首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A three-dimensional, time-dependent, MHD model of solar-disturbance-caused storms (Wu, 1993; Wu et al., 1996a) is used to predict the turning direction of the interplanetary magnetic field (IMF) at Earth. More explicitly, we examine the polarity of Bz caused by solar disturbances on the Sun. Three manifestations of solar disturbances, as studied by previous workers, are examined. Firstly, twenty-nine kilometric Type II events, associated (Cane, 1985) with geomagnetic storms, are studied within the context of our three-dimensional model. Then, an additional eleven long-duration X-ray events (LDEs) with radio fluxes greater than 100 solar flux units were examined; these events were not associated with interplanetary Type II events but were also associated (Cane, 1985) with geomagnetic storms. Finally, in situ interplanetary phenomena that caused ten large (Dst < −100 nT, the intensification of the storm) geomagnetic storm episodes (Tsurutani et al., 1988) near solar maximum are also studied via the Bz predictions of our 3D MHD model. The accuracy of these Bz turning-direction-predictions is found to be as follows: (1) for the kilometric Type II events, the model's prediction was successful for 26 of the 29 events studied; (2) 10/11 for the LDE events; and (3) 7/9 for the major geomagnetic storm events. The overall prediction accuracy of these three independent data sets is 43/49. Thus, consideration of these three independent data sets strongly suggests that the recipe proposed by the basic 3D MHD model may be valid for a zero-th order prediction scheme.  相似文献   

2.
Long term remote observations of neutral winds at F-region altitudes have been performed at Thule Air Base (lat. 76.5°N, long. 69.0°W), Greenland, and Søndre Strømfjord (lat. 67.0°N, long. 50.9°W), Greenland. The former site is very close to the geomagnetic pole, while the latter site is within the polar cap for several hours each night on either side of geomagnetic midnight. Wind data corresponding to clear sky conditions and Kp ⩽ 4 were sorted according to the sign of the IMF Bz component. The averaged maximum poleward flow near midnight LST was reduced by approximately one third during Bz northward conditions. If the magnitude of By was less than the magnitude of the northward Bz component, then the averaged poleward flow was further reduced by one half. In addition, if Bz > 5 nT, then sunward directed horizontal neutral winds were observed at the very highest latitudes near noon LST.  相似文献   

3.
The dynamics and structure of the polar thermosphere and ionosphere within the polar regions are strongly influenced by the magnetospheric electric field. The convection of ionospheric plasma imposed by this electric field generates a large-scale thermospheric circulation which tends to follow the pattern of the ionospheric circulation itself. The magnetospheric electric field pattern is strongly influenced by the magnitude and direction of the interplanetary magnetic field (IMF), and by the dynamic pressure of the solar wind. Previous numerical simulations of the thermospheric response to magnetospheric activity have used available models of auroral precipitation and magnetospheric electric fields appropriate for a southward-directed IMF. In this study, the UCL/Sheffield coupled thermosphere/ionosphere model has been used, including convection electric field models for a northward IMF configuration. During periods of persistent strong northward IMF Bz, regions of sunward thermospheric winds (up to 200 m s−1) may occur deep within the polar cap, reversing the generally anti-sunward polar cap winds driven by low-latitude solar EUV heating and enhanced by geomagnetic forcing under all conditions of southward IMF Bz. The development of sunward polar cap winds requires persistent northward IMF and enhanced solar wind dynamic pressure for at least 2–4 h, and the magnitude of the northward IMF component should exceed approximately 5 nT. Sunward winds will occur preferentially on the dawn (dusk) side of the polar cap for IMF By negative (positive) in the northern hemisphere (reverse in the southern hemisphere). The magnitude of sunward polar cap winds will be significantly modulated by UT and season, reflecting E-and F-region plasma densities. For example, in northern mid-winter, sunward polar cap winds will tend to be a factor of two stronger around 1800 UT, when the geomagnetic polar cusp is sunlit, then at 0600 UT, when the entire polar cap is in darkness.  相似文献   

4.
The results from a magnetic survey and archaeomagnetic investigation of a medieval brick kiln at Kungahälla in Bohuslän (south‐west Sweden) are reported. Detailed magnetic total field and magnetic gradient measurements over known traces of the kiln showed marked local magnetic anomalies of up to 200 nT, revealing the rectangular shape of the kiln remains. Palaeomagnetic investigations of the remanent magnetization of 12 bricks from the kiln floor gave precise definitions of both the direction of the archaeomagnetic field [(Dm, Im) = (66.7°, 8.8°), k = 655, α95= 1.7°] and the palaeointensity [Bm= 69.0 ± 3.6 µT]. An archaeomagnetic date is obtained by comparing the direction of the archaeomagnetic field found in the kiln with a geocentral dipole‐transformation of the British master‐curve for secular variation. Of two possible archaeomagnetic dates (ad 1280 ± 50 or ad 1480 ± 50), the ad 1280 ± 50 age is in good accordance with the C‐14 ages and archaeological dates as well as with direct historical evidence, whereas a c. 100 years younger TL date appears to be too young.  相似文献   

