首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Groundwater seeps are known to occur in Eckernförde Bay, Baltic Sea. Their discharge rate and dispersion were investigated with a new schlieren technique application, which is able to visualize heterogeneous water parcels with density anomalies down to Δσt = 0.049 on the scale of millimeters. With the use of an inverted funnel, discharged fluids can be captured and the outflow velocity can be determined. Overall, 46 stations could be categorized by three different cases: active vent sites, seep‐influenced sites, and non‐seep sites. New seep locations were discovered, even at shallow near‐shore sites, lacking prominent sediment depression, which indicate submarine springs. The detection of numerous seeps was possible and the groundwater‐influenced area was defined to be approximately 6.3 km2. Flow rates of between 0.05 and 0.71 l m?2 min?1 were measured. A single focused fluid plume, which was not disturbed by the funnel was recorded and revealed a flux of 59.6 ± 20 ml cm?2 min?1 and it was calculated that this single focused plume would be strong enough to produce a flow rate through the funnel of 1.32 ± 0.44 l m?2 min?1. The effect of different seep‐meter funnel sizes is discussed.  相似文献   

2.
CO2 injected into rock formations for deep geological storage must not leak to surface, since this would be economically and environmentally unfavourable, and could present a human health hazard. In Italy natural CO2 degassing to the surface via seeps is widespread, providing an insight into the various styles of subsurface ‘plumbing’ as well as surface expression of CO2 fluids. Here we investigate surface controls on the distribution of CO2 seep characteristics (type, flux and temperature) using a large geographical and historical data set. When the locations of documented seeps are compared to a synthetic statistically random data set, we find that the nature of the CO2 seeps is most strongly governed by the flow properties of the outcropping rocks, and local topography. Where low‐permeability rocks outcrop, numerous dry seeps occur and have a range of fluxes. Aqueous fluid flow will be limited in these low‐permeability rocks, and so relative permeability effects may enable preferential CO2 flow. CO2 vents typically occur along faults in rocks that are located above the water table or are low permeability. Diffuse seeps develop where CO2 (laterally supplied by these faults) emerges from the vadose zone and where CO2 degassing from groundwater follows a different flow path due to flow differences for water and CO2 gas. Bubbling water seeps (characterized by water bubbling with CO2) arise where CO2 supply enters the phreatic zone or an aquifer. CO2‐rich springs often emerge where valleys erode into CO2 aquifers, and these are typically high flux seeps. Seep type is known to influence human health risk at CO2 seeps in Italy, as well as the topography surrounding the seep which affects the rate of gas dispersion by wind. Identifying the physical controls on potential seep locations and seep type above engineered CO2 storage operations is therefore crucial to targeted site monitoring strategy and risk assessment. The surface geology and topography above a CO2 store must therefore be characterized in order to design the most effective monitoring strategy.  相似文献   

3.
A. WILSON  C. RUPPEL 《Geofluids》2007,7(4):377-386
Thermohaline convection associated with salt domes has the potential to drive significant fluid flow and mass and heat transport in continental margins, but previous studies of fluid flow associated with salt structures have focused on continental settings or deep flow systems of importance to petroleum exploration. Motivated by recent geophysical and geochemical observations that suggest a convective pattern to near‐seafloor pore fluid flow in the northern Gulf of Mexico (GoMex), we devise numerical models that fully couple thermal and chemical processes to quantify the effects of salt geometry and seafloor relief on fluid flow beneath the seafloor. Steady‐state models that ignore halite dissolution demonstrate that seafloor relief plays an important role in the evolution of shallow geothermal convection cells and that salt at depth can contribute a thermal component to this convection. The inclusion of faults causes significant, but highly localized, increases in flow rates at seafloor discharge zones. Transient models that include halite dissolution show the evolution of flow during brine formation from early salt‐driven convection to later geothermal convection, characteristics of which are controlled by the interplay of seafloor relief and salt geometry. Predicted flow rates are on the order of a few millimeters per year or less for homogeneous sediments with a permeability of 10?15 m2, comparable to compaction‐driven flow rates. Sediment permeabilities likely fall below 10?15 m2 at depth in the GoMex basin, but such thermohaline convection can drive pervasive mass transport across the seafloor, affecting sediment diagenesis in shallow sediments. In more permeable settings, such flow could affect methane hydrate stability, seafloor chemosynthetic communities, and the longevity of fluid seeps.  相似文献   

