首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The papers by Winseret al. [(1990) J. atmos. terr. Phys.52, 501] and Häggström and Collis [(1990) J. atmos. terr. Phys.52, 519] used plasma flows and ion temperatures, as measured by the EISCAT tristatic incoherent scatter radar, to investigate changes in the ion composition of the ionospheric F-layer at high latitudes, in response to increases in the speed of plasma convection. These studies reported that the ion composition rapidly changed from mainly O+ to almost completely (>90%) molecular ions, following rapid increases in ion drift speed by >1 km s−1. These changes appeared inconsisent with theoretical considerations of the ion chemistry, which could not account for the large fractions of molecular ions inferred from the obsevations. In this paper, we discuss two causes of this discrepancy. First, we reevaluate the theoretical calculations for chemical equilibrium and show that, if we correct the derived temperatures for the effect of the molecular ions, and if we employ more realistic dependences of the reaction rates on the ion temperature, the composition changes derived for the faster convection speeds can be explained. For the Winser et al. observations with the radar beam at an aspect angle of ϕ = 54.7° to the geomagnetic field, we now compute a change to 89% molecular ions in < 2 min, in response to the 3 km s−1 drift. This is broadly consistent with the observations. But for the two cases considered by Häggström and Collis, looking along the field line (ϕ = 0°), we compute the proportion of molecular ions to be only 4 and 16% for the observed plasma drifts of 1.2 and 1.6 km s−1, respectively. These computed proportions are much smaller than those derived experimentally (70 and 90%). We attribute the differences to the effects of non-Maxwellian, anisotropic ion velocity distribution functions. We also discuss the effect of ion composition changes on the various radar observations that report anisotropies of ion temperature.  相似文献   

2.
A theoretical study is presented bearing on the thermospheric circulation and composition at polar latitudes. The observed motions and density perturbations in N2, O and He have signatures which may be understood in terms of two different source mechanisms. We consider electric field momentum coupling and Joule heating as well as interactions between both processes. A spectral model in terms of vector spherical harmonics (with magnetic coordinates) is used, delineating the diurnal and mean (time independent) components. The important non-linearities are evaluated in configuration space. The electric field model of Volland and the global average density and temperature variations of Hedin (MSIS) are adopted as input. Our analysis leads to the following conclusions. (1) The vortex type double cell polar circulation (zonal wave number m = 1) is primarily driven by collisional momentum transfer from electric field induced ion convection. (2) Because of the thermospheric low pass filter, a large time independent component (zonal wave number m = 0) is produced by Joule heating; the heavier species (N2) being concentrated where the lighter ones (O, He) are depleted, and vice versa due to wind induced diffusion (3) The electric field driven vortex circulation redistributes the mass and energy in the time independent density and temperature variations (from Joule heating), producing primarily diurnal variations (m = 1) in the temperature and composition near the pole and at auroral latitudes, again the heavier and lighter species varying out of phase. The above results are in substantial agreement with observations. It is worth noting that momentum rectification associated with the diurnally varying electric field and conductivity induces a weak zonally symmetric (single cell) prograde polar vortex. However, this motion is partially compensated by a retrograde vortex from geostrophic balance due to Joule heating, which dominates near the pole. These motions are small compared with the diurnally varying component in the polar circulation.  相似文献   

3.
4.
High-resolution daytime incoherent scatter radar measurements of plasma temperatures and drifts in the ionospheric E-region above Millstone Hill (42.6°N, 71.5°W) have been used to derive horizontal neutral winds and temperatures in the lower thermosphere (105–130 km) during five multi-day campaigns in 1987–1991. The underlying semi-diurnal tidal component has been determined from the observations, with characteristic average amplitudes of 50 ± 15 m/s and 30 ± 10 K. Phase propagation with altitude follows the expected structure of semi-diurnal tidal modes, but reveals complex coupling of tidal modes, particularly above 115 km. Day-to-day variability in the winds and temperatures is large, and the deviations from the semi-diurnal harmonic can exceed 40 m/s and 50 K. No strong correlations have so far been found with geophysical parameters to explain the observed variability.  相似文献   

