首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The response of the equatorial night-time F-region to magnetic stormtime disturbances has been examined using mainly ionograms recorded at Trivandrum and magnetograms recorded at high, middle and low latitudes during the magnetic storm of 23–26 November 1986. The analysis revealed a close coupling between the equatorial F-region and high latitude magnetic field disturbances originating in solar wind-magnetosphere interactions. The presence of spread-F on ionograms during this period is found to be consistent with the Rayleigh-Taylor instability mechanism for the growth of the irregularities.  相似文献   

2.
A variety of ground based radio techniques have provided new information relating to the nature of mid-latitude F-region irregularities responsible for frequency spreading on ionograms. Firstly, an analysis of ionograms covering a restricted frequency band indicates that frequency spreading is primarily caused by duplicate traces which are often unresolved in group path on standard ionograms. Furthermore, where angle of arrival information is available, the duplicate traces are shown to represent reflections from markedly different directions and the spread in critical frequencies is therefore indicative of a horizontal gradient in the peak electron density over a scale size of the order of many tens of kilometres. Secondly, the individual duplicate traces themselves are shown to comprise quasi-horizontal trace (QHT) segments which are unresolved on conventional ionograms and contribute to the diffuse appearance of spread-F traces on those ionograms. Difficulties in attributing these observations to the widely held view that scattering from small scale structures is the causative mechanism are discussed.  相似文献   

3.
By comparing electron drift velocities at Jicamarca with corresponding ionograms and VHF radio scintillation records at Huancayo it has been shown that the day-to-day variability in the occurrence of equatorial spread-F irregularities in the post-sunset period depends critically on the time of reversal of the Sq electric field. The field reversal before sunset does not produce any spread-F in the evening hours, while the continuation of the day-time electric field for a couple of hours after sunset at normal strength is a favourable condition for generating spread-F.  相似文献   

4.
This paper first discusses some early results (most hitherto unpublished) on off-vertical reflections which result from tilted isoionic contours associated with the passage of travelling ionospheric disturbances (TIDs). Azimuth of arrival and zenith angle information on these returning signals is discussed together with the role of these signals in producing both resolved and unresolved range spread on ionograms. Some ray tracing through a model ionosphere which incorporates wavelike structures is shown to predict fixed-frequency patterns (on recordings of virtual height vs. time) of converging and diverging satellite traces similar to those observed in practice. New experimental evidence is then presented to suggest (from the N(h) analyses performed) that TID wavetrains of several cycles are effective in producing spread traces on ionograms by specular reflections from the tilted surfaces of each cycle of these wavetrains. Ionograms from a modern ionosonde show that range spread consists primarily of discrete satellite traces even though at times these traces overlap and vary in intensity as a function of frequency thus creating a diffuse range spread ionogram.  相似文献   

5.
An extended period (1973–1985) of recording of random and Fresnel type quasi-periodic (QP) scintillations in southern mid-latitudes, using satellite beacon transmissions at a frequency of 150 MHz, has provided some new information on the morphology of scintillation-producing irregularities.It has become evident that a pronounced daytime increase of the random type of scintillations in the southern winter (at 1200–1600 LT) occurs throughout the solar cycle and becomes a distinct daytime maximum during the years of sunspot minimum. Scintillations are most intense in the pre-midnight period in the southern summer (2000–2400 LT). There is a gradual decline in scintillation activity by about 40% from the period of sunspot maximum to the period of sunspot minimum. It appears that a specific type of sporadic-E, so-called constant height Es (Esc), is responsible for daytime scintillation activity in winter. Night-time scintillations are strongly correlated with the presence of the range-spread type of spread-F, but not so with the frequency-spread type.There are two peaks in the occurrence of QP scintillations, predominantly in the southern summer: in the late morning (0800–1000 LT) and in the pre-midnight period (2000–2200 LT). The daytime QP scintillations occur mainly polewards of the station, whereas the night-time scintillations are recorded predominantly equatorwards. There is a distinct increase in the occurrence number of QP scintillations with a decrease in the sunspot number.  相似文献   