4.
This study focuses on the mechanics of methane bubble phase behavior in the gas hydrate stability zone. The transformation of deep‐water methane bubbles into solid hydrate was investigated in Lake Baikal in situ. After being released from the lake bottom, methane bubbles were caught by different traps with transparent walls. When bubbles entered the internal spaces of the traps, the bubbles could be transformed into two different solid hydrate structures depending on the ambient conditions. The first structure was hydrate granular matter consisting of solid fragments with sizes on the order of 1 mm. The second structure was a highly porous solid foam consisting of solid bubbles with sizes on the order of 5 mm. The granular matter did not change as it was brought up to the top border of the gas hydrate stability zone, whereas in the solid foam, free methane rapidly exsolved from the sample during depressurization. We conclude that the decrease in depth and the decrease in the bubble flux rate were key factors in the formation of the hydrate granular matter, whereas the increase in the depth of bubble sampling and the increase in the bubble flux rate facilitated the conversion of bubbles into a highly porous solid hydrate foam.  相似文献   

5.
At Ocean Drilling Program Site 997 in Blake Ridge gas‐hydrate field in West Atlantic, pore‐water studies revealed a pronounced downward depletion of the heavy chlorine isotope to nearly ?4‰δ37Cl at approximately 750 m below sea floor (mbsf) associated with a 10% downward chlorinity decrease. This is one of the stronger 37Cl depletions hitherto reported for marine pore waters. Chlorinity reductions in hydrate‐bearing sediments commonly result from fresh‐water release by hydrate melting. However, in situ measurements at Site 997 suggest that >50% of the chlorinity reduction occurred prior to hydrate dissociation. Modeling the chlorinity profile shows that advection of a strongly 37Cl‐depleted, low‐chlorinity water (506 mm ) from below the drilled sequence can explain the reduction prior to sampling. Fitting the model to the δ37Cl curve yielded an advection rate of 0.18 mm year?1. Diffusive mixing with near‐0‰‐δ37Cl paleo‐seawater with maximum chlorinity at shallow subsurface depths (561 mm at approximately 20 mbsf) produced the smooth, steady trend. Separating that part of the freshening caused by advection and diffusion from that due to hydrate dissociation allowed estimation of average hydrate concentrations of 3.8% of the pore space (up to 24.5% in hydrate‐rich layers; near‐100% in rare massive hydrate layers). The deep‐seated source of the 37Cl‐depleted, low‐chlorinity water remains unknown and might be located below the sedimentary section in the oceanic basement.  相似文献   

6.
K. Bucher  I. Stober 《Geofluids》2016,16(5):813-825
The Urach 3 research borehole in SW Germany has been drilled through a sedimentary cover sequence and reached gneisses of the Variscan crystalline basement at 1604 m below surface. An additional 2840 m has been drilled through fractured basement rocks. The borehole has been used for hydraulic tests in the context of a ‘hot dry rock’ (HDR) project. The sedimentary cover ranges from the Carboniferous to the Middle Jurassic (Dogger) in age and comprises mostly clastic sediments in the Paleozoic and limestone and shale in the Mesozoic. Water composition data from 10 different depths include samples from all major lithological units. The total dissolved solids (TDS) increases from the surface to about 650 m where it reaches 4.1 g l?1 in Triassic limestone. In lower Triassic sandstones, TDS increases very sharply to 28.5 g l?1 and the water is saturated with pure CO2 gas. With increasing depth, TDS does not change much in the clastic sediments of the Permian and Carboniferous. The crystalline basement is marked by a very sharp increase in TDS to 55.5 g l?1 at about 1770 m depth. TDS increases within the basement to more than 78.5 g l?1 at about 3500 m depth. The data suggest that there is limited vertical chemical communication over long periods of time. The CO2 gas cap in the lower Triassic sandstones requires a gastight cover. The chemical stratification of the fluids relates to the permeability structure of the crust at the Urach site and fits well with hydraulic and thermal data from the site.  相似文献   

