首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zenith observations of the oxygen λ1630 nm auroral/airglow emission (produced at an altitude of ∼220 to ∼250 km) were obtained with the Mawson Fabry-Perot Spectrometer (FPS) during three ‘zenith direction only’ observing campaigns in 1993. The data show many instances of strong (50 to 100 m s−1) upwellings in the vertical wind, when the auroral oval is located equatorward of the zenith. Our data appear consistent with the existence of a region of upwelling up to ∼ 4° poleward of the poleward boundary of the visible auroral oval, rather than short duration, explosive heating events. The upwellings are probably the vertical component of wind shear produced by reversal of the zonal thermospheric winds, which occurs near the poleward boundary of the visible auroral oval. Zenith temperature was also seen to increase when the oval was equatorward of Mawson, showing rises of up to 300 K or more. However, this increase is at times unrelated to the upwellings, and seems to be caused by the expansion of the warm polar cap over the observing site.On a number of nights the boundary between the polar cap and the auroral oval was observed to pass over our site several times, occasionally showing a quasi-periodic expansion and contraction. We speculate that this quasi-periodic movement may be related to periodic auroral activity that is known to generate large-scale gravity waves.  相似文献   

2.
High resolution vertical wind measurements of the upper and lower thermosphere were made at Poker Flat, Alaska, using a scanning Fabry-Perot spectrometer (FPS). Observations of the λ558 and λ630 nm emissions of atomic oxygen were made on 21 nights and allowed for the simultaneous determination of wind and temperature at altitudes of about 130 and 240 km, respectively. On two occasions, significant upwelling events were measured which lasted between 15 and 25 min. Peak velocities were up to 42 m/s at 130 km and 138 m/s at 240 km. Auroral activity was monitored using a meridian scanning photometer (MSP). On both occasions, the region of upwelling was located on the poleward side of the auroral oval during geomagnetically active conditions. A schematic model is used to describe an event from which the horizontal scale of the upwelling region is estimated to be less than 320 km in the lower thermosphere and less than 800 km in the upper thermosphere.  相似文献   

3.
Two radars were used simultaneously to study naturally occurring electron heating events in the auroral E-region ionosphere. During a joint campaign in March 1986 the Cornell University Portable Radar Interferometer (CUPRI) was positioned to look perpendicular to the magnetic field to observe unstable plasma waves over Tromsø, Norway, while EISCAT measured the ambient conditions in the unstable region. On two nights EISCAT detected intense but short lived (< 1 min) electron heating events during which the temperature suddenly increased by a factor of 2–4 at altitudes near 108 km and the electron densities were less than 7 × 104 cm−3. On the second of these nights CUPRI was operating and detected strong plasma waves with very large phase velocities at precisely the altitudes and times at which the heating was observed. The altitudes, as well as one component of the irregularity drift velocity, were determined by interferometric techniques. From the observations and our analysis, we conclude that the electron temperature increases were caused by plasma wave heating and not by either Joule heating or particle precipitation.  相似文献   

4.
High time resolution measurements of Doppler shift and broadening of the (OI) >1630 nm emission in the night airglow and aurora have provided determinations of vertical velocities and temperatures in the neutral thermosphere over Mawson, Antarctica. The vertical wind exhibits a large, rapid and complex response to geomagnetic energy input. Upward winds greater than 50 m s−1 are frequently associated with the expansion phase of auroral substorms. Following the disturbance, prolonged periods of downward winds produce temperature enhancements of 200K outside the source region, thus providing a mechanism for the redistribution of geomagnetic energy. Oscillatory behaviour consistent with thermospheric gravity waves is observed during both quiet and disturbed conditions.  相似文献   

5.
Night-time observations of O(1D) λ630 nm and O(1S) λ558 nm thermospheric emissions were made at Mawson, Antarctica (67.6°S, 62.9°E) from 1982 to 1989, using a three-field photometer. Crossspectral analysis of the data was used to extract frequencies and horizontal trace velocities of periodic structures. Structures in the λ630 nm emission were characteristic of large-scale waves, and those in the λ558 nm emission were characteristic of medium-scale waves. The results showed distinct polarisation of the propagation azimuths; waves in the λ630 nm emission propagated approximately northwestward throughout the 8 yr period, whilst propagation azimuths of waves in the λ558 nm emission appeared to be solar-cycle-dependent. It is suggested that waves observed in the λ630 nm emission were of predominantly auroral electrojet origin, whilst those observed in the λ558 nm emission were of both auroral and tropospheric origin.  相似文献   

