共查询到3条相似文献,搜索用时 0 毫秒
1.
High mole fraction CO2 gases pose a significant risk to hydrocarbon exploration in some areas. The generation and movement of CO2 are also of scientific interest, particularly because CO2 is an important greenhouse gas. We have developed a model of CO2 generation, migration, and titration in basins in which a high mole fraction CO2 gas is generated by the breakdown of siderite (FeCO3) and magnesite (MgCO3) where parts of the basin are being heated above approximately 330°C. The CO2 reacts with Fe‐, Mg‐, and Ca‐silicates as it migrates upward and away from the generation zone (CO2‐kitchen). Near the kitchen, where the Fe‐, Mg‐, and Ca‐silicates have been titrated and destroyed by previous packets of migrating CO2, gas moves upward without lowering its CO2 mole fraction. Further on, where Fe‐ and Mg‐silicates are still present but Ca‐silicates are absent in the sediments, the partial pressure of CO2 is constrained to 0.1–30 bars and reservoirs contain a few mole percent CO2 as described by Smith & Ehrenberg (1989) . Still further from the source, where Ca‐silicates have not been titrated, partial pressure of CO2 in migrating methane gas are orders of magnitude lower. A 2D numerical model of CO2 generation, migration, and titration quantifies these buffer relations and makes predictions of CO2 risk in the South China Sea that are compatible with exploration experience. Reactive CO2 transport models of the kind described could prove useful in determining how gases migrate in faulted sedimentary basins. 相似文献
2.
Stratiform sediment‐hosted Zn–Pb–Ag mineral deposits constitute about 40% of the Earth's zinc resources ( Allen 2001 ), and in most cases their genesis involves the discharge of basinal brines near or on the seafloor through syndepositional faults ( Sangster 2002 ). From the point of view of base metal exploration, it is therefore essential to identify all possible faults that formerly carried the upwelling ore‐forming solutions during mineralising events. This paper presents a numerical investigation of the relative importance of various physical parameters in controlling fluid discharge, recharge and heat transport in faults. A two‐dimensional, free convection of pure water, hydrogeological model is developed for the McArthur basin in northern Australia based on the surface geology, known stratigraphic and structural relationships and regional geophysical interpretations. Numerical experiments and sensitivity analyses reveal that faults with strong initial heat input, due to depth of penetration or magmatic activity, are the most likely candidates to carry discharge fluids to the sites of metal precipitation. Deeper, wider and more permeable faults are more likely to behave as the fluid discharge pathways, whereas shallow, narrow or less permeable faults act as marine water recharge pathways. Compared with these fault‐related factors, aquifer physical properties are less important in determining fluid flow patterns and the geothermal regime. These results are an important step in understanding hydrothermal fluid flow in sedimentary basins in order to develop effective exploration criteria for the location of stratiform Zn–Pb–Ag deposits. 相似文献
3.
周恩来对新中国西部交通建设做出了很大的贡献 ,他较早明确了发展西部交通在实现民族振兴中的战略地位 ,并为发展西部交通事业呕心沥血。他主持经济建设的 2 6年 ,奠定了我们今天赖以进行西部开发的至关重要的交通运输基础 相似文献