5.
Night-time thermospheric temperatures, T63o, and mesospheric rotational temperatures, T(OH) and T(O2), have been measured at Cachoeira Paulista (23°S, 45°W, 16°S dip latitude), located in both the equatorial ionospheric anomaly and the South Atlantic Geomagnetic Anomaly, with a Fabry-Perot interferometer and a multi-channel tilting filter-type photometer, respectively. The thermospheric temperatures are obtained from the Doppler line broadening of the OI 630.0 nm emission and the mesospheric rotational temperatures from the OH(9,4) and O2A(0,1) band emissions. Measurements made during three geomagnetic storms showed that the nocturnal mean values of T630 during the recovery phase of the storms were lower than those observed during quiet time and from model predictions. Also, the nocturnal mean value of the T630 soon after the SSC event on 27 June 1992 was higher than the quiet time and model predictions. The observed mesospheric nocturnal mean rotational temperatures, T(O2) and T(O2), were unaffected by the storms. A comparison of the night-time observed temperatures T630, T(OH) and T(O2) with those calculated using the MSIS-86 model is also presented.  相似文献   

6.
In early 1990 a modified JMR-1 satellite receiver system was installed at Casey Station, Antarctica (g.g. 66.28°S, 110.54° E, -80.4°A, magnetic midnight 1816UT, L = 37.8), in order to monitor the differential phase between the 150 and 400 MHz signals from polar orbiting NNSS satellites. Total electron content (TEC) was calculated using the differential phase and Casey ionosonde foF2 data, and is presented here for near sunspot maximum in August 1990 and exactly one year later. The data are used to investigate long-lived ionization enhancements at invariant latitudes polewards of − 80° A, and the ‘polar hole’, a region from −70 to − 80° A on the nightside of the polar cap where reduced electron densitiy exists because of the long transport time of plasma from the dayside across the polar cap. A comparison is made between the Casey TEC data and the Utah State University Time Dependent Ionospheric Model (TDIM) which uses as variables the solar index (F 10.7), season (summer, winter or equinox), global magnetic index (Kp), IMF By direction, and universal time (UT) [sojkaet al. (1991) Adv. Space Res.11(10), 39].  相似文献   

7.
This paper attempts to summarize the results of investigations of IMF effects on the ionosphere, published mostly in Russian, and to place them in context in up-to-date knowledge of IMF/magnetosphere/ionosphere relationships. Effects of the IMF sector structure and of the IMF Bz component turnings on the ionospheric F-layer are considered, including variations of position of the main ionospheric trough (MIT). The paper includes results of both theoretical calculations and observational data obtained mostly by the Cosmos-900, Intercosmos-19 and Cosmos-1809 satellites at subauroral, middle and low latitudes. The MIT position dependence on longitude has been derived as a background for further study. It has been shown that the nightside winter trough position at the storm growth phase correlates best with KP index taken with a time delay τ, which is proportional to a disturbance growth rate ΔKp/Δt. The MIT position dependence on Dst, Bz and By is also shown. Two troughs have been found to be formed usually in the storm recovery phase at postmidnight hours: these are the MIT (main ionospheric trough) and RIT (ring ionospheric trough) associated with the DR-current. In general the MIT position's response to Bz southward turnings corresponds well to changes of the amoral diffuse precipitation equatorial edge. For Bz southward turnings the height of the equatorial night-time F-layer lowers, and at equatorial latitudes foF2 decreases sharply, the latter effect being most pronounced at 03 LT. Large-scale internal gravity waves arriving at equatorial latitudes from the auroral oval cause intensification of the equatorial anomaly, both in daytime and night-time. A schematic pattern of a global ionospheric response to a magnetic disturbance is constructed using as an example the strong storm on 3–4 April 1979.  相似文献   

