首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several advantages of yielding dampers in controlling seismic energy have attracted the attention of many researchers in designing new buildings and retrofitting existing structures. In recent decades, various shapes and substances of such dampers have been used in engineering structures and their behavioral features, including the energy dissipating capacities, have been assessed. In this article, a novel method is presented to obtain the design relationship of two types of yielding elliptical dampers in terms of their selected geometric properties, i.e. distance between the shear diaphragms or virtual diameter and thickness. In addition, two different elliptical-shaped steel dampers equipped with the shear diaphragms are proposed and modeled using the finite element software ABAQUS and their performances are investigated. Then, 30 and 25 models, respectively, of the first and second types are studied using pushover analysis. The designed dampers considering the proposed relationships are used in two chevron braced steel frames placed between the bracing and the beam. Due to their desirable efficiency in energy dissipation and increase in the equivalent viscous damping of the frame, better efficiency is achieved in the modified damper with easier fabrication.  相似文献   

2.
A displacement-based method for the design of an energy dissipating system is proposed in this article. The device, which is composed of added concrete walls equipped with hysteretic Added Damping and Stiffness (ADAS) dampers, is aimed at upgrading the seismic behavior of existing masonry structures. The design method is based upon a simplified model of the overall structure-dissipating system. The proposed displacement-based design procedure was tested by means of inelastic response-time history analyses considering different masonry structures. The results of the analyses were compared with the seismic behavior expected from the design.  相似文献   

3.
A multi-link finite element contact model reproducing Jankowski’s nonlinear viscoelastic relationships is devised and implemented for a time-history analysis of seismic pounding. The mechanical and algorithmic parameters are calibrated with a numerical test case study, represented by two single-story R/C frames. A real case study, concerning two adjacent buildings representative of a stock of R/C multi-story frame structures with insufficient separation joints at rest, is then examined. A damped interconnection-based mitigation solution consisting in linking the two structures with fluid-viscous dissipaters is proposed. The benefits of this retrofit strategy are discussed by comparison with the response in original conditions.  相似文献   

4.
This article investigates the seismic performance of one-story reinforced concrete structures for industrial buildings. To this aim, the seismic response of two structural prototypes, a cast-in-situ monolithic frame and a precast hinged frame, is compared for four different levels of translatory stiffness and seismic capacity. For these structures an incremental nonlinear dynamic analysis is performed within a Monte Carlo probabilistic simulation. The results obtained from the probabilistic analysis prove that precast structures have the same seismic capacity of the corresponding cast-in-situ structures and confirm the overall goodness of the design criteria proposed by Eurocode 8, even if a noteworthy dependency of the actual structural behavior from the prescribed response spectrum is pointed out.

The experimental verification of these theoretical results is searched for by means of pseudodynamic tests on full-scale structures. The results of these tests confirm the overall equivalence of the seismic behavior of precast and cast-in-situ structures. Moreover, two additional prototypes have been designed to investigate the seismic behavior of precast structures with roof elements placed side by side. The results of these further tests show that an effective horizontal diaphragm action can be activated even if the roof elements are not connected among them, and confirm the expected good seismic performance of these precast systems. Finally, the results of the experimental tests are compared with those obtained from nonlinear structural analyses. The good agreement between numerical and experimental results confirms the accuracy of the theoretical model and, with it, the results of the probabilistic investigation.  相似文献   

5.
In civil engineering, structural integrity and safety are of utmost importance as the consequences of failure are devastating. Maintaining the structural integrity becomes particularly important when the structures are subjected to severe earthquakes and strong wind-loading. Various passive and active control means have been considered to avoid catastrophic failure due to seismic or wind excitations. In this paper, a new class of hybrid actuators is presented which consists of a piezoelectric stack actuator combined with a viscoelastic damper to form a passive/active brace system (PAB). The actuator is used for mitigating structural dynamic responses of a three-storey structure subjected to simulated earthquakes loading. The proposed hybrid actuator is selected because it combines the attractive attributes of active and passive systems as well as because it has high stiffness-weight ratio, high frequency bandwidth, and low power consumption. The theoretical and experimental performance characteristics of the three-storey structure with the hybrid PAB actuator are presented. Comparisons are also included when the structure is controlled with conventional viscoeiastic dampers or conventional active control braces that operate without any viscoelastic damping. These comparisons emphasize the effectiveness of the hybrid actuator in damping out simulated seismic vibrations.  相似文献   

