首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

A principal reason of damage in historic masonry vaults consists in relative displacements of the vaults’ abutments. Excluding the case of seismic-induced damage, cracks are often produced by differential settlements generated by the lateral wall instability or soil degradation (e.g., due to stress concentrations, non-uniform soil stratigraphy, flooding phenomena etc.). When dealing with historic vaults, the effects of long-term deformation processes cannot often be linked directly to causes, which may also be unknown. In this article, the effects of differential settlements on historic masonry barrel vaults are investigated. An efficient 3D contact-based model was developed to reproduce experiments on a scaled pointed barrel vault (representative of a typology of late-medieval barrel vaults in Scotland) under non-uniform differential settlement. First, the numerical model is used to simulate the experimental campaign, achieving good agreement in terms of crack pattern (longitudinal shear) and transverse-longitudinal deformation profiles. Then, further analyses are carried out to gain insight on the effects of several plausible uniform and non-uniform settlement patterns on representative historic barrel vaults. Various settlement configurations were analysed and complex failure patterns observed. This study could help analysts in understanding the nature of on-going deformation process in historic masonry vaults and engineers in the design of strengthening strategies.  相似文献   

2.
The St. John Hospital is part of a larger complex of buildings known as the Hospitallers Quarter, located south of the Holy Sepulchre in Jerusalem. At present, the hospital looks like an irregular volume both in height and in plan; it is covered by ten groin vaults resting on very stocky pillars. Each vault is formed by intersecting double curvature surfaces. In order to verify the effectiveness of continuous carbon fiber reinforced polymer sheets reinforcement, bonded at the extrados of vaults, laboratory tests were carried out on a 1:5 scale model, built with materials and construction techniques similar to those of the real building. Experimental tests were performed on the unstrengthened and strengthened vault. The experimental results shown that the strengthening system is able to increase the collapse load of the vault, without substantial variation of the initial stiffness.  相似文献   

3.
Displacements experienced by many historic masonry structures concentrate at masonry joints and can be large before collapse is a concern, making modeling of stability using discrete element modeling (DEM) particularly suitable. In this study, masonry groin vault and arch models with several geometries were subjected to horizontal and vertical support displacements using DEM. Support movements were applied in a quasi-static manner to simulate the support settlement process. Displacements at collapse and at the point when the first block fell from the vault were recorded. Block separation and mechanisms were also noted during the simulations. A two-dimensional (2D) analytical model using thrust line analysis was developed to help evaluate the DEM results. In general, the displacements at first block fall were relatively large but significantly less than those at collapse. The groin vaults and arches exhibited significantly higher capacity to sustain vertical support displacement compared to horizontal displacements. For many geometries, the DEM collapse displacements of the groin vaults compared reasonably well to similar arches, indicating that the displacement capacity of groin vaults can be reasonably estimated using 2D simplifications. However, for certain geometries, three-dimensional effects were found to significantly affect displacement capacity.  相似文献   

4.
ABSTRACT

An experimental campaign and a numerical analysis devoted to the investigation of the out-of-plane behavior of masonry walls reinforced with Fiber Reinforced Cementitious Matrix (FRCM) are presented here. The main goal of this study is to analyze and evaluate the effectiveness of the strengthening system, by discussing failure modes and capacity of strengthened masonry walls, in order to assess their behavior under out-of-plane horizontal actions, such as, for example, seismic actions. A purposely designed experimental set-up, able to separately and independently apply an axial force and out-of-plane horizontal actions on masonry walls, was used. Experimental results are discussed and compared with the outcomes of nonlinear analyses performed on simplified finite element models of the walls. A proper evaluation of the flexural capacity of FRCM strengthened walls is the first step of the ongoing process of drawing reliable code guidelines leading to a safe design of strengthened masonry structures.  相似文献   