8.
A large flux of > 100 MeV electrons were registered in the inner radiation belt on low-altitude satellites. The origin of that flux is discussed. It appears that slow radial diffusion (Do = 10−13 1/s) gives a low probability for penetration of these electrons to small L from the boundary of magnetosphere because of synchrotron radiation energy losses. It is found that they can enter to the inner belt region without such losses after great magnetic storms when high speed radial diffusion sometimes takes place. Two great storms on 8–9 Feb.] 986 and 24 March 1991 are examples when one can directly observe a penetration of energetic electron fluxes into magnetosphere. The assumption about their Jovian origin is discussed.  相似文献   

9.
10.
The effects of the IMF radial (Bx) and azimuthal (By) components on the distribution of polar cap arcs are examined using all-sky camera data from Vostok station for the winter months of 1977–1985. We conclude that three factors control the character of the aurora distribution: the type of the sector structure, the IMF radial component, and the IMF azimuthal component. Based on the experimental results, the following scheme for the auroral distribution in the northern and southern polar caps for different signs of Bx and By is put forward. The ‘garden hose’ structure (Bx > 0, By < 0 or Bx < 0, By > 0) produces symmetric auroral distributions in the morning and evening sectors of both the northern and southern polar caps; the ‘orthogonal garden hose’ structure (Bx > 0, By > 0 or Bx < 0, By < 0) is evidently inefficient in the production of aurorae. The Bx component determines the intensity of aurorae in that polar cap where geomagnetic field lines are in the opposite direction to the IMF (Bx < 0 in the case of the northern cap, and Bx > 0 for the southern cap) and produces the daytime auroral belt poleward of the auroral oval and parallel to it. The By component affects the auroral appearance in the morning or evening sectors of the polar cap, depending on its sign, and acts asymmetrically in the opposite polar cap. The appropriate patterns of plasma filament distributions in the high-latitude tail lobes are proposed. The characteristics of auroral movements affected by the By component (such as the direction and speed of the arc motion and the magnitude of displacements) are examined.  相似文献   

11.
This review examines models existing in the literature which describe the magnetic field produced by the ring current (DR) at the Earth's surface based on the energy balance equation. The parameters of this equation, the injection function F and decay parameter τ are considered to depend on parameters of the interplanetary medium and the DR intensity. The existing models are shown to be able to describe the DR variations with sufficient accuracy (r.m.s. deviation δ between the experimental and modelled values of DR for 170 magnetic storms is 5 < δ < 15 nT and the correlation coefficient between the two is 0.85 <r<1). The models describe that part of the geomagnetic field variation at low latitudes during a magnetic storm that is controlled by the geoeffective characteristics of the interplanetary medium and which thus responds immediately to its variations (the driven part).The values of τ are significantly less during the main phase of a magnetic storm than during the recovery phase. This reflects the difference in the main mechanisms of ion loss from the ring current during the two phases of the storm. These are the interaction of ions with hydromagnetic waves during the main phase of the storm with its intervals of intense plasma injection into the inner magnetosphere and charge exchange with the cold hydrogen geocorona during the recovery phase.  相似文献   

12.
Xiao Fu 《Geochronometria》2014,41(4):315-326
This study presents a new self-diagnose method for the recently developed post-IR infrared stimulated luminescence (pIRIR) dating protocols. This criterion studies the dependence of equivalent dose (D e) on measurement-temperature (T) and time (t), by applying the D e (t) analysis to the IRLS and pIRIR signals measured under different temperatures, and combines these D e (t) plots into one, so-called the D e (T, t) plot. The pattern of the D e (T, t) plot is shown to be affected by anomalous fading, partial bleaching and non-bleachable signal. A D e plateau can be achieved in the D e (T, t) plot only when the effects of these factors are insignificant. Therefore, this plot can be used as a self-diagnose tool for the validity of pIRIR results. The D e (T, t) analysis has been applied to four recently developed pIRIR protocols, using aeolian samples with different ages. The results show that this self-diagnose tool can be applied to different pIRIR protocols for validating the pIRIR dating results and evaluating the pIRIR measurement conditions.  相似文献   

13.
This paper reports the solar condition dependences of the quasi-trapped component (low energy) of the proton population of energy 0.65–35 MeV which peaks in the equatorial zone centered on the minimum magnetic field equator in the altitude range 170–850 km. The proton populations compared pertain to AZUR observation in 1969–1970, S81-1 mission observation in 1982 and EXOS-C observation during 1984–1986. In the equatorial zone, the dependence of the flux normalization constant, which represents the absolute proton population, upon factors like L (1.1–1.3), B (0.29–0.32 gauss), latitude ( ± 20°), longitude (0–360°) and anisotropy index q (~6–12) of the pitch angle distribution function is not so significant in the given range of these factors as it is upon the solar epoch. It is found that the absolute proton flux in 1982 was, at least, forty times that in 1984–1986 and, almost, three times that in 1969–1970, possibly, due to, varying solar conditions in those epochs.  相似文献   