5.
The high-latitude structure of the mean winds and tides is described in this paper using climatologies prepared from radar data during the Atmospheric Tides Middle Atmosphere Program. The monthly evolution of the amplitude and phase of the tides is discussed. Comparison between the southern and northern hemispheres indicate that the diurnal tide is stronger in the southern hemisphere and that the antisymmetric diurnal tidal modes are dominant. The semidiurnal tide is larger than the diurnal tide. The vertical wavelength structure is significantly different between the southern and northern hemisphere. Comparisons with recent tidal models show several discrepancies.  相似文献   

6.
This paper discusses the current status of calculating infrared cooling by CO2 in the mesosphere and lower thermosphere. It is desirable to have fast but accurate procedures for use in dynamic models. The most difficult region is from 70 to 90 km, where cooling rates are strongly influenced or, in the case of the summer mesopause region, dominated by the absorption of radiation emitted by underlying layers, with the hot bands and isotopic bands playing a significant role. A three-energy-level model is derived for the excited population levels of a CO2 molecule. Vibrational-vibrational coupling between isotopes is also included as significant. Results from model calculations for cooling rates and NLTE source functions are presented. Global average infrared cooling rates appear to be in reasonable balance with solar heating rates, considering the uncertainties in calculating both these terms. Radiative cooling rates by CO2 above 100 km are strongly dependent on atomic oxygen concentrations and on the rate of energy exchange between atomic oxygen and CO2. Likewise, NO cooling, which is important above 120 km, is proportional to atomic oxygen concentrations. Since CO2, NO and O concentrations can all vary with motions, these dependencies suggest interesting feedbacks to atmospheric dynamics.  相似文献   

7.
Two-dimensional eddy diffusion around mesopause heights is modelled by means of a set of parameters relating eddy transports to average fields of meteorological quantities like wind variance and potential temperature. The so-called K-theory approach is used. The parameters chosen in this study allow easy modification of the K-models. This is thought to enable better adjustment and further development of the transport parameterization in accordance with future exploration of the transport phenomena and their physical background in the middle atmosphere. The models in their present state have been used to study a few problems associated with the climatological behaviour of the mesosphere and lower thermosphere: the relative importance of convective and eddy transports, implications of the mean winter anomaly of ionospheric absorption, the problem of strong mean vertical winds near the mesopause and the formation of the NO density minimum around 85 km altitude.  相似文献   

8.
The inter-annual variation in diurnal and semi-diurnal atmospheric tides between 85 and 95 km has been studied for various years between 1978 and 1988. Observations comprised wind measurements from the medium frequency SA mode wind radars at Adelaide (35°S), Christchurch (44°S) and Saskatoon (52°N) and the meteor wind radar at Durham (43°N). Although the observations include the interval between solar maximum and solar minimum, there is in general no correlation between tidal amplitudes and solar activity. In contrast with earlier studies there does appear to be a positive correlation between solar activity and the amplitude of the semi-diurnal tide, but only during the southern summer and simultaneous northern winter.  相似文献   

9.
The results of studies of the fine structure and dynamic processes in the high-latitude ionosphere in the cleft and cusp region by the data of complex radiophysical observations on high-latitudinal paths are presented. They are based on experimental material obtained on board the research vessel ‘Professor Vize’ during July-September 1990 when the vessel was at the Greenwich meridian and the latitudes 75–78°N. The distinctive feature of the radiophysical observations on the vessel was the simultaneous observations by the Doppler method at two fixed frequencies in the decameter range and by the method of oblique sounding of the ionosphere at a frequency sweeping the range from 3.5 to 27.5 MHz. From the observations, the typical feature of the cleft and the cusp has been found to be the presence of wave processes of various periods from 30–40 s to 3–8 min. It is suggested that the emergence of typical negative tracks on the dynamic spectra of HF signals is related to the ionospheric manifestations of flux transfer events.  相似文献   