5.
The vault of Villaviciosa is one of the oldest existing examples of a true ribbed vault, and is the first of the crossed-arch type. Although its perfection suggests earlier trials, none has been found so far. It predates the oldest Romanesque ribbed vaults by more than a century. Notwithstanding its importance, no construction and structural study has ever been done; neither has an accurate survey been published. The purpose of this article is to fill this gap in the history of vault construction. A detailed survey has been made, providing the first accurate drawings of the vault. A close inspection of the extrados, completed with a visual inspection of interior damages, has allowed ascertaining the main construction features. With the geometry and the material data a structural analysis has been carried out. This analysis explains the fundamental structural behavior of the vault and throws new light into some historical issues; for example, it leads to discarding the widespread belief that the ribs are decorative: they are supporting the weight of the vault.  相似文献   

6.
This article presents the experimental results of a study on reinforced-concrete frames infilled with masonry with openings. The frames were designed according to current European codes. They were built in a scale 1:2.5 and infilled with masonry walls. Mid-size window and door openings were located centrically and eccentrically and were executed with and without tie-columns around them. Presence of masonry infill, although not accounted for in design, improved the system behavior (increase in stiffness, strength and energy dissipation capacity) at drift levels of up to 1%. During the test, openings did not influence the initial stiffness and strength at low drift levels. Their presence became noticeable at higher drift levels, when they lowered the energy dissipation capacity of the system. The infill wall had a multiple failure mechanism that depended on the opening height and position. Tie-columns controlled the failure type, independent of the opening type, prevented out-of-plane failure of the infill, and increased the system's ductility. Negative effects of the infill on the frame were not observed. The infill's contribution could be deemed positive as it enhanced the overall Structural Performance Level. Analytical expressions commonly used for infilled frames underestimate the infill's contribution to strength and stiffness and overestimate the contribution of the bare frame.  相似文献   

7.
This study analyzes the static behavior of the rounded cross vaults based on the limit analysis approach developed for masonry structures and adopts a rigid no-tension constitutive model with no sliding. The kinematic theorem of the limit analysis with a compatible tridimensional mechanism is applied on these structures with the aim of evaluating the minimum thrust. In this way it was possible to build some abaci in which the ratio between the minimum thrust and the weight is plotted versus the geometrical characteristics of the vaults. Finally, the proposed abaci are used to calculate the thrust of the main vault of the Diocletian Baths in Rome.  相似文献   

8.
This article investigates the seismic behavior of masonry infilled RC frames with/without openings. Four full-scale, single-story, and single-bay specimens were tested under constant vertical loads and quasi-static cyclic lateral loads. The experimental results showed that the infill wall was more influential in stiffness than in load-resisting capacity. The opening increased the ductility ratio of the structure due to the uniform distribution and slow propagation of cracks. Finally, simplified micro finite element models are established to simulate the tested specimens, which effectively predict the load-displacement response of the structures and the crack damage of masonry infill wall with acceptable accuracy.  相似文献   

9.
This article addresses the results of a structural strengthening solution for rubble stone masonry walls. The strengthening includes inserting three-dimensional steel ties across the thickness of the walls and a 30-mm layer of air-lime and cement mortar render reinforced with glass fiber mesh (textile-reinforced mortar), on both sides of the wall. The strengthening solution was found to be efficient for rehabilitating ancient rubble stone masonry walls due to the “three-dimensional” confinement, provided by the steel wires, by offsetting the low cohesive capacity of the mortar used in the walls and thus improving the mechanical resistance and delaying the collapse mechanisms. This study is part of an experimental research program carried out in Universidade Nova de Lisboa, to evaluate structural strengthening solutions for ancient rubble stone masonry buildings. To this end, three specimens of rubble stone masonry walls without strengthening (unreinforced masonry) and other three, with the mentioned strengthening solution, were subjected to compression and shear load tests. Building materials were also tested in order to characterize physical, chemical and mechanical properties.  相似文献   

10.
An extensive experimental program was carried out at EUCENTRE, within a research project on the evaluation and reduction of the seismic vulnerability of stone masonry structures. The main part of the experimental program has been devoted to the shaking table tests on three full-scale, two-story, single-room prototype buildings made of undressed double-leaf stone masonry. The first building tested was representative of existing unreinforced stone masonry structures with flexible wooden diaphragms, without any specific anti-seismic design nor detailing. In the second and third buildings, strengthening interventions were simulated on structures theoretically identical to the first one, improving wall-to-floor and wall-to-roof connections and increasing diaphragm stiffness. In particular, in the third specimen, steel and r.c. ring beams were used to improve the diaphragm connection to the walls and collaborating r.c. slab and multi-layer plywood panels were used to stiffen floor and roof diaphragms, respectively. This article describes the strengthening interventions applied to the third building prototype and presents the experimental results obtained during the shaking table tests. The results obtained permitted the calibration of a macroelement model representative of the nonlinear behavior of the structure.  相似文献   