6.
Cable-stayed bridges exhibit unique responses under a strong motion. It is partly due to the complexity in their damping mechanism. Recently, the benchmark problem of a cable-stayed bridge was developed to clarify the effectiveness of various seismic control strategies. Due to the new development of magnetorheological dampers, the application of variable dampers in bridges becomes possible. In this study, the effectiveness of the nonlinear viscous damping force scheme and the two-step friction damping force scheme are investigated. It is found that the nonlinear viscous damping force scheme is effective to control the response of the cable-stayed bridge with less demand for the damping force capacity of a damper. In addition, the two-step friction damping force scheme shows the improvement over conventional friction damping because the energy dissipation of a damper can be increased.  相似文献   

7.
The study implements the performance-based analysis and design methodology to assess the seismic vulnerability of a coal-fired power plant and to optimally design its equivalent pendulum-type tuned mass damper system such that the direct losses are minimized. A building-specific total loss ratio is developed to link the component level losses with the total repair cost of the original structure. The optimal system configuration is finally derived for cases with the minimum loss. The study demonstrates a systematic way of achieving the optimal pendulum-type tuned mass damper design with considerations of uncertainties in earthquake inputs and the combined component level damages.  相似文献   

8.
Many existing reinforced concrete (RC) structures around the world have been designed to sustain gravity and wind loads only. Past earthquake reconnaissance showed that strong earthquakes can lead to substantial damage to non-seismically designed RC buildings, particularly to their beam-column joints. This paper presents a novel retrofit method using buckling-restrained haunches (BRHs) to improve the seismic performance of such joints. A numerical model for RC joints is introduced and validated. Subsequently, a new seismic retrofit strategy using BRHs is proposed, aimed at relocating plastic hinges and increasing energy dissipation. The results indicate the retrofit method can effectively meet the performance objectives.  相似文献   

9.
A sliding mode control theory is presented to control the response of building frames to predominant frequency components of the random ground motions. The control algorithm is derived based on a sliding surface which is a function of a state vector containing the structural displacements and velocities and variables that dictate the predominant frequency components of the excitation. Three control mechanisms are employed to control the response of the building frame namely, (1) active mass damper (AMD) placed at the top storey of the building, (2) an actuator placed at a storey level and, (3) an actuator placed at a storey level along with a tuned mass damper (TMD) situated at the top storey level. Responses obtained by the proposed control strategy are compared with those obtained by the linear feedback and feedforward-feedback control strategies (conventional control strategies). Also, they are compared with those obtained by the sliding mode control strategy that considers in its state vector only structural displacements and velocities. It is shown that the proposed control strategy generally performs better than other control strategies in the higher range of control forces. For the lower range of control forces, conventional control strategies are more effective.  相似文献   

10.
A series of eccentrically braced frames (EBF) are designed and subjected to nonlinear analyses to highlight ambiguities and differences in current seismic design provisions for EBF structures. This provides motivation to implement better guidance for the checking of local displacement demand considerations and move towards a displacement-based design approach. A recently proposed direct displacement-based design (DDBD) procedure for EBFs is then described and further developed in this article through the calibration of a spectral displacement reduction factors that relate the displacement of an inelastically responding structure to that of the equivalent linear representation used in the DDBD of EBFs. Such an expression is calibrated as part of this study using an experimentally validated numerical model also proposed here for the EBF links such that the actual hysteretic behavior of the links is well represented. The DDBD guidelines are applied to EBF systems from 1–15 stories in height and their performance is verified via nonlinear dynamic analyses using two different sets of design spectrum compatible ground motions. The results of the study indicate the robustness of the proposed DDBD method in limiting the interstory drifts to design limits for a variety of EBF systems with short links, thus demonstrating that the proposed DDBD method is an effective tool for seismic design of EBFs.  相似文献   