6.
The paper presents the results of an investigation of the height variations of dynamic processes in the 80–110 km height region, carried out in Kazan, U.S.S.R. (56°N, 49°E) by the radiometeor method during the MAC/EPSILON campaign. Experimental results show that the largest values of vertical wind gradients, as well as zonal and meridional temperature gradients can be found at heights of ~ 83 km. At heights of 80 ⩽ h ⩽ 100 km, we can observe energy absorption of IGW and tides which are the major sources of turbulent energy in the above-mentioned height interval. Using the effects of IGW energy absorption, values of the turbulent eddy diffusion coefficient Kl ranging from 1600 to 4400 m2/s were calculated for October 1987. The energy dissipation rate ϵ was estimated to be from 0.1 to 0.4 W/kg.  相似文献   

7.
NCAR-TIGCM simulations predict mesoscale cellular structures in the high latitude neutral density at altitudes from 120–350 km. During magnetically active conditions, the density structure at 200 km consists of low-density cells near dawn and dusk and high-density cells near noon and midnight. Mechanisms causing the structured density cells are a result of thermosphere-ionosphere coupling and can be explained in terms of dynamic meteorology. For example, at high latitudes ion drag causes the neutral circulation to flow cyclonically in the dawn sector and anticyclonically in the dusk sector. Low densities are contained within the cyclonic circulation at all altitudes. Below about 170 km, the densities inside the anticyclonic flow are high, while above that altitude densities within the anticyclonic flow are low. While typical dynamic meteorology explains low densities in the centre of cyclonic circulation and high densities inside anticyclonic circulation, the dusk low-density cell in the centre of anticyclonic flow is unexpected. The anticyclonic dusk low-density cell is explained by anomalous antibaric flow due to high-speed winds. 120 km and 200 km altitudes are used to demonstrate the relationship between the high latitude densities and winds as well as the effect of joule heating and auroral particle precipitation on the density structures.  相似文献   

8.
Quasi-periodic (QP) radio scintillations were observed during (1987) on 244 MHz and 1.5 GHz geostationary satellite transmissions in the southern auroral zone from Davis station (68.6°S, 78.0°E geographic, 74.6°S Aλ) in Antarctica. Three distinct types of OP events were identified, with occurrence times mainly restricted to the period 18-00 MLT. The substantial loss of signal associated with these events appears to be an important factor in determining the reliability of satellite links on 1.5 GHz in auroral regions. Previous observations at mid-latitudes of QP scintillations have noted a preference for large zenith angles and equatorward azimuths. It is demonstrated that a height transition in a densely ionized layer can produce QP scintillations in a manner analogous to a dense column of ionization but at lower ionization densities, as well as demonstrating a zenith angle and azimuthal dependence that is more consistent with observations than a column of ionization. At the occurrence times noted, the raypath may be intersecting the poleward edge of the trough where sporadic-E is a regular feature. QP scintillation events may result when the Es-layer is height modulated by the passage of acoustic-gravity waves originating in the auroral zone.  相似文献   

9.
Observations with the Poker Flat, Alaska, MST radar during and after solar proton events in 1982 and 1984 suggest that winds in the altitude range of ~ 80–90 km were altered as a consequence of the influx of energetic charged particles and large electric fields at high latitudes. The atmospheric changes accompanying these events appear to result in a reduction of the semidiurnal tide and an enhancement in the diurnal tide. It is suggested that these changes could result from the alteration of the local tidal heating distribution produced by the particle precipitation, either through changes in the local ozone distribution or as a result of mesospheric Joule heating.  相似文献   