11.
A methodology for the seismic vulnerability reduction of old masonry towers with external prestressing is presented. It is applied at the Colonial bell-towers of the Cathedral of Colima, Mexico, characterized for being a high seismic area (M>7.5). The 3D FE models are calibrated with experimental data and assessed through nonlinear static approaches including the seismic demand and an accurate validated masonry model. Based on an extensive parametric study on different configurations of old masonry towers, it is selected an optimal prestressing force and device. The Colonial towers are retrofitted with four prestressing devices of FRPs to convert them into a high energy-dissipative reinforced masonry. The external vertical prestressing is included at key points identified in the seismic vulnerability assessment. This technique is in compliance with the demand for architectural conservation and may be located without drilling and unbounded in order to be fully removable. The seismic performance is enhanced by increasing force, displacement, and internal confinement. It is observed an upgrading of 35% and 20% of displacement capacity. With these results it is corroborated that external vertical prestressing allows a substantial increment of ductility for seismic energy dissipation purposes.  相似文献   

12.
ABSTRACT

This article presents a study on the out-of-plane response of two masonry structures without box behavior tested in a shaking table. Two numerical approaches were defined for the evaluation, namely macro-modeling and simplified micro-modeling. As a first step of this study, static nonlinear analyses were performed for the macro models in order to assess the out-of-plane response of masonry structures due to incremental loading. For these analyses, mesh size and material model dependency was discussed. Subsequently, dynamic nonlinear analyses with time integration were carried out, aiming at evaluating the collapse mechanism and at comparing it to the experimental response. Finally, nonlinear static and dynamic analyses were also performed for the simplified micro models. It was observed that these numerical techniques correctly simulate the in-plane response. The collapse mechanism of the stone masonry model is in good agreement with the experimental response. However, there are some inconsistencies regarding the out-of-plane behavior of the brick masonry model, which required further validation.  相似文献   

13.
In most available studies, unreinforced masonry (URM) walls are idealized as rectangular sections, while in reality walls have effective sectional shapes such as C, I, T, and L. In this article, the results of experimental and analytical assessment of flange effects on the behavior of I- and C-shaped URM walls are reported. Four clay brick walls at half scale were tested. Two specimens were designed with I- and C-shaped sections, and for comparison, two additional specimens were designed without flanges. The tests showed that under constant axial load the strength of the I-shaped wall increases, but that of the C-shaped wall decreases, because of out-of-plane distortion effects. Despite the loss of strength, both flanged walls indicated almost similar initial stiffness, deformation capacity, and mode of failure in comparison with walls without flanges. A mixed-mode analytical model is proposed to predict the lateral force displacement curve of flanged URM (FURM) walls. The proposed analytical model is based on section analysis of the walls and shows good agreement with previous experimental results.  相似文献   

14.
In structural analyses, masonry infill walls are commonly considered to be non structural elements. However, the response of reinforced concrete buildings to earthquake loads can be substantially affected by the influence of infill walls. In this article, an improved numerical model for the simulation of the behavior of masonry infill walls subjected to earthquake loads is proposed and analyzed. First, the proposed model is presented. This is an upgrading of the equivalent bi-diagonal compression strut model, commonly used for the nonlinear behavior of infill masonry panels subjected to cyclic loads. Second, the main results of the calibration analyses obtained with two series of experimental tests are presented and discussed: one on a single frame with one story and one bay tested at the LNEC Laboratory; and the second, on a full-scale four story and three-bay frame tested at the ELSA laboratory.  相似文献   