11.
This study is aimed at investigating the demand on shear panel dampers (SPDs) installed in steel structures under strong earthquake motions to serve as guidance for the recommended capacity of SPDs in seismic design. For this purpose, an extensive dynamic analysis is carried out on steel bridge pier structures with SPD devices. To describe the restoring force characteristics of SPDs, the analysis uses a newly developed combined hardening model based on experimental data. The seismic demands made on SPD devices are examined and then summarized to give recommended values for determining the necessary deformation capacity of SPDs.  相似文献   

12.
For the seismic isolation of light structures, the use of laminated rubber bearings is neither economical nor, for most cases, technically suited. For the isolation of this type of structure a new system, consisting of steel balls rolling on rubber tracks, has been developed at TARRC (Tun Abdul Razak Research Centre).

This article presents the results of experimental tests carried out for the characterization of the behavior of this new device. A numerical model is also proposed that can be used to assess the seismic response of structures with this isolation system.

Comparison of the predictions of the numerical model with the experimental data shows that the model is adequate to perform the correct assessment of the seismic response of isolated structures. The results of the experimental campaign of shaking-table tests, as well as the numerical simulations, show that there is an effective reduction of the acceleration levels induced in the isolated structures.  相似文献   

13.
It is still a serious challenge for structural engineers to effectively reduce the seismic responses of tall and super tall buildings to further improve these structural safeties. In order to solve this problem, in this article a new kind of structural configuration, named passive mega-sub controlled structure (PMSCS), is presented, which is constructed by applying the structural control principle into structural configuration itself, to form a new structure with obvious response self-control ability, instead of employing the conventional method. In the analysis of PMSCS the equations of motion of the seismically excited system are developed, based on a realistic analytical model of the complete mega-structural system. Expressions of the displacement and acceleration response of the structure, resulting from simulated earthquake ground motions represented by stationary and nonstationary random processes, are derived. These responses are then determined for both the PMSCS and its conventional mega-sub structure (MSS) counterpart, whose configuration was modeled after the traditional mega-frame that was used in the construction of the Tokyo City Hall. A parametric study of the structural characteristics that influence the response control effectiveness of the PMSCS is presented and discussed. The region over which these structural characteristics yield the optimum seismic response control of the PMSCS is identified and serves as a very useful design tool for practitioners. The study illustrates that the proposed PMSCS offers an effective means of controlling the seismic displacement and acceleration response of tall/super-tall mega-systems. It also overcomes shortcomings exhibited in earlier proposed mega-sub controlled structural configurations.  相似文献   

14.
Dynamic mechanical tests of recycled aggregate concrete (RAC) test units confined by transverse hoop reinforcement are carried out. The effects of the strain rate, hoop reinforcement confinement, and replacement ratio of recycled coarse aggregate (RCA) on the mechanical properties of confined recycled aggregate concrete (CRAC) are thoroughly analyzed and assessed. The strain-rate-dependent constitutive model of CRAC is proposed for the high strain rate representative of seismic conditions. A three-dimensional discrete numerical model, based on the proposed rate-dependent material model of CRAC, is established to investigate and evaluate the dynamic nonlinear behaviors of RAC structures.  相似文献   

15.
Energy balance is used to characterise the seismic energy in inelastic structures where energy input to the structure is decomposed into strain energy, kinetic energy, damping energy, and plastic energy. The exact quantification of plastic energy is derived based on force analogy method for moment-resisting frames. A method of generating energy density spectra is then proposed based on yield displacement of a single degree of freedom system. The effects of different structural vibration characteristics are then studied on energy density spectra. These effects include variations of yield displacement level, earth-quake scaling factor, and damping ratio, which proves to be useful in improving the basic understanding of energy characteristics in structural dynamic response. Finally, the use of energy density spectra is demonstrated on a multi-degree of freedom structure to show the practical applications of these spectra.  相似文献   

