首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The changes in the ionospheric composition and temperature profiles, in the altitude range of 120–1000 km, due to different mechanisms currently considered important during storms, are estimated quantitatively for a low latitude station, Delhi, for moderate solar activity conditions using the computer method of Stubbe. The theoretical results reported here are discussed in the light of the available ion composition and temperature variations observed at low latitudes during storms with satellite data in the topside ionosphere. The results are presented for the three atomic ions O+, H+ and He+ which are important in the F-region and topside ionsophere. It is found that all the three atomic ions increase or decrease in phase with the change in the concentration of n(O) when there is no change in total neutral density. When the change in the exospheric temperature T with its consequent change in neutral composition and an additional storm time increase in N2 by a factor of 2 is considered, O+ is found to increase in the topside and decrease in the bottomside ionosphere, whereas H+ and He+ decrease all throughout except for a small increase in He+ above 800 km during day. The effect of eastward electric field or southward (equatorward) winds during the day is to increase all three ions in the topside ionosphere and to decrease them in the bottomside ionosphere and vice versa for westward fields or northward (poleward) winds. At night, O+ shows the same type of behaviour as for day, while He+ shows an increase above 900 km and a decrease below that height for eastward fields or soutward winds and H+ shows an oscillating behaviour.Electron and ion temperature (Te and Ti) during the day shows anticorrelation with the change in the electron concentration Ne (equal to total ion concentration), whereas at night it does not show any significant change except for the case of change in T and N2.  相似文献   

2.
Millstone Hill incoherent scatter (IS) observations of electron density (Ne, electron temperature (Te) and ion temperature (Ti) are compared with the International Reference Ionosphere (IRI-86) for both noon and midnight, for summer, equinox and winter, at both solar maximum (1979–1980) and solar minimum (1985–1986). The largest difference inNe is found in the topside, where values of Ne given by IRI-86 are generally larger than those obtained from IS measurements, by a factor which increases with increasing height, and which has a mean value near two at 600 km. Apart from the bottom of the profile, which is tied to the CIRA neutral temperature, the IRI-86 Te model has no solar cycle variation. However, the IS measurements during the summer reveal larger Te at solar maximum than at solar minimum. At other seasons higher Te at solar maximum occurs only during the daytime at the greater heights. Nighttime Te is shown by the IS radar to be generally larger in winter than in summer, an effect not included in the IRI. This is apparently due to photoelectron heating during winter from the sunlit ionosphere conjugate to Millstone Hill. The day-night difference in Ti given by IRI-86 above 600km is not as large in the IS measurements.  相似文献   

3.
During geomagnetic storms different partial pressure gradients in the auroral ionosphere may result in H+, He+, O+ and molecular ions drifting with different velocities along the Earth's magnetic field line. For relative drift velocities ⪡ 400 m s−1 it is shown that differential ion flows may be identified by two signatures in the autocorrelation function (ACF) measured by EISCAT. For larger relative drifts numerical simulations show that these signatures still exist and may result in an asymmetry in the incoherent scatter spectrum for O+ and molecular ions. It is demonstrated that UHF data can be reliably analysed for k2λD2 ≲ 1, but at high altitudes, where O+–H+ flows are expected, UHF observations will be restricted by large Debye lengths (k2λD2 > 1). Examples of ACFs based on polar wind theory are presented and discussed for the VHF system and finally it is shown that large ion temperature ratios (Ti(H+) >Ti(O+)) can significantly affect the velocity determination.  相似文献   

4.
Ionospheric data from three incoherent scatter stations over the height range 225–450 km were studied for all daylight hours over a wide range of solar conditions. The relationship between electron temperature Te, electron density Nand solar flux at 10.7 cm wavelength S10.7 was expressed as Te = AB·(N−5 × 1011) + C·(S10.7−750), where N is in units of m−3 and S10.7 in kJy.This provided a very satisfactory expression for all data taken at Malvern and St. Santin between 0800 and 1600 LT. For data taken at Arecibo, however, the linearity broke down at low electron densities. The data from all three stations were therefore divided into two sets according to electron density and reexamined.ForN < 5 × 1011 m−3 B increased steadily with height and decreased steadily with latitude.For N > 5 × 1011 m−3 B did not appear to vary with height, with season or with latitude. C was approximately constant for all sets of data.The different mechanisms involved in the heat balance of the electron population are discussed and a qualitative explanation for the relationship is proposed.  相似文献   