14.
We compare the DE-2 electric field measurements used by Heppner and Maynard [(1987) J. geophys. Res.92, 4467] to illustrate strongly distorted, BC convection patterns for IMF Bz > 0 and large |By|, with simultaneous detections of particle spectra, plasma drifts and magnetic perturbations. Measured potentials >50 keV, driven by the solar wind speeds exceeding 500 km/s, are greater than published correlation analysis predictions by up to 27%. The potential distributions show only two extrema and thus support the basic conclusion that under these conditions the solar wind/IMF drives two- rather than fourcell convection patterns. However, several aspects of the distorted two-cell convection pattern must be revised. In addition to the strong east-west convection in the vicinity of the cusp, indicated by Heppner and Maynard, we also detect comparable components of sunward (equatorward) plasma flow. Combined equipotential and particle precipitation distributions indicate the presence of a lobe cell embedded within the larger, afternoon reconnection cell. Both types rotate in the same sense, with the lobe cell carrying 20–40% of the total afternoon cell potential. We detected no lobe cell within morning convection cell.  相似文献   

15.
During the years 1981–1989, 71 solar proton events altogether were observed. Dividing the events into strong, p.f.u. > 1000 (p.f.u.—proton flux measured at geosynchronous satellite orbit in units of (cm2 s sr)−1), medium, 100 < p.f.u. < 1000 and weak events, p.f.u. < 100, only the strong and medium events have a considerable effect on the lower ionosphere. The mean daily absorption at 30 MHz (A), measured in the auroral zone, is >2 dB during strong events, <2 dB during medium events and < l dB during weak events. The most active year during the EISCAT operation was 1989 when 23 solar proton events were observed including six strong events. Diurnal variation of the electron density in the D-region during PCA is a function of the solar zenith angle. However, south of L = 5 a minimum in absorption is observed during the noon hours. During sunrise the absorption increases simultaneously with solar elevation angle, but during sunset there is about 2 h delay between the decrease of absorption and the solar elevation angle.  相似文献   

16.
Ionospheric data from three incoherent scatter stations over the height range 225–450 km were studied for all daylight hours over a wide range of solar conditions. The relationship between electron temperature Te, electron density Nand solar flux at 10.7 cm wavelength S10.7 was expressed as Te = AB·(N−5 × 1011) + C·(S10.7−750), where N is in units of m−3 and S10.7 in kJy.This provided a very satisfactory expression for all data taken at Malvern and St. Santin between 0800 and 1600 LT. For data taken at Arecibo, however, the linearity broke down at low electron densities. The data from all three stations were therefore divided into two sets according to electron density and reexamined.ForN < 5 × 1011 m−3 B increased steadily with height and decreased steadily with latitude.For N > 5 × 1011 m−3 B did not appear to vary with height, with season or with latitude. C was approximately constant for all sets of data.The different mechanisms involved in the heat balance of the electron population are discussed and a qualitative explanation for the relationship is proposed.  相似文献   

17.
The morphology of precipitating particles, measured at low altitude in the polar regions, varies systematically with the strength and direction of IMF Bz and with solar wind speed Vsw. We use particle data taken onboard the DMSP satellites to determine these variations. Both individual satellite passes during the storm/quieting period of 26 and 27 August 1990, and statistical maps compiled from a data base over 4.5 yr are presented. We focus attention on those magnetospheric populations that have magnetosheath characteristics, the boundary populations. We show that the precipitating ion boundary population, whose down-coming spectra can be fitted to streaming Maxwellians, expands from a region confined near the dayside cusp for southward IMF, to a thick, annular region, including the dayside cusp, for northward IMF. The expansion in local time is inhibited by increasing solar wind speed. Boundary electrons behave somewhat differently. They have easier access to the polar regions and their variations have shorter spatial/temporal scale lengths than the boundary ions. For strongly northward IMF, intense, agitated boundary electrons can be found over all or part of the polar cap. Broad regions (up to ~ 100 km) of strongly accelerated electrons (several keV) that produce visible arcs are embedded in this population. Two features of the ion boundary population help identify its source. (1) The spectra of the boundary ions expanding into the polar cap exhibit field-aligned streaming, which, downtail, is toward the Earth. (2) The region into which the boundary ions expand best maps magnetically to a dawn-dusk cut across the neutral sheet, rather than to the low-latitude boundary layer. Therefore, we conclude that the immediate source for boundary ions in the polar regions during northward IMF is the plasma sheet boundary layer. These ions reach tail lobe field lines by convection whose direction when mapped to the ionosphere is sunward. Significant change in the topology of the magnetospheric magnetic field, and, in particular, the closing of high-latitude field lines, is not required to explain the data.  相似文献   

