ratio, have considerable influences on this quantity of interest.  相似文献   

13.
The 7.8 Mw Gorkha earthquake struck the east of Lamjung in Nepal, followed by a sequence of powerful aftershocks. Chinese Team Six including the authors inspected the seismic damage to civil structures along 10 paths in densely populated areas with a seismic intensity of VII to IX, 40 days after the main shock. The damage was categorized according to structure types and described in detail. Several conclusions are made: powerful aftershocks can significantly affect the failure patterns; geological conditions, structure types, and height have great influence on the level of damage; and the local risky retrofitting technique needs improvement badly.  相似文献   

14.
This article investigates the seismic performance of one-story reinforced concrete structures for industrial buildings. To this aim, the seismic response of two structural prototypes, a cast-in-situ monolithic frame and a precast hinged frame, is compared for four different levels of translatory stiffness and seismic capacity. For these structures an incremental nonlinear dynamic analysis is performed within a Monte Carlo probabilistic simulation. The results obtained from the probabilistic analysis prove that precast structures have the same seismic capacity of the corresponding cast-in-situ structures and confirm the overall goodness of the design criteria proposed by Eurocode 8, even if a noteworthy dependency of the actual structural behavior from the prescribed response spectrum is pointed out.

The experimental verification of these theoretical results is searched for by means of pseudodynamic tests on full-scale structures. The results of these tests confirm the overall equivalence of the seismic behavior of precast and cast-in-situ structures. Moreover, two additional prototypes have been designed to investigate the seismic behavior of precast structures with roof elements placed side by side. The results of these further tests show that an effective horizontal diaphragm action can be activated even if the roof elements are not connected among them, and confirm the expected good seismic performance of these precast systems. Finally, the results of the experimental tests are compared with those obtained from nonlinear structural analyses. The good agreement between numerical and experimental results confirms the accuracy of the theoretical model and, with it, the results of the probabilistic investigation.  相似文献   

15.
This article investigates a damage-based design approach for circular reinforced concrete (RC) columns under combined bending, shear, and torsion using decoupled damage index models. The combination of bending moment, shear, axial, and torsional loading affects the structural performance of bridge columns with respect to strength, deformation capacity and progression of damage. The damage index model proposed here permits decoupling these combined actions according to various damage limit states. This work evaluates the interaction between bending and torsional damage indices in terms of progression of damage. It also investigates the effects of the transverse reinforcement ratios and shear span. Based on experimental and analytical results increase of torsion amplified the progression of damage. The increase in transverse reinforcement ratio was found to have delayed the progression of damage and to have changed the torsional dominated behavior to flexural dominated behavior under combined bending and torsion.  相似文献   

16.
ABSTRACT

This study investigates the seismic response of reinforced concrete buildings designed according to the current Italian building code. Number of stories, site hazard, presence and distribution of masonry infill panels, and type of lateral resisting system are the key investigated parameters. The main issues related to design and modeling are discussed. Two Limit States are considered, namely Global Collapse and Usability-Preventing Damage. The main aim of the study is a comparison between the seismic response of the buildings, investigated through nonlinear static and dynamic analyses. Irregularity in the distribution of infill panels and site hazard emerge as the most influential parameters.  相似文献   

17.
The effectiveness of the multi-mode control of seismically excited building installed with distributed multiple tuned mass dampers (d-MTMDs) is investigated by comparing dynamic response with the other controllers, such as passive friction dampers, semi-active dampers, single tuned mass damper (STMD), and multiple tuned mass dampers (MTMDs-all.top), both installed at the top of the building, and arbitrarily distributed MTMDs (ad-MTMDs). It is concluded that the d-MTMDs exhibit improved performance as compared with the STMD, MTMDs-all.top, and ad-MTMDs. The d-MTMDs are also convenient to install owing to the reduced space requirements, being placed at various floors.  相似文献   

18.
In the last decades, particular attention has been paid to the seismic vulnerability of existing reinforced concrete buildings designed for gravity loads only. Such buildings, designed before the introduction of capacity design in modern seismic codes, are very common, particularly in seismic prone countries of the Mediterranean area. Due to poor detailing and lacking of capacity design principles, high vulnerability has been highlighted in several past studies. In this article, inadequate seismic response and peculiar damage pattern are investigated by means of shake table tests performed on a 1:2 scaled 3-story infilled prototype. Particular attention is given to the role of beam-column joints and frame-panel interaction. The effectiveness of the EC8-based assessment approach is then evaluated; both linear and nonlinear numerical models, with different levels of sophistication, have been implemented in order to explore their behavioral aspects.  相似文献   

19.
This article presents a design methodology for seismic upgrading of existing reinforced concrete (RC) buildings. The methodology is based on the modification of the deflected shape of the structure so as to achieve a near-uniform distribution of interstorey drift along the building height, thereby eliminating damage localization. Yield Point Spectra are utilized for the definition of demand and a direct displacement-based design approach is implemented. The fundamental steps of the method are described in detail, including a systematic evaluation of assumptions and limitations. A full-scale tested structure is used as a case study for assessment and verification of the proposed methodology. Alternative retrofit scenarios are set according to target response and performance levels. The role of the target deflected response shape and its influence on the outcome of the retrofit strategy is investigated. The viability of the alternative retrofit scenarios is studied for different ground motions including near-fault earthquake records.  相似文献   

20.
This article investigates the seismic behavior of masonry infilled RC frames with/without openings. Four full-scale, single-story, and single-bay specimens were tested under constant vertical loads and quasi-static cyclic lateral loads. The experimental results showed that the infill wall was more influential in stiffness than in load-resisting capacity. The opening increased the ductility ratio of the structure due to the uniform distribution and slow propagation of cracks. Finally, simplified micro finite element models are established to simulate the tested specimens, which effectively predict the load-displacement response of the structures and the crack damage of masonry infill wall with acceptable accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号