10.
The vertical wind component is frequently used to determine the zero-velocity baseline for measurements of thermospheric winds by Fabry-Perot and other interferometers. For many of the upper atmospheric emission lines from which Doppler shifts are determined, for example for the OI 630 nm emission, available laboratory sources are not convenient for long-term use at remote automatic observatories. Therefore, the assumption that the long-term average vertical wind is zero is frequently used to create a baseline from which the Doppler shifts corresponding with the line-of-sight wind from other observing directions can then be calculated. A data base consisting of 1242 nights of thermospheric wind measurements from Kiruna (68°N, 20°E), a high-latitude site, has been analysed. There are many interesting short-term fluctuations of the vertical wind which will be discussed in future papers. However, the mean vertical wind at Kiruna also has a systematic variation dependent on geomagnetic activity, season and solar cycle. This means that the assumption that the average value of the vertical wind is zero over the observing period cannot be used in isolation to determine the instrument reference or baseline. Despite this note of caution, even within the auroral oval, the assumption of a zero mean vertical wind can be used to derive a baseline which is probably valid within 5 ms−1 during periods of quiet geomagnetic activity (Kp < 2), near winter solstice. During other seasons, and during periods of elevated geomagnetic activity, a systematic error in excess of 10 ms−1 may occur.  相似文献   

11.
The results from the analysis of simultaneous auroral ground-based optical measurements of the N(2D) 520.0 nm, N2+ 1NG 470.9 nm, O(3P) 844.6 nm and the O(1D) 630.0 nm emission intensities are presented. The data were obtained during auroral observations at Gillam (56.35°N, 265.32°E) over an observation period of about 8 hours, from UT 2:33 hrs to UT 10:06 hrs, on 20 March 1985. The soft electron flux measurements on board the DMSP satellite for the time of the experiment have also been considered in the analysis. The N(2D) density and the N(2D) 520.0 nm integral emission rate I(520.0) were calculated employing a one- and two-dimensional time-dependent ion-chemistry model and the model predictions have been compared with the experimental I(520.0) nm emission rates. It was found that the model predictions of the NI I(520.0) nm intensity based on the electron energy fluxes inferred from the experimental I(844.6)/I(427.8) emission rate ratios are smaller in magnitude than the experimental values by a factor of 5–8 after allowing for horizontal transport of [N(2D)] by neutral winds. Assuming soft electron precipitation, suggested by the OI I(630.0) nm emission measurements and the DMSP satellite electron flux data, provided good agreement between the model and experimental results. Based on the results obtained it was concluded that horizontal transport played a minor role and that the observed N(2D) I(520.0) nm emissions were mostly produced by precipitating soft electron fluxes with energies below about 100 eV.  相似文献   

12.
Winds in the upper atmosphere, and their effect on the ionosphere, are reviewed with an emphasis on information useful to ionospheric studies. The winds are driven by pressure gradients from solar and auroral heating, with some forcing by tidal energy from below. Simple calculations which balance the pressure gradient by ion drag and Coriolis forces are generally unreliable, so large-scale numerical models of the coupled atmosphere and ionosphere are required. The accuracy of these global models is limited by uncertainties in the energy inputs at high latitudes and at the lower boundary (about 90 km). The best current wind data come from incoherent scatter radar or airglow installations, at a few sites and for only a few nights per month. Satellite data are also available for several years, and results to 1989 are incorporated in the global HWM90 model. This seems acceptable for determining mean winds at night, less good during the day, and least good in the southern hemisphere where few data were available. Plots are given to show the mean winds at different latitudes and longitudes, for use in ionospheric calculations.Meridional winds alter the height of the mid-latitude F layer, causing large changes in the effective loss rate. This is the major cause of observed seasonal changes, of differences between the hemispheres, and of changes at different longitudes. An increased knowledge of the winds is essential for further progress in F region studies. Ionospheric data provide the most promising route, using routinely scaled parameters. The simplest calculations compare observed peak heights, obtained from M (3000)F2, with the value ho predicted by simplified “servo” equations. Errors occurring for some hours after sunrise can be overcome using model results to define ho this allows rapid and accurate wind calculations at dip latitudes of 23–62°. Winds can also be obtained from full model calculations, designed to match observed values of peak height or density.  相似文献   

13.
The development of an auroral arc in the midnight sector, from diffuse to discrete with subsequent large scale folding, is studied with the aid of several ground-based observations, including incoherent scatter radar, and data from a HILAT satellite pass. Ion drift velocities in the F-region, as measured by EISCAT, were consistently eastward throughout and after the whole period of development, whilst the ion temperature showed two large enhancements just prior to the appearance of the main auroral fold. The fold moved eastwards and crossed the EISCAT antenna beam, appearing as a short-lived spike in electron density at altitudes between about 100 km and 400 km. The spike in electron density came progressively later at higher altitudes. The observations are interpreted as the result of enhanced convection in the ionosphere and in the magnetosphere. The auroral arc folding is suggested to be caused by the Kelvin-Helmholtz instability in a velocity shear zone in the magnetosphere.  相似文献   