18.
Millstone Hill incoherent scatter (IS) observations of electron density (Ne, electron temperature (Te) and ion temperature (Ti) are compared with the International Reference Ionosphere (IRI-86) for both noon and midnight, for summer, equinox and winter, at both solar maximum (1979–1980) and solar minimum (1985–1986). The largest difference inNe is found in the topside, where values of Ne given by IRI-86 are generally larger than those obtained from IS measurements, by a factor which increases with increasing height, and which has a mean value near two at 600 km. Apart from the bottom of the profile, which is tied to the CIRA neutral temperature, the IRI-86 Te model has no solar cycle variation. However, the IS measurements during the summer reveal larger Te at solar maximum than at solar minimum. At other seasons higher Te at solar maximum occurs only during the daytime at the greater heights. Nighttime Te is shown by the IS radar to be generally larger in winter than in summer, an effect not included in the IRI. This is apparently due to photoelectron heating during winter from the sunlit ionosphere conjugate to Millstone Hill. The day-night difference in Ti given by IRI-86 above 600km is not as large in the IS measurements.  相似文献   

19.
Statistical analysis methods used to define the amplitude distributions of signals returned from the ionosphere are discussed in this paper. Emphasis is placed on determining accurately the parameter B, which is the ratio of steady to random components present in a signal. Thus B > 1 if the signal is dominated by the steady component, and B < 1 when the random components dominate. This study investigates the characteristics of B for F-region and E-region ionospheric echoes, as well as some types of spread-F, observed at the southern mid-latitude station Beveridge (37.3 S and 144.6 E). The results indicate that amplitude measurements obtained in approximately 100 s are adequate for determining B. The results also illustrate some effects that the E-region can have on F-region echoes.It is found that frequency spreading, the most common type of spreading observed at Beveridge, displays strong specular reflections and some signal variation due to interference at the leading edge of the F-region echo (i.e. B > 2). Within the spread echo B fluctuates between 0 and about 1.5 but is typically less than 1. The autocorrelation function of signal amplitude has a relatively large coherence interval, suggesting that this type of spread-F is due to interference of specular reflections from coherent irregularity structures with horizontal scale sizes of tens of kilometres rather than scattering from small scale irregularities. A second form of spread-F which would generally be classified as frequency spreading on standard ionoerams is actually due to off-vertical reflections from patches ol irregularities which originate south (poleward) of Beveridge. Echoes within this oblique spread-F (OS-F) do not exhibit coherence indicating that the irregularities responsible are of a smaller scale than those producing normal frequency spread. Finally, the phenomenon of spreading occurring on the second hop, but not the first hop trace is studied. It is shown that the form of the second hop echoes can be reproduced using a simple geometric model of ground scatter. The interpretation is supported by the fact that B for spread second hop echoes is less than 1 whereas it is much greater than 1 for the corresponding first hop echoes.  相似文献   

20.
Changes in total electron content during magnetic storms are compared at stations with similar geographic and geomagnetic latitudes and eastward declinations in the northern and southern hemispheres.Mean patterns are obtained from 58 storms at ±35° and 28 storms at ± 20° latitude. The positive storm phase is generally larger (and earlier) in the southern hemisphere, while negative storm effects are larger in the north. These changes reduce the normal asymmetry in TEC between the two hemispheres. Composition changes calculated from the MSIS86 atmospheric model agree well with the maximum decreases in TEC in both seasons (when changes in the F-layer height are ignored). Recovery occurs with a time constant of about 35 h; this is 50% longer than in the MSIS86 model. There is a marked diurnal variation at 35°S, with a rapid overnight decay and enhanced values of TEC in the afternoon. This pattern is inverted (and weaker) at 35°N, where night-time decay is consistently slower than on undisturbed nights. These results require a diurnal change in composition of opposite sign in the two hemispheres, or enhanced westward winds at night changing to eastward near sunrise. There is some evidence for both these mechanisms. Following a night-time sudden commencement there is a large annual effect with daytime TEC increasing for storms near the June solstice and decreasing near December. Storms occurring between November and April tend to give large, irregular increases in TEC for several days, particularly at low latitudes. In summer and winter at both stations, the mean size of the negative phase does not increase for storms with Kp> 6. The size of the positive phase is proportional to the size of the change in ap in winter, while in summer a positive phase is seen only for the larger storms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号