7.
We used seismic velocity as a proxy for serpentinization of the mantle, which occurred beneath thinned but laterally continuous continental crust during continental break up, prior to opening of the Atlantic Ocean. The serpentinized sub‐continental mantle is now exhumed, beneath the Iberia Abyssal Plain and was accessed by scientific drilling on Ocean Drilling Program legs 149 and 173. Chromatographic modelling of kinetically limited transport of the serpentinization front yields a front displacement of 2197 ± 89 m, a time‐integrated fluid flux of 1098 ± 45 m3 m?2 and a Damköhler number of 6.0 ± 0.2. Whether either surface reaction or chemical transport limit the rate of reaction, we calculate timescales for serpentinization of approximately 105–106 years. This yields time‐average fluid flux rates for H2O, entering and reacting with the mantle, of 60–600 mol m?2 a?1 and for CH4, produced as a by‐product of oxidation of Fe++ to magnetite and exiting the mantle, of 0.55–5.5 mol m?2 a?1. This equates to a CH4‐flux of 0.18–1.8 Tg a?1 for coeval serpentinization of the mantle that was exhumed west of Iberia. This represents 0.03–0.3% of the present‐day annual CH4‐flux from all sources and a higher fraction of pre‐anthropogenic (lower) CH4 levels. CH4 released by serpentinization at or beneath the seafloor could provide substrate for biological chemosynthesis and/or promote gas‐hydrate formation. Finally, noting its volumetric extent and rapidity (<106 years), we interpret serpentinization to be a reckonable component of tectonic processes, contributing both diapiric and expansional forces and helping to ‘lubricate’ extensional processes. Given its anisotropic permeability, actively deforming serpentinite might impede melt migration which may be of interest, given the apparent lack of melt in some rifted margins.  相似文献   

8.
We used hydrologic models to explore the potential linkages between oil‐field brine reinjection and increases in earthquake frequency (up to Md 3.26) in southeastern New Mexico and to assess different injection management scenarios aimed at reducing the risk of triggered seismicity. Our analysis focuses on saline water reinjection into the basal Ellenburger Group beneath the Dagger Draw Oil field, Permian Basin. Increased seismic frequency (>Md 2) began in 2001, 5 years after peak injection, at an average depth of 11 km within the basement 15 km to the west of the reinjection wells. We considered several scenarios including assigning an effective or bulk permeability value to the crystalline basement, including a conductive fault zone surrounded by tighter crystalline basement rocks, and allowing permeability to decay with depth. We initially adopted a 7 m (0.07 MPa) head increase as the threshold for triggered seismicity. Only two scenarios produced excess heads of 7m five years after peak injection. In the first, a hydraulic diffusivity of 0.1 m2 s?1 was assigned to the crystalline basement. In the second, a hydraulic diffusivity of 0.3 m2 s?1 was assigned to a conductive fault zone. If we had considered a wider range of threshold excess heads to be between 1 and 60 m, then the range of acceptable hydraulic diffusivities would have increased (between 0.1–0.01 m2 s?1 and 1–0.1 m2 s?1 for the bulk and fault zone scenarios, respectively). A permeability–depth decay model would have also satisfied the 5‐year time lag criterion. We also tested several injection management scenarios including redistributing injection volumes between various wells and lowering the total volume of injected fluids. Scenarios that reduced computed excess heads by over 50% within the crystalline basement resulted from reducing the total volume of reinjected fluids by a factor of 2 or more.  相似文献   

9.
DC electric field and ion density measurements near density depletion regions (that is, equatorial plasma bubbles) are used to estimate the vertical neutral wind speed. The measured zonal electric field in a series of density depletions crossed by the San Marco D satellite at 01.47-01.52 UT on 25 October 1988, can be explained if a downward neutral wind of 15–30 m s−1 exists. Simultaneously, the F-region plasma was moving downward at a speed of 30–50 m s−1 These events appear in the local time sector of 23.002&#x0304;23.15 in which strong downward neutral winds may occur. Indeed, airglow measurements suggest that downward neutral velocities of 25–50 m s−1 are possible at times near midnight in the equatorial F-region.  相似文献   