15.
The influence of masonry infills with openings on the seismic performance of reinforced concrete (R/C) frames that were designed in accordance with modern codes provisions is investigated. Two types of masonry infills were considered that had different compressive strength but almost identical shear strength. Infills were designed so that the lateral cracking load of the solid infill is less than the available column shear resistance. Seven 1/3 – scale, single–story, single–bay frame specimens were tested under cyclic horizontal loading up to a drift level of 40%. The parameters investigated are the opening shape and the infill compressive strength. The assessment of the behavior of the frames is presented in terms of failure modes, strength, stiffness, ductility, energy dissipation capacity, and degradation from cycling. The experimental results indicate that infills with openings can significantly improve the performance of RC frames. Further, as expected, specimens with strong infills exhibited better performance than those with weak infills. For the prediction of the lateral resistance of the studied single-bay, single-story infilled frames with openings, a special plastic analysis method has been employed.  相似文献   

16.
This study addresses the problem of evaluation of strength of masonry walls. In-plane behavior of masonry panels has been studied under monotonic diagonal-compression and shear-compression loading in quasi-static test facility. The results of 35 laboratory and in situ tests are analyzed to show that in the case of the diagonal compression test results are lower than the strength of masonry walls evaluated trough the shear-compression test, highlighting the problem of choosing the test which best simulates to the real behavior of the masonry when stressed by lateral loads. A presentation is also given of the results of a F.E. investigation for shear strength evaluation of masonry walls. F.E. modeling non-linear procedure was used for the representation of masonry panels. The numerical simulations are compared with experimental results and the reliability of the different finite element models is discussed, thus confirming the different shear strength values measured in the experimental campaign.  相似文献   

17.
Southchurch Hall     
Abstract

In 1437 Sherborne Abbey church was deliberately set on fire as the result of a quarrel between certain parishioners and the monks. The tower and chancel of the church were being rebuilt at the time. This paper records the results of a detailed study of the masonry which had been discoloured by scorching, and the conclusions deduced therefrom. These include: some modifications of the story of the fire as interpreted by Professor R. Willis in 1865, and deductions on the course and extent of the fire, the stage that the rebuilding had reached and its sequence of construction. The survey also proves that the fan vaults and clerestory windows of the east end were completed after the fire to their original design. The paper ends with some discussion about the possible architect, and an assessment of the design and influence of the fan vaults.  相似文献   

18.
Masonry building aggregates are large parts of the Italian building heritage often designed without respecting seismic criteria. The current seismic Italian code does not foresee a clear calculation method to predict their static nonlinear behavior. For this reason, in this article a simple methodology to forecast the masonry aggregate seismic response has been set up. The implemented procedure has been calibrated on the results of two FEM structural analysis programs used to investigate three masonry building compounds. As a result, a design chart used to correctly predict the base shear of aggregate masonry units starting from code provisions has been set up.  相似文献   

19.
A simple variational formulation for contact dynamics is adopted to investigate the dynamic behavior of planar masonry block structures subjected to seismic events. The numerical model is a two-dimensional assemblage of rigid blocks interacting at potential contact points located at the vertices of the interfaces. A no-tension and associative frictional behavior with infinite compressive strength is considered for joints. The dynamic contact problem is formulated as a quadratic programming problem (QP) and an iterative procedure is implemented for time integration. Applications to analytical and numerical case studies are presented for validation. Comparisons with the experimental results of a masonry wall under free rocking motion and of a small scale panel with opening subjected to in-plane loads are also carried out to evaluate the accuracy and the computational efficiency of the formulation adopted.  相似文献   

20.
ABSTRACT

The structural analysis of a mirror-type vault, consisting of a single- or double-curvature perimeter and a nearly flat part, is carried out. The vault is similar to a number of hybrid iron (or steel) and masonry vaults built between the late 19th century and the early 20th century to span large halls. The numerical analyses were preceded by an accurate geometrical survey and mechanical tests aimed at evaluating the properties of the materials. Thermography allowed the complex brick pattern of the vault to be detected. The influence of rib-walls (frenelli) and the material anisotropy on the stress and deformation of the vault is discussed. Eventually, attention is focused on one of the segmental vaults in the central part of the structure: it is found that the stress can be safely estimated by assuming its boundary to be fixed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号