14.
Mean winds at 60–90 km altitudes observed with the MU radar (35°N, 136°E) in 1985–1989 are presented in this paper. The zonal wind at 70 km became westward and eastward in summer and winter, respectively, with a maximum amplitude of 45 m s−1 westward in early July and 80 m s−1 eastward at the end of November. The meridional wind below 85 km was generally northward with the amplitudes less than 10 m s−1. In September to November, the meridional wind at 75–80 km becomes as large as 20–30 m s−1. Those zonal wind profiles below 90 km show good coincidence with the CIRA 1986 model, except for the latter half of winter, from January to March, when the observational result showed a much weaker eastward wind than the CIRA model. The height of the reversal of the summer wind from westward to eastward was determined as being 83–84 km, which is close to the CIRA 1986 model of 85 km. The difference between the previous meteor radar results at 35–40°N, which showed the reversal height below 80 km, could be due to interannual variations or the difference in wind measurement technique. In order to clarify that point, careful comparative observations would be necessary. These mean winds were compared with Adelaide MF radar observations, and showed good symmetry between the hemispheres, including the summer reversal height, except for the short period of eastward winds above Kyoto and the long period over Adelaide.  相似文献   

15.
Five foil chaff and two falling sphere rockets flown during the MAC/SINE Campaign on 15 July 1987 at Andenes, Northern Norway (69°17′N). From these rocket measurements, turbulent energy dissipation rates, vertical wind shears and Richardson numbers as functions of height were derived in the range from 82 to 92km. Turbulent energy dissipation rates generally range from 1.4 × 10−5 to 2.0 × 10−2W/kg and are consistent with other experiments performed at the same latitude. Strong wind shears of the order of 50–90 m/s/km are observed at various heights. Good correspondence between turbulence intensity peaks, regions of strong wind shear and low Richardson number is found. Vertical wavenumber spectra of the five scalar winds measured by the foil chaff rockets indicate that there is an excellent agreement with the saturation hypothesis, suggesting that the turbulence intensity peaks measured in this salvo are linked directly to the saturation of gravity wave motions via dynamical instabilities.  相似文献   

16.
Since the 1982/1983 winter, the UCL group, in collaboration with the Swedish Institute for Space Physics (previously Kiruna Geophysical Institute), has operated a Doppler imaging system at the high latitude station of Kiruna (67°N, 22°E). The Doppler imaging system is an imaging Fabry-Perot interferometer of 13.2 cm aperture. This instrument has been operated on a ‘campaign’ basis for mapping thermospheric winds using the OI emission at 630 nm (240 km altitude) from a region up to about 400 km radius about Kiruna. In November 1986, the performance of this wide-field Doppler imaging system was augmented by improvements to the detector and all-sky optics. We present data from December 1986, obtained during periods with both clear skies and active auroral and geomagnetic conditions. Maps of the neutral wind flow within the auororal oval during disturbed conditions and near magnetic midnight show continuous and rapid changes of thermospheric winds. The typical scale sizes of eddies observed within the mean flow around magnetic midnight are 100–300 km, with fluctuations at all time scales resolved by the 10 min between successive Doppler images. The local and short period fluctuations appear to be a filtered response of the thermosphere to rapid local variations of the convection and precipitation patterns, within a background of global scale changes  相似文献   