10.
X. WANG  S. WU  S. YUAN  D. WANG  Y. MA  G. YAO  Y. GONG  G. ZHANG 《Geofluids》2010,10(3):351-368
Interpretation of high‐resolution two‐dimensional (2D) and three‐dimensional (3D) seismic data collected in the Qiongdongnan Basin, South China Sea reveals the presence of polygonal faults, pockmarks, gas chimneys and slope failure in strata of Pliocene and younger age. The gas chimneys are characterized by low‐amplitude reflections, acoustic turbidity and low P‐wave velocity indicating fluid expulsion pathways. Coherence time slices show that the polygonal faults are restricted to sediments with moderate‐amplitude, continuous reflections. Gas hydrates are identified in seismic data by the presence of bottom simulating reflectors (BSRs), which have high amplitude, reverse polarity and are subparallel to seafloor. Mud diapirism and mounded structures have variable geometry and a great diversity regarding the origin of the fluid and the parent beds. The gas chimneys, mud diapirism, polygonal faults and a seismic facies‐change facilitate the upward migration of thermogenic fluids from underlying sediments. Fluids can be temporarily trapped below the gas hydrate stability zone, but fluid advection may cause gas hydrate dissociation and affect the thickness of gas hydrate zone. The fluid accumulation leads to the generation of excess pore fluids that release along faults, forming pockmarks and mud volcanoes on the seafloor. These features are indicators of fluid flow in a tectonically‐quiescent sequence, Qiongdongnan Basin. Geofluids (2010) 10 , 351–368  相似文献   

11.
Detailed information on the hydrogeologic and hydraulic properties of the deeper parts of the upper continental crust is scarce. The pilot hole of the deep research drillhole (KTB) in crystalline basement of central Germany provided access to the crust for an exceptional pumping experiment of 1‐year duration. The hydraulic properties of fractured crystalline rocks at 4 km depth were derived from the well test and a total of 23100 m3 of saline fluid was pumped from the crustal reservoir. The experiment shows that the water‐saturated fracture pore space of the brittle upper crust is highly connected, hence, the continental upper crust is an aquifer. The pressure–time data from the well tests showed three distinct flow periods: the first period relates to wellbore storage and skin effects, the second flow period shows the typical characteristics of the homogeneous isotropic basement rock aquifer and the third flow period relates to the influence of a distant hydraulic border, probably an effect of the Franconian lineament, a steep dipping major thrust fault known from surface geology. The data analysis provided a transmissivity of the pumped aquifer T = 6.1 × 10?6 m2 sec?1, the corresponding hydraulic conductivity (permeability) is K = 4.07 × 10?8 m sec?1 and the computed storage coefficient (storativity) of the aquifer of about S = 5 × 10?6. This unexpected high permeability of the continental upper crust is well within the conditions of possible advective flow. The average flow porosity of the fractured basement aquifer is 0.6–0.7% and this range can be taken as a representative and characteristic values for the continental upper crust in general. The chemical composition of the pumped fluid was nearly constant during the 1‐year test. The total of dissolved solids amounts to 62 g l?1 and comprise mainly a mixture of CaCl2 and NaCl; all other dissolved components amount to about 2 g l?1. The cation proportions of the fluid (XCa approximately 0.6) reflects the mineralogical composition of the reservoir rock and the high salinity results from desiccation (H2O‐loss) due to the formation of abundant hydrate minerals during water–rock interaction. The constant fluid composition suggests that the fluid has been pumped from a rather homogeneous reservoir lithology dominated by metagabbros and amphibolites containing abundant Ca‐rich plagioclase.  相似文献   