6.
RH-560 rockets instrumented with Langmuir probes were launched from SHAR, India (dip 11°N) for in-situ studies of electron density irregularities associated with equatorial spread-F (ESF) when the F-region plasma was drifting down and strong range spread-F was observed with an ionosonde at SHAR. A high variability was observed in the steepness of the base of the F-region. The bases were found to be steeper during the periods when the F-region plasma was drifting down. On one of the flights irregularities were observed in the region around 280 km where the gradients in electron density were downwards, indicating that the gradient drift instability is the main mechanism for their generation. Assuming a power law of the type Pkkn for irregularities of transitional scale (20–200 m), it was found that the spectral index n ranges between −1.5 and −4.6, when the mean integrated spectral power PT of the irregularities in the above scale size range varied from −45 to −12 db. A relationship between n and PT was observed and can be represented by a Gaussian function using the above expression; the altitude variation of n normalized for a PT value of −10 db showed that the nature of spectral index remains the same between 230 km and the apogee of the rocket. This is at variance with the observations of Kelley et al. [(1982), J. geophys. Res. 87, 1575] that 280 km is the threshold altitude for the steep drift wave type of spectra to a shallower spectra.  相似文献   

7.
This paper examines the global distribution of electron density irregularities with scales of the order of several tens to hundreds of meters in the ionosphere by using topside sounder data from the COSMOS-1809 satellite obtained in May–June and December 1987. The diffuse traces of Z-waves on topside ionograms in a frequency band just below the upper hybrid resonance are used for diagnostics. These traces are attributed to the scattering of sounder-generated ordinary and slow extraordinary mode waves.  相似文献   

8.
AE indices have been used to investigate, at times of increased geomagnetic activity, the possibility of significant changes to both spread-F occurerence and hF values for 3 stations in equatorial latitudes. The investigation covered a sunspot minimum period. Furthermore, data for each of these parameters have been considered for both a pre-midnight period (interval A) and a post-midnight period (interval B). The use of the AE indices at 12 different times at 2 h intervals allows the measurement of the delay times, after increased geomagnetic activity, of any significant changes in the parameters being investigated.The results show that for interval A significant suppressions of spread-F occurrence are recorded at delay times of approximately 3 h and 9 h. These delays correspond to enhanced geomagnetic activity at local times of 1800 and 1200, respectively. Also, for interval A the hF variations suggest that hF is suppressed at times of spread-F suppression. For interval B spread-F occurrence seems to be controlled by two opposing effects. For several hours after enhanced geomagnetic activity spread-F occurrence increases significantly, followed by a sharp decline culminating in suppressed occurrence, again related to increased geomagnetic activity at 1800 local time for the maximum effect. Also, for interval B hF values lift abruptly a few hours after enhanced geomagnetic activity, followed by a gradual decline when delays of up to 20 h are considered. Further work on these delays may allow reliable short-term forecasting of some ionospheric behaviour in equatorial regions.  相似文献   

9.
Statistical analysis methods used to define the amplitude distributions of signals returned from the ionosphere are discussed in this paper. Emphasis is placed on determining accurately the parameter B, which is the ratio of steady to random components present in a signal. Thus B > 1 if the signal is dominated by the steady component, and B < 1 when the random components dominate. This study investigates the characteristics of B for F-region and E-region ionospheric echoes, as well as some types of spread-F, observed at the southern mid-latitude station Beveridge (37.3 S and 144.6 E). The results indicate that amplitude measurements obtained in approximately 100 s are adequate for determining B. The results also illustrate some effects that the E-region can have on F-region echoes.It is found that frequency spreading, the most common type of spreading observed at Beveridge, displays strong specular reflections and some signal variation due to interference at the leading edge of the F-region echo (i.e. B > 2). Within the spread echo B fluctuates between 0 and about 1.5 but is typically less than 1. The autocorrelation function of signal amplitude has a relatively large coherence interval, suggesting that this type of spread-F is due to interference of specular reflections from coherent irregularity structures with horizontal scale sizes of tens of kilometres rather than scattering from small scale irregularities. A second form of spread-F which would generally be classified as frequency spreading on standard ionoerams is actually due to off-vertical reflections from patches ol irregularities which originate south (poleward) of Beveridge. Echoes within this oblique spread-F (OS-F) do not exhibit coherence indicating that the irregularities responsible are of a smaller scale than those producing normal frequency spread. Finally, the phenomenon of spreading occurring on the second hop, but not the first hop trace is studied. It is shown that the form of the second hop echoes can be reproduced using a simple geometric model of ground scatter. The interpretation is supported by the fact that B for spread second hop echoes is less than 1 whereas it is much greater than 1 for the corresponding first hop echoes.  相似文献   