10.
Middle atmosphere electrodynamics at high latitudes differs significantly from the normally assumed picture of a passive region through which electric fields of external origin couple. Large Vm −1 electric fields, both horizontal and vertical, have been observed within bounded regions of the upper stratosphere and lower mesosphere. They seem to occur only in regions where the electrical conductivity is a few times 10−10 S m−1 or less and appear to be current limned. While low conductivity is necessary, it is not a sufficient condition for occurrence. The observed large horizontal electric fields were found to be anticorrelated with the local neutral wind. However, a generation mechanism of these electric fields is as yet unknown but must involve space charge separation rather than dynamo effects. Large variations in the conductivity were also observed to occur with fluctuations in magnetic activity, and these were found to be consistent with measured variations in energy deposition during auroral phenomena. Theoretical concepts of mapping of electric fields downward from the thermosphere along equipotential magnetic field lines were shown to hold qualitatively in the D-region at the mV m−1 level. Perturbations affecting such models were determined to be small.  相似文献   

11.
The neutral dynamic and electrodynamic coupling between high and low latitudes, and the mutual interactions between these two processes, are investigated. For 22 March 1979, when a sudden increase in magnetic activity occurred, we have analyzed the following experimental data: (a) neutral densities and cross-track neutral winds as a function of latitude (0°–80°) near 200 km from a satellite-borne accelerometer; (b) hourly mean H-component magnetic data from the Huancayo Observatory (0.72°S, 4.78°E; dipole geomagnetic coordinates) magnetometer; and (c) hourly mean foF2 measurements from the ionosonde at Huancayo. Comparisons are also made with a self-consistent thermosphere-ionosphere general circulation model and with observationally-based empirical models of winds and density.In concert with the increase in magnetic activity to Kp levels of 5–7, a nighttime (2230 LT) westward intensification of the neutral wind approaching 400 ± 100 ms−1 occurred near the magnetic equator on 22 March 1979, accompanied by a 35% increase in neutral mass density. About 2 h after each of two substorm commencements associated with periods of southward IMF, ∼100γ and ∼200γ reductions in the daytime Huancayo H-component (corrected for ring current effects) are interpreted in terms of ∼0.5 and ∼1.0 mVm−1 westward perturbation electric fields, respectively. An intervening 2-hour period of northward IMF preceded a positive equatorial magnetic perturbation of about 200γ. Time scales for field variations are a few hours, suggesting that processes other than Alfven shielding are involved. Variations in f0F2 (∼ ± 1.0 MHz) over Huancayo are consistent with the inferred electric fields and magnetic variations. Similar equatorial perturbations are found through examination of other magnetic disturbances during 1979.  相似文献   

12.
Although the existence of thin ionized layers at heights around 100 km has been known for many years, it is only much more recently that thin neutral metal layers have been observed. Such layers, initially sodium and more recently calcium and iron, have been detected by lidar. The layers, with thicknesses between about 100m and several kilometres, and concentrations between about 102 and 105 cm−3, occur most frequently between 90 and 100 km, and are normally superimposed on a background layer about 10 km thick. The occurrence of thin neutral layers appears to be latitude dependent, and is strongly linked to the appearance of Es on ionograms. Several causative mechanisms have been suggested, none of which appears to be capable of providing an altogether satisfactory explanation for the formation of the layers.  相似文献   

13.
From an analysis of the variations of various ionospheric characteristics influenced by global anthropogenic effects, it is shown that the collision frequency ven is the parameter that changes most when the ratio between the carbon dioxide plus methane and the other components is changed. Since this collision frequency is directly involved in the formation of ionospheric absorption, the latter is recommended to be regarded as the most sensitive ground-based indicator of the global ‘cooling’ of the near-Earth space. Expressions are obtained for the estimation of man-made influences by absorption measurements. For medium latitudes, we recommend the frequency range from 400 to 800 kHz as a sensitive range for these measurements.  相似文献   