12.
The capillary‐sealing efficiency of intermediate‐ to low‐permeable sedimentary rocks has been investigated by N2, CO2 and CH4 breakthrough experiments on initially fully water‐saturated rocks of different lithological compositions. Differential gas pressures up to 20 MPa were imposed across samples of 10–20 mm thickness, and the decline of the differential pressures was monitored over time. Absolute (single‐phase) permeability coefficients (kabs), determined by steady‐state fluid flow tests, ranged between 10?22 and 10?15 m2. Maximum effective permeabilities to the gas phase keff(max), measured after gas breakthrough at maximum gas saturation, extended from 10?26 to 10?18 m2. Because of re‐imbibition of water into the interconnected gas‐conducting pore system, the effective permeability to the gas phase decreases with decreasing differential (capillary) pressure. At the end of the breakthrough experiments, a residual pressure difference persists, indicating the shut‐off of the gas‐conducting pore system. These pressures, referred to as the ‘minimum capillary displacement pressures’ (Pd), ranged from 0.1 up to 6.7 MPa. Correlations were established between (i) absolute and effective permeability coefficients and (ii) effective or absolute permeability and capillary displacement pressure. Results indicate systematic differences in gas breakthrough behaviour of N2, CO2 and CH4, reflecting differences in wettability and interfacial tension. Additionally, a simple dynamic model for gas leakage through a capillary seal is presented, taking into account the variation of effective permeability as a function of buoyancy pressure exerted by a gas column underneath the seal.  相似文献   

13.
More than a dozen hydrocarbon seep‐carbonate occurrences in late Jurassic to late Cretaceous forearc and accretionary prism strata, western California, accumulated in turbidite/fault‐hosted or serpentine diapir‐related settings. Three sites, Paskenta, Cold Fork of Cottonwood Creek and Wilbur Springs, were analyzed for their petrographic, geochemical and palaeoecological attributes, and each showed a three‐stage development that recorded the evolution of fluids through reducing–oxidizing–reducing conditions. The first stage constituted diffusive, reduced fluid seepage (CH4, H2S) through seafloor sediments, as indicated by Fe‐rich detrital micrite, corroded surfaces encrusted with framboidal pyrite, anhedral yellow calcite and negative cement stable isotopic signatures (δ13C as low as ?35.5‰ PDB; δ18O as low as ?10.8‰ PDB). Mega‐invertebrates, adapted to reduced conditions and/or bacterial chemosymbiosis, colonized the sites during this earliest period of fluid seepage. A second, early stage of centralized venting at the seafloor followed, which was coincident with hydrocarbon migration, as evidenced by nonluminescent fibrous cements with δ13C values as low as ?43.7‰ PDB, elevated δ18O (up to +2.3‰ PDB), petroleum inclusions, marine borings and lack of pyrite. Throughout these early phases of hydrocarbon seepage, microbial sediments were preserved as layered and clotted, nondetrital micrites. A final late‐stage of development marked a return to reducing conditions during burial diagenesis, as implied by pore‐associated Mn‐rich cement phases with bright cathodoluminescent patterns, and negative δ18O signatures (as low as ?14‰ PDB). These recurring patterns among sites highlight similarities in the hydrogeological evolution of the Mesozoic convergent margin of California, which influenced local geochemical conditions and organism responses. A comparison of stable carbon and oxygen isotopic data for 33 globally distributed seep‐carbonates, ranging in age from Devonian to Recent, delineated three groupings that reflect variable fluid input, different tectono‐sedimentary regimes and time–temperature‐dependent burial diagenesis.  相似文献   

14.
This paper summarizes the design and performance of our recently developed gas‐tight fluid sampler WHATS II, especially designed to collect seafloor venting gas‐rich fluid from submersibles/remotely operated vehicles (ROVs). It consists of four 150‐cm3 stainless steel sample cylinders, eight ball valves, a motor‐driven arm, a rail, a peristaltic pump, a control unit, and a flexible Teflon tube connected to a titanium inlet tube. All the parts have been designed to be used at undersea as deep as 4000 m. The motor‐driven arm on the rail can open and close each of the four cylinders. By pumping out distilled water that has filled an open cylinder and the dead spaces of the sampler, we can fill the cylinder with sample fluid. WHATS II can take a maximum of four different gas‐tight samples in a series. The whole operation can be arranged from the cabin, etc., of a submersible/ROV. Use of only one motor to operate eight valves makes the sampler small, light (21 kg in sea water), and easy to handle. In addition, the sampler is able to collect an almost uncontaminated gas‐tight sample from the seafloor. To date, the sampler has been used in more than 90 dive surveys by Japanese submersibles/ROVs, including Shinkai 2000, Shinkai 6500, and Hyper Dolphin, with a success rate of >90%.  相似文献   