5.
Winds in the upper atmosphere, and their effect on the ionosphere, are reviewed with an emphasis on information useful to ionospheric studies. The winds are driven by pressure gradients from solar and auroral heating, with some forcing by tidal energy from below. Simple calculations which balance the pressure gradient by ion drag and Coriolis forces are generally unreliable, so large-scale numerical models of the coupled atmosphere and ionosphere are required. The accuracy of these global models is limited by uncertainties in the energy inputs at high latitudes and at the lower boundary (about 90 km). The best current wind data come from incoherent scatter radar or airglow installations, at a few sites and for only a few nights per month. Satellite data are also available for several years, and results to 1989 are incorporated in the global HWM90 model. This seems acceptable for determining mean winds at night, less good during the day, and least good in the southern hemisphere where few data were available. Plots are given to show the mean winds at different latitudes and longitudes, for use in ionospheric calculations.Meridional winds alter the height of the mid-latitude F layer, causing large changes in the effective loss rate. This is the major cause of observed seasonal changes, of differences between the hemispheres, and of changes at different longitudes. An increased knowledge of the winds is essential for further progress in F region studies. Ionospheric data provide the most promising route, using routinely scaled parameters. The simplest calculations compare observed peak heights, obtained from M (3000)F2, with the value ho predicted by simplified “servo” equations. Errors occurring for some hours after sunrise can be overcome using model results to define ho this allows rapid and accurate wind calculations at dip latitudes of 23–62°. Winds can also be obtained from full model calculations, designed to match observed values of peak height or density.  相似文献   

6.
The effect of a prolonged period of strongly northward Interplanetary Magnetic Field (IMF) on the high-latitude F-region is studied using data from the EISCAT Common Programme Zero mode of operation on 11–12 August 1982. The analysis of the raw autocorrelation functions is kept to the directly derived parameters Ne, Te, Ti and velocity, and limits are defined for the errors introduced by assumptions about ion composition and by changes in the transmitted power and system constant. Simple data-cleaning criteria are employed to eliminate problems due to coherent signals and large background noise levels. The observed variations in plasma densities, temperatures and velocities are interpreted in terms of supporting data from ISEE-3 and local riometers and magnetometers. Both field-aligned and field-perpendicular plasma flows at Tromsø showed effects of the northward IMF: convection was slow and irregular and field-aligned flow profiles were characteristic of steady-state polar wind outflow with flux of order 1012 m−2 s−1. This period followed a strongly southward IMF which had triggered a substorm. The substorm gave enhanced convection, with a swing to equatorward flow and large (5 × 1012 m−2 s−1), steady-state field-aligned fluxes, leading to the possibility of O+ escape into the magnetosphere. The apparent influence of the IMF over both field-perpendicular and field-aligned flows is explained in terms of the cross-cap potential difference and the location of the auroral oval.  相似文献   

7.
8.
The EISCAT incoherent scatter radar, operating in a full tristatic mode, provided data on the ionospheric plasma drift above northern Scandinavia, during the 24 h period, 11 UT 25 November to 11 UT 26 November 1982. For the hours of darkness, 14 UT until 05 UT, observations of thermospheric winds were made by means of a ground-based Fabry-Perot interferometer (FPI) operated at Kiruna Geophysical Institute (21° E, 68° N). During this period, the radar observations describe well the ebbing and flowing of regions of strong convective ion flow associated with the auroral oval. As individual geomagnetic disturbances occur, the overall ion flow pattern intensifies and moves equatorward. The zonal thermospheric wind observed by the FPI responds rapidly to surges of the local ionospheric convection, while the meridional wind response is slower and apparently to much larger-scale features of the geomagnetic input to the high latitude thermosphere. From the data base, periods of strong heating of the ionospheric ions and of the thermospheric gas can be identified, which can be compared with Joule and particle heating rates deduced from the observations of ionospheric drifts, neutral winds, electron densities and auroral emission rates. A three-dimensional, time-dependent global thermospheric model is used to distinguish local and global features of the thermospheric wind field. Meridional and zonal wind components at 312 km may be theoretically derived from the EISCAT data using an appropriate model (MSIS) for neutral temperature. The EISCAT-derived meridional wind is within about 50 m s−1 of the FPI observations throughout the period of joint observations. The EISCAT-derived zonal wind is systematically larger (by about 50%) than the FPI measurement, but the two independent measurements follow closely the same fluctuations in response to geophysical events until 03 UT, when the EISCAT solution is driven away from the FPI measurement by a sharp increase in both neutral and ion temperatures. Between 03 and 05 UT the EISCAT-derived zonal wind is 200–400 m s−1 westward. Allowance for the neutral temperature rise would reduce the EISCAT values towards the very small zonal winds shown by the FPI during this period. We describe the relatively straightforward analysis required to derive the meridional wind from the radar data and the limitations inherent in the derivation of zonal wind, using the ion energy equation, due to the lack of precise knowledge of the background neutral temperature from the EISCAT data alone. For analysis of EISCAT ion drift observations at 312 km, the ground-based FPI temperature measurements do not improve the accuracy of the analysis, since the median altitude of the FPI measurement is probably in the range 180–240 km throughout the observation period. This median altitude and the temperature gradient both fluctuate in response to local geomagnetic events, while the temperature gradient may be considerably greater than that predicted by standard atmospheric models. When the neutral temperature is well known, or when there is a large enhancement of the ion temperature, the EISCAT-derived zonal wind exceeds the FPI measurement, but the consistency with which they correlate and follow ion-drag accelerations suggests that the differences are purely due to the considerable altitude gradients which are predicted by theoretical models.  相似文献   