16.
To fulfill a displacement-based design or response prediction for nonlinear structures, the concept of equivalent linearization is usually applied, and the key issue is to derive the equivalent parameters considering the characteristics of hysteretic model, ductility level, and input ground motions. Pinching hysteretic structures subjected to dynamic loading exhibit hysteresis with degraded stiffness and strength and thus reduced energy dissipation. In case of excitation of near-fault earthquake ground motions, the energy dissipation is further limited due to the short duration of vibration. In order to improve the energy dissipation capability, viscous-type dampers have been advantageously incorporated into these types of structures. Against the viscously damped pinching hysteretic structure under the excitation of near-fault ground motions, this study aims to develop a seismic response estimation method using an equivalent linearization technique. The energy dissipation of various hysteretic cycles, including stationary hysteretic cycle, amplitude expansion cycle, and amplitude reduction cycle, is investigated, and empirical formulas for the equivalent damping ratio is proposed. A damping modification factor that accounts for the near-fault effect is introduced and expanded to ensure its applicability to structures with damping ratios less than 5%. An approach for estimating the maximum displacement of a viscously damped pinching hysteretic structure, in which the pinching hysteretic effect of a structure and the near-fault effect of ground motions are considered, is developed. A time history analysis of an extensive range of structural parameters is performed. The results confirm that the proposed approach can be applied to estimate the maximum displacement of a viscously damped pinching hysteretic structure that is subjected to near-fault ground motions.  相似文献   

17.
The role of soil-structure interaction (SSI) in the seismic response of structures is reex-plored using recorded motions and theoretical considerations. Firstly, the way current seismic provisions treat SSI effects is briefly discussed. The idealised design spectra of the codes along with the increased fundamental period and effective damping due to SSI lead invariably to reduced forces in the structure. Reality, however, often differs from this view. It is shown that, in certain seismic and soil environments, an increase in the fundamental natural period of a moderately flexible structure due to SSI may have a detrimental effect on the imposed seismic demand. Secondly, a widely used structural model for assessing SSI effects on inelastic bridge piers is examined. Using theoretical arguments and rigorous numerical analyses it is shown that indiscriminate use of ductility concepts and geometric relations may lead to erroneous conclusions in the assessment of seismic performance. Numerical examples are presented which highlight critical issues of the problem.  相似文献   

18.
The energy dissipation capacity of the NiTi alloy was evaluated as part of a series of shake table tests. A superelastic damper was developed to take advantage of the hysteretic energy dissipation associated with this type of shape memory alloy. Each device was tested at different intensity levels. A vertical steel cantilever with 600 kg mass on top was subjected to a series of ground motions with different spectral characteristics. The dampers were placed as part of a tie system, restraining the horizontal movement of the top mass. The devices showed stable hysteretic behavior allowing for energy dissipation.  相似文献   

19.
In recent years, current seismic codes started contemplating the design of structures with passive energy dissipating devices. One important issue for the rational seismic design of these devices and the structure that contains them is the formulation of numerical methods to estimate their design seismic forces. From the study of the dynamic response of single-degree-of-freedom systems subjected to accelerograms recorded in Mexico during the last two decades, expressions to estimate the strength reduction factor that should be used to reduce the elastic design strength spectra for 5 percent damping, to establish the design seismic forces for structures having different combinations of plastic and viscous energy dissipating capacities, are formulated.  相似文献   

20.
The goal of this research is to study the effect of cable vibration through a number of control cases of a cable-stayed bridge. In order to consider the complicated dynamic behaviour of the full-scale bridge, a three-dimensional numerical model of the MATLAB-based analysis tool has been developed by the complete simulation of the Gi-Lu bridge. The dynamic characteristics of cables in the cable-stayed bridge are verified between the field experiment and the result from numerical simulation using geometrically nonlinear beam elements in MATLAB program. Three types of control devices are selected to reduce the response of the bridge deck which includes: actuators, viscous-elastic dampers with large capacity, and base isolations. Moreover, two types of control devices, MR dampers and viscous dampers, are installed either between the deck and cables and/or between two neighbouring cables for controlling the cable vibration. A modified bi-viscous model combined with convergent rules is used to describe the behaviour of MR dampers. Finally, through evaluation criteria the control effectiveness on the cable-stayed bridge using different control strategies is examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号