15.
We retrace hydrogeochemical processes leading to the formation of Mg–Fe–Ca carbonate concretions (first distinct carbonate population, FDCP) in Martian meteorite ALH84001 by generic hydrogeochemical equilibrium and mass transfer modeling. Our simple conceptual models assume isochemical equilibration of orthopyroxenite minerals with pure water at varying water‐to‐rock ratios, temperatures and CO2 partial pressures. Modeled scenarios include CO2 partial pressures ranging from 10.1325 to 0.0001 MPa at water‐to‐rock ratios between 4380 and 43.8 mol mol?1 and different temperatures (278, 303 and 348 K) and enable the precipitation of Mg–Fe–Ca solid solution carbonate. Modeled range and trend of carbonate compositional variation from magnesio‐siderite (core) to magnesite (rim), and the precipitation of amorphous SiO2 and magnetite coupled to magnesite‐rich carbonate are similar to measured compositional variation. The results of this study suggest that the early Martian subsurface had been exposed to a dynamic gas pressure regime with decreasing CO2 partial pressure at low temperatures (approximately 1.0133 to 0.0001 MPa at 278 K or 6 to 0.0001 MPa at 303 K). Moderate water‐to‐rock ratios of ca. 438 mol mol?1 and isochemical weathering of orthopyroxenite are additional key prerequisites for the formation of secondary phase assemblages similar to ALH84001’s ‘FDCP’. Outbursts of water and CO2(g) from confined ground water in fractured orthopyroxenite rocks below an unstable CO2 hydrate‐containing cryosphere provide adequate environments on the early Martian surface.  相似文献   

16.
The effects of groundwater flow and biodegradation on the long‐distance migration of petroleum‐derived benzene in oil‐bearing sedimentary basins are evaluated. Using an idealized basin representation, a coupled groundwater flow and heat transfer model computes the hydraulic head, stream function, and temperature in the basin. A coupled mass transport model simulates water washing of benzene from an oil reservoir and its miscible, advective/dispersive transport by groundwater. Benzene mass transfer at the oil–water contact is computed assuming equilibrium partitioning. A first‐order rate constant is used to represent aqueous benzene biodegradation. A sensitivity study is used to evaluate the effect of the variation in aquifer/geochemical parameters and oil reservoir location on benzene transport. Our results indicate that in a basin with active hydrodynamics, miscible benzene transport is dominated by advection. Diffusion may dominate within the cap rock when its permeability is less than 10?19 m2. Miscible benzene transport can form surface anomalies, sometimes adjacent to oil fields. Biodegradation controls the distance of transport down‐gradient from a reservoir. We conclude that benzene detected in exploration wells may indicate an oil reservoir that lies hydraulically up‐gradient. Geochemical sampling of hydrocarbons from springs and exploration wells can be useful only when the oil reservoir is located within about 20 km. Benzene soil gas anomalies may form due to regional hydrodynamics rather than separate phase migration. Diffusion alone cannot explain the elevated benzene concentration observed in carrier beds several km away from oil fields.  相似文献   

17.
We analyse the fluid flow regime within sediments on the Eastern levee of the modern Mississippi Canyon using 3D seismic data and downhole logging data acquired at Sites U1322 and U1324 during the 2005 Integrated Ocean Drilling Program (IODP) Expedition 308 in the Gulf of Mexico. Sulphate and methane concentrations in pore water show that sulphate–methane transition zone, at 74 and 94 m below seafloor, are amongst the deepest ever found in a sedimentary basin. This is in part due to a basinward fluid flow in a buried turbiditic channel (Blue Unit, 1000 mbsf), which separates sedimentary compartments located below and above this unit, preventing normal upward methane flux to the seafloor. Overpressure in the lower compartment leads to episodic and focused fluid migration through deep conduits that bypass the upper compartment, forming mud volcanoes at the seabed. This may also favour seawater circulation and we interpret the deep sulphate–methane transition zones as a result of high downward sulphate fluxes coming from seawater that are about 5–10 times above those measured in other basins. The results show that geochemical reactions within shallow sediments are dominated by seawater downwelling in the Mars‐Ursa basin, compared to other basins in which the upward fluid flux is controlling methane‐related reactions. This has implications for the occurrence of gas hydrates in the subsurface and is evidence of the active connection between buried sediments and the water column.  相似文献   