14.
EISCAT has made regular measurements of plasma velocity at heights between 101 and 133 km in the E-region and at 279 km in the F-region as part of the Common Programme CP1. Correcting for the effect of the electric field as determined in the E-region, it is possible to estimate the neutral wind velocity in the E-region for a number of days in the period 1985–1987 when magnetic conditions were relatively quiet. These velocities display diurnal and semi-diurnal tidal oscillations. The diurnal tide varies considerably from day to day in both amplitude and phase. The semi-diurnal tide also varies in amplitude but displays a fairly consistent phase at each height and the variation of phase with height below 110 km indicates a dominant (2,4) mode. Above 120 km the variation of phase with height is slower which suggests that at these heights the (2, 4) mode is attenuated and the (2, 2) mode is more important. The results agree well with previous measurements at high latitude.  相似文献   

15.
16.
Vertical winds measured in the upper and lower thermosphere above the South Pole station show a predominantly diurnal variation with an average amplitude of 40 m/s and 10 m/s, respectively. Downward motion was typical of the dayside polar cap in the vicinity of the cusp and cleft, and upward motion of about the same magnitude occurred in the midnight sector. Observations during the June 1991 storm period showed that the amplitude of the diurnal variation was well correlated with the daily sum of Kp or ΣKp, and also that the downward wind was the most sensitive to Kp change. Vertical winds in excess of 150 m/s were observed on the most active day. These measurements bear strong similarities to vertical wind data from Longyearbyen, Svalbard, at a similar geomagnetic latitude in the northern hemisphere. It was found that the downward vertical wind was proportional to the calculated divergence of the horizontal wind with a constant of proportionality equal to about twice the typical scale height at the altitude of measurement. Following the arguments of Burnside et al. (1981) and Rees et al. (1984b), we show that there is good evidence that the observed vertical winds are driven by divergence in the horizontal wind.  相似文献   

17.
18.
The dynamics and structure of the polar thermosphere and ionosphere within the polar regions are strongly influenced by the magnetospheric electric field. The convection of ionospheric plasma imposed by this electric field generates a large-scale thermospheric circulation which tends to follow the pattern of the ionospheric circulation itself. The magnetospheric electric field pattern is strongly influenced by the magnitude and direction of the interplanetary magnetic field (IMF), and by the dynamic pressure of the solar wind. Previous numerical simulations of the thermospheric response to magnetospheric activity have used available models of auroral precipitation and magnetospheric electric fields appropriate for a southward-directed IMF. In this study, the UCL/Sheffield coupled thermosphere/ionosphere model has been used, including convection electric field models for a northward IMF configuration. During periods of persistent strong northward IMF Bz, regions of sunward thermospheric winds (up to 200 m s−1) may occur deep within the polar cap, reversing the generally anti-sunward polar cap winds driven by low-latitude solar EUV heating and enhanced by geomagnetic forcing under all conditions of southward IMF Bz. The development of sunward polar cap winds requires persistent northward IMF and enhanced solar wind dynamic pressure for at least 2–4 h, and the magnitude of the northward IMF component should exceed approximately 5 nT. Sunward winds will occur preferentially on the dawn (dusk) side of the polar cap for IMF By negative (positive) in the northern hemisphere (reverse in the southern hemisphere). The magnitude of sunward polar cap winds will be significantly modulated by UT and season, reflecting E-and F-region plasma densities. For example, in northern mid-winter, sunward polar cap winds will tend to be a factor of two stronger around 1800 UT, when the geomagnetic polar cusp is sunlit, then at 0600 UT, when the entire polar cap is in darkness.  相似文献   

19.
High time resolution measurements of Doppler shift and broadening of the (OI) >1630 nm emission in the night airglow and aurora have provided determinations of vertical velocities and temperatures in the neutral thermosphere over Mawson, Antarctica. The vertical wind exhibits a large, rapid and complex response to geomagnetic energy input. Upward winds greater than 50 m s−1 are frequently associated with the expansion phase of auroral substorms. Following the disturbance, prolonged periods of downward winds produce temperature enhancements of 200K outside the source region, thus providing a mechanism for the redistribution of geomagnetic energy. Oscillatory behaviour consistent with thermospheric gravity waves is observed during both quiet and disturbed conditions.  相似文献   

20.
Recent progress on interactions between breaking gravity waves and the diurnal tide in the upper mesosphere and lower thermosphere is reviewed, mainly based on the recent results of our numerical models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号