10.
This paper presents simulated ionograms calculated for a parabolic ionospheric layer containing irregularities in the form of small amplitude waves. With small amplitudes, perturbation techniques can be used enabling results for the irregular ionospheres to be calculated from the results for smooth ionospheres. This approach is relatively straightforward and avoids having to ray trace new paths each time the irregularity parameters are changed. It is, however, restricted to irregularities which do not cause multiple echoes. Irregularities with vertical wavelengths of up to a few kilometres can produce significant changes in the ionosphere over height intervals smaller than those involved in reflecting a single pulse. Consequently, in the simulation procedure, it is essential to consider not just the carrier frequency but the complete frequency spectrum of the pulse. Irregularities with vertical wavelengths of the order of 10 km or more can produce ripples in an ionogram trace. These will, of course, be more evident on ionograms with high frequency resolution. Irregularities with vertical wavelengths of up to several kilometres and amplitudes up to a few per cent can produce significant pulse spreading and splitting. The actual effects depend not just on the irregularity properties but also on the ionosonde pulse width, gain and frequency and height resolutions. Some simulations show trace splitting and quasi-horizontal traces similar in many respects to effects observed by Bowman (1987, J. atmos. terr. Phys. 49, 1007) and Bowmanet al. (1988, J. atmos. terr. Phys. 50, 797). Consequently it is suggested that, at least in some cases, small amplitude (≤3%) and small scale (≤4 km) irregularities produce the spread-ifF reported by these authors.  相似文献   

11.
The Bribie Island HF radar array (27°S, 153° E) can be set up to make angle of arrival and Doppler shift measurements throughout the range of spread-Es, layers. Results of this experiment show that the range spread seen on ionograms is not due to multiple reflection with varying obliquity, but rather a genuine height spread exists. Where velocity measurements can be reliably made, reflector velocity appears to be a slowly varying function of height. Spread-Es, can be blanketing or non-blanketing, sequential or non-sequential and at first impression it seems that the chief difference between spread-Es, and normal Es, is a small scale, partially transparent structure in lower regions that allows higher regions to be observed. It is suggested that on occasion spread-Es, irregularities are further modulated by the passage of gravity waves.  相似文献   

12.
Measurements of zonal irregularity drifts were made by the spaced receiver scintillation and radar interferometer techniques from Huancayo and Jicamarca, respectively. The Fabry-Perot Interferometer operated at Arequipa provided the zonal neutral winds. These simultaneous measurements were performed during evening hours in the presence of equatorial spread-F on three nights in October 1988. The zonal drift of 3-m irregularities obtained with the 50-MHz radar showed considerable variation as a function of altitude. The drift of hundreds of m-scale irregularities obtained by the scintillation technique agreed with the drift of 3-m irregularities when the latter were measured near the F-peak. The neutral winds, on the other hand, sometimes exceeded the irregularity drifts by a factor of two. This is a possible result of the partial reduction of the vertical polarization electric field in the F-region caused by the effects of integrated Pedersen conductivity of the off-equatorial night-time E-region coupled to the F-region at high altitudes above the magnetic equator.  相似文献   

13.
Diurnal variations of decay time of heater-induced small-scale irregularities in the mid-latitude ionospheric F-layer were measured by means of diagnostic stimulated electromagnetic emissions (DSEE). The abrupt (15–20 min) and very strong (10-fold or more) increase in DSEE decay times was observed simultaneously over a wide height range around a turbulence location. This increase was assumed to be dictated by a natural mechanism, supporting artificial irregularities by utilization of the diagnostic wave energy. Analysis of the experimental data, concerning features of both heater-induced and natural irregu larities, shows that such a natural mechanism was initiated by the Sq current system. To account for small-scale irregularity growth, the thermomagnetic instability realized for a downward directed field-aligned current was considered. This instability allows us to explain the natural generation of irregularities with scale lengths of 25 m or longer.  相似文献   

14.
15.
The vertical drift velocity of the F-region in the post-sunset period at the magnetic equatorial station Trivandrum has been studied using a HF phase path sounder. The study revealed the presence of quasi-periodic fluctuations with periods in the range 4 30 min superposed on a steady vertical motion as a regular feature of the equatorial F-region in the post-sunset period. The fluctuations in the vertical velocity arc attributed to the east west electric field fluctuations generated by internal atmospheric gravity waves. The vertical velocity fluctuations can provide the necessary seed perturbations for the growth of equatorial spread-F irregularities.  相似文献   