18.
Geological methane, generated by microbial decay and the thermogenic breakdown of organic matter, migrates towards the surface (seabed) to be trapped in reservoirs, sequestered by gas hydrates or escape through natural gas seeps or mud volcanoes (via ebullition). The total annual geological contribution to the atmosphere is estimated as 16–40 Terragrammes (Tg) methane; much of this natural flux is ‘fossil’ in origin. Emissions are affected by surface conditions (particularly the extent of ice sheets and permafrost), eustatic sea‐level and ocean bottom‐water temperatures. However, the different reservoirs and pathways are affected in different ways. Consequently, geological sources provide both positive and negative feedback to global warming and global cooling. Gas hydrates are not the only geological contributors to feedback. It is suggested that, together, these geological sources and reservoirs influence the direction and speed of global climate change, and constrain the extremes of climate.  相似文献   

19.
We provide a simplified treatment of phase separation of seawater near an igneous dike to obtain rough estimates of the thickness and duration of the two‐phase zone, the volume fractions of vapor and brine formed, and their distribution in the subsurface. Under the assumption that heat transfer occurs mainly by thermal conduction we show that, for a 2‐m wide dike, the maximum width of the two phase zone is approximately 20 cm and that a zone of halite is initially deposited near the dike wall. The two‐phase zone is mainly filled with vapor. For a value of thermal diffusivity of a = 10?6 m2 sec?1, the two‐phase zone begins to disappear at the base of the system after 13 days, and disappears completely by 16 days. For a lower value of thermal diffusivity, the width of the two‐phase region does not change appreciably but its duration increases as a?1. The width of the two‐phase zone determined by this simplified model agrees reasonably well with transient numerical solutions for the analogous two‐phase flow in a pure water system; however the duration of two‐phase flow is matched better using a smaller value of a. We compare the seafloor values of vapor salinity and temperature given by the model with vapor salinity data from the ‘A’ vent at 9–10°N on the East Pacific Rise (EPR) and argue that either non‐equilibrium thermodynamic behavior or near‐surface mixing of brine with vapor in the two‐phase region may explain the discrepancies between model predictions and data.  相似文献   

20.
Faults are often important in fuelling methane seep systems; however, little is known on how different components in fault zones control subsurface fluid circulation paths and how they evolve through time. This study provides insight into fault‐related fluid flow systems that operated in the shallow subsurface of an ancient methane seep system. The Pobiti Kamani area (NE Bulgaria) encloses a well‐exposed, fault‐related seep system in unconsolidated Lower Eocene sandy deposits of the Dikilitash Formation. The Beloslav quarry and Beloslav N faults displace the Dikilitash Formation and are typified by broad, up to 80 m wide, preferentially lithified hanging wall damage zones, crosscut by deformation bands and deformation band zones, smaller slip planes and fault‐related joints. The formation of a shallow plumbing system and chimney‐like concretions in the Dikilitash Formation was followed by at least two phases of fault‐related methane fluid migration. Widespread fluid circulation through the Dikilitash sands caused massive cementation of the entire damage zones in the fault hanging walls. During this phase, paths of ascending methane fluids were locally obstructed by decimetre‐thick, continuous deformation band zones that developed in the partly lithified sands upon the onset of deformation. Once the entire damage zone was pervasively cemented, deformation proceeded through the formation of slip planes and joints. This created a new network of more localized conduits in close vicinity to the main fault plane and around through‐going slip planes. 13C‐depleted crustiform calcite cements in several joints record the last phase of focused methane fluid ascent. Their formation predated Neogene uplift and later meteoric water infiltration along the joint network. This illustrates how fault‐related fluid pathways evolved, over time, from ‘plumes’ in unconsolidated sediments above damage zones, leading to chimney fields, over widespread fluid paths, deflected by early deformation structures, to localized paths along fracture networks near the main fault.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号