17.
The Imaging Fabry-Perot Interferometer (IFPI) at the Bear Lake Observatory (BLO), Utah (41.9°N, 111.4°W) is used for studies of the aeronomy of the middle and upper atmosphere. Wind and temperature structure can be determined from observations of the Doppler shift and Doppler broadening of the airglow and auroral emissions from the mesosphere and thermosphere. The mesospheric winds recorded at the end of August, September and early October 1992 are consistent with a semi-diurnal tidal variation. The amplitude of this variation is approximately 30 ms−1 at the end of August and early September and approximately 20 ms−1 at the end of September and early October. However, during June and July, the semi-diurnal tidal variation, if present, is weak, with amplitude < 5 ms−1. No consistent semi-diurnal tidal variation is observed during late October 1992. During the solstice period, antisymmetric tidal components may be preferentially generated in such a way that they can result in destructive interference with the normally dominant symmetric modes, resulting in a decrease of tidal variation. This is consistent with the observed decrease in tides during the June, July and late October periods. Near the equinoxes, however, the excitation of these antisymmetric modes is expected to be weaker, possibly explaining why a pronounced and consistent semi-diurnal tidal variation has been observed during the August, September and early October periods. In contrast, the mesospheric winds derived from the Sheffield Meteor Wind Radar (53.4°N, 1.5°W) reveal a clear semi-diurnal tidal variation throughout the year, with an amplitude that may vary between 15 ms−1 and 50 ms−1, being about 25 ms−1 on average. The IFPI records winds from a region of the atmosphere centred at 87 km, whereas the Sheffield Meteor Wind Radar measures winds centred at 95 km. Therefore, the two regions may experience different tidal modes due to the different latitude, longitude and altitude of the observed regions and/or the different topography of the observing sites. Some proposed reasons for these differences are presented.  相似文献   

18.
Visual auroras at low latitudes are rare, documented for only five occasions since 1859. They are important from a theoretical point of view in terms of the lowest latitude at which particle precipitation can been observed. One of the great magnetic storms of the past 150 yr occurred on 25 September 1909, during the prolonged solar activity minimum around the beginning of the present century. A report of an auroral sighting at Singapore, not far from the magnetic equator, the lowest latitude ever reported for a visual aurora. has focussed attention on this event. This paper compiles and discusses the solar, magnetic, auroral, and telegraphic disturbance data related to the event. The data show that the lowest credible magnetic latitude for this event was between 30° and 36°. I conclude that the report of a visual auroral observation at Singapore, based on a single Australian newspaper item, was almost certainly not auroral at all, but rather resulted from cable disturbances, known to be associated with auroras, and confused with the aurora itself. Furthermore, consideration of the height at which particle precipitation would be observed leads to an estimate of a threshold magnetic latitude for a visual auroral event of the order of 15°, greater than that of 'Singapore. This result removes the necessity of theories of major storms to account for such a low latitude sighting.  相似文献   

19.
We present the results of MF radar observations of mean winds and waves in the height range 78–108 km at Mawson (67°S, 63°E), Antarctica. The measurements were made in the period from 1984 to 1990. Climatologies of the prevailing zonal and meridional circulations made with a 12-day time resolution show that the mean circulation remained relatively stable over the 6 yr of observation. Climatologies of gravity-wave motions in the 1–24 h period range were also generated. These reveal that the r.m.s. amplitudes of horizontal wave motions near the mesopause (~90 km) are about 30 m s−1, and that there is some anisotropy in the motions, especially at heights below 90 km. Meridional amplitudes are larger than zonal amplitudes, which suggests a preference for wave propagation in the north-south direction. Comparisons with MST radar wind observations made near the summer solstice at Poker Flat, Alaska (65°N) and at Andøya, Norway (69°N) show similarities with the Mawson observations, but the wave amplitudes and mean motions are larger in magnitude at the northern sites. This suggests hemispheric differences in wave activity that require further study.  相似文献   

20.
This paper reports on results of numerical calculations for conditions under which the anomalously high absorption of radio waves appears and disappears at middle atmosphere heights, having characteristic time constants of about 24 h. In the calculations we have solved a system of equations which are self-consistent in a one-dimensional approximation and govern the temperature and neutral and ion composition behaviour in the height range 40–150 km. The values of the turbulent transfer coefficient and turbulent energy dissipation rate were calculated for the case of the anomalous absorption commencement, using experimental data pertaining to the vertical structure of the wind and temperature field. The results derived from numerical calculations involving evidence of turbulent processes were used to interpret some characteristic properties of neutral and charged particles, temperature and densities for day-time conditions with anomalously high absorption. The lack of experimental data on winds and temperature throughout the height range under study for the dates with normal absorption forced us to use indirect measurements in making assumptions about the vertical profile of the turbulent transfer coefficient and the values of the turbulent dissipation rate. The results thus obtained agree with measurements of electron density, temperature and hydroxyl emission intensity (the hydrogen content decreases as the conditions change from anomalous to normal). There are, however, discrepancies between calculated and measured atomic oxygen densities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号