16.
Equatorial 6300 Å arcs observed by the ISIS—II satellite close to the magnetic equator over the African and Asian zones are studied for night-time conditions from 21:00 h to 02:00 h local time in the summer and spring of 1972–1974 and 1976, respectively. Case studies of the arcs have been made for quiet geomagnetic conditions and for minor storms. Sometimes very intense arcs with intensities of 1–2 kR are observed. Arcs of moderate intensities (300–400 R) are observed during geomagnetically disturbed periods. It is confirmed that these intensities can be fully accounted for theoretically by the dissociative recombination of molecular oxygen ions. Since the emission intensities are found to be sensitive to the geomagnetic activity, the influence of the latter has been taken into account and discussed.Equatorial spread-F (ESF)/bubble conditions are usually present at these local times. The data presented here show a correlation between the 6300 Å emission rate at one of the anomaly crests, the gradient in h (the lowest scaled real height from topside ionosonde trace) and the existence of ESF and gravity waves. This correlation is consistent with the scenario put forward by Maruyama and Matuura that the occurrence of ESF requires a symmetrical electron density distribution around the magnetic equator, so that a transequatorial wind causes an asymmetry and inhibits the formation of ESF.For the ISIS data we conclude that where strong transequatorial winds exist the 6300 Å emission rate at one of the anomaly crests is very large and there is a steep gradient in h. When these winds are weak, the 6300 Å emission is low and the gradient in h is also small. In the latter case, gravity waves of wavelength 200–400 km were present as well, which suggests that ESF is promoted by the existence of gravity waves. However, the magnetic disturbance level was higher during these orbits, which offers another source of gravity waves.  相似文献   

17.
The present investigation attempts to bring out the dynamics of the F-region at magnetic equatorial and low latitudes in the American zone. Data are examined for two sets of nights, one with strong range-type spread at Huancayo another with complete absence of spread-F. A prominent bulge of the F-region was observed within and below a latitude 10°N in the evening hours of the spread-F nights. Contours of electron distribution during post-sunset hours at the equatorial latitude, Huancayo (Dip 2°N); low latitude, Talara (dip 13°N); and a location near the anomaly crest location, Panama (dip 38°N), indicated a much steeper gradient in electron density at fixed heights on spread-F nights compared to a rather low gradient on the nonspread-F nights. Enhanced concentration of electrons at the anomaly crest location Panama, and a lower density at the equatorial location Huancayo, were observed on spread-F present nights. This is attributed to the phenomena of an evening plasma fountain in operation at equatorial latitudes on spread-F nights.  相似文献   

18.
In November and December 1979 the solar 10.7 cm radio flux density, sunspot number, X-ray flux and EUV flux were high and very variable. The day-to-day variations of noon F2-layer height and Elayer electron density at three ionosonde stations (Slough, Port Stanley and Huancayo) are found to be well correlated with the day-to-day variations of solar activity. The short-term E- and F-layer variations are consistent with those derived from longer-term studies.  相似文献   

19.
Scintillation data from near Boston, U.S.A., and spread-F data from Argentine Islands, Antarctica are used to investigate the diurnal and seasonal variations of the simultaneous occurrence of medium-scale (~ 1–10 km) irregularities in the electron concentration in the F-region of the ionosphere at conjugate magnetic mid-latitude regions. It is found that these two stations near 52° CGL observe similar irregularity occurrence on ~75% of occasions at night when the data are considered on an hour by hour basis. During solstices, the relationship is dominated by occasions when irregularities are absent from both ends of the geomagnetic field lines; however, at equinoxes, periods of the simultaneous occurrence and non-occurrence of irregularities are approximately equally frequent. During periods of high geomagnetic activity, processes associated with the convection electric field and particle precipitation are likely to be important for the formation and transport of irregularities over these higher mid-latitude observatories. These processes are likely to occur simultaneously in conjugate regions. On days following geomagnetic activity, two processes may be operating that enhance the probability of the temperature-gradient instability, and hence lead to the formation of irregularities. These are the presence of stable auroral red arcs which occur simultaneously in conjugate locations, and the negative F-region storm effects whereby latitudinal plasma concentration gradients are increased; these effects are only similar in conjugate regions. During very quiet geomagnetic periods, F-region irregularities are occasionally observed, but seldom simultaneously at the two ends of the field lines. There is also an anomalous peak in the occurrence of irregularities over Argentine Islands associated with local sunrise in winter. No explanation is offered for these observations. Photo-electrons from the conjugate hemisphere appear to have no effect on irregularity occurrence.  相似文献   

20.
This paper presents simultaneous observations made near the magnetic equator during counter electrojet events using a coherent VHF backscattcr radar, magnetometer and digital ionosonde to understand the physical processes that generate the counter electrojet conditions. The VHF backscatter radar gives the height structure of the drift velocity or the ionization irregularities, the equatorial electrojet current variations are obtained from the magnetometer and the digital ionosonde provides the presence of blanketing E-layers at the F-region heights which give rise to the backscatter signals. These observations have provided direct experimental evidence for the theoretically predicted distortions in the height structure of the polarization electric field in the equatorial electrojet due to the local effects of shearing zonal neutral winds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号