9.
The papers by Winseret al. [(1990) J. atmos. terr. Phys.52, 501] and Häggström and Collis [(1990) J. atmos. terr. Phys.52, 519] used plasma flows and ion temperatures, as measured by the EISCAT tristatic incoherent scatter radar, to investigate changes in the ion composition of the ionospheric F-layer at high latitudes, in response to increases in the speed of plasma convection. These studies reported that the ion composition rapidly changed from mainly O+ to almost completely (>90%) molecular ions, following rapid increases in ion drift speed by >1 km s−1. These changes appeared inconsisent with theoretical considerations of the ion chemistry, which could not account for the large fractions of molecular ions inferred from the obsevations. In this paper, we discuss two causes of this discrepancy. First, we reevaluate the theoretical calculations for chemical equilibrium and show that, if we correct the derived temperatures for the effect of the molecular ions, and if we employ more realistic dependences of the reaction rates on the ion temperature, the composition changes derived for the faster convection speeds can be explained. For the Winser et al. observations with the radar beam at an aspect angle of ϕ = 54.7° to the geomagnetic field, we now compute a change to 89% molecular ions in < 2 min, in response to the 3 km s−1 drift. This is broadly consistent with the observations. But for the two cases considered by Häggström and Collis, looking along the field line (ϕ = 0°), we compute the proportion of molecular ions to be only 4 and 16% for the observed plasma drifts of 1.2 and 1.6 km s−1, respectively. These computed proportions are much smaller than those derived experimentally (70 and 90%). We attribute the differences to the effects of non-Maxwellian, anisotropic ion velocity distribution functions. We also discuss the effect of ion composition changes on the various radar observations that report anisotropies of ion temperature.  相似文献   

10.
A relaxation collision model for ion flow through a stationary neutral gas has been used to obtain ion velocity distributions and line-of-sight incoherent scatter spectra for a range of values of collision frequency and electric field. The mean velocity of the line-of-sight ion velocity distribution has been compared with the Doppler shift of the corresponding spectra. The latter is not always a good estimate of the former, because the ion velocity distribution in the plane perpendicular to the magnetic field direction is highly distorted. For ion-neutral collision frequency to ion gyrofrequency ratios 0.1 ≤Vi,/Ωi≤0.5, the greatest inaccuracies in mean velocity estimation take place along the electric field direction, while for 0.5 ≤ Vii ≤ 1.0 the greatest inaccuracies occur across the electric field direction. These inaccuracies would be reduced but not eliminated in a more realistic model. At F-region altitudes, other processes must be invoked to explain observed asymmetrical spectra, but the comparison of mean line-of-sight ion velocity and spectrum Doppler shift may still have relevance.  相似文献   

11.
A modified form of the ionospheric servo-model is used to describe the night-time F2-layer above St. Santin. Data taken by the incoherent scatter radar on nine nights in 1974–1977 were used to determine the height profiles of electron density, electron and ion temperature and electric field. The servo-model was then used to compute the theoretical variation through the night of the height of the F2 peak and the field-aligned plasma velocity, using gas concentrations and horizontal pressure gradients derived from the MSIS79 atmospheric model. On magnetically quiet nights these calculated values agreed closely with the observations. On disturbed nights, however, the calculations and observations began to diverge an hour or so after the onset of a substorm. The divergence could be explained by an enhanced southward wind.  相似文献   

12.
Substantial increases of the ion temperature can be observed at high latitudes as a consequence of strong convection electric fields. We have measured, with EISCAT, three independent components of the ion velocity vector and temperature in the same scattering volume, at about 300 km. During periods of strong variations in ion velocity (consequently of the E-field), the ion temperatures derived at the 3 sites are different. This difference, which appears to be systematic for the two experiments studied, can be interpreted in terms of different ion temperature perpendicular and parallel to the magnetic field, i.e. Ti greater than Ti. Assuming that a bi-Maxwellian distribution is present for convection electric field strengths as large as 50 mV m−1, one obtains an anisotropy factor of approximately 1.5. It also appears that resonant charge exchange is the dominant collision process. During the evening sector events studied, the electron density was decreasing, whereas the electron temperature was generally increasing. Such events are strongly related to variations in the magnetic H component detected on the ground.  相似文献   

13.
The Arecibo Initiative in Dynamics of the Atmosphere (AIDA) '89 was a multi-instrument campaign designed to compare various mesospheric wind measurement techniques. Our emphasis here is the comparison of the incoherent scatter radar (ISR) measurements with those of a 3.175 MHz radar operating a s an imaging Doppler interferometer (1131). We have performed further analyses in order to justify the interpretation of the long term IDI measurements in terms of prevailing winds and tides. Initial comparison of 14 profiles by Hines et al., 1993, J. atmos. terr. Phys. 55, 241–288, showed good agreement between the ISR and IDI measurements up to about 80 km, with fair to poor agreement above that altitude. We have compiled statistics from 208 profiles which show that the prevailing wind and diurnal and semidiurnal tides deduced from the IDI data provide a background wind about which both the IDI and ISR winds are normally distributed over the height range from 70 to 97 km. The 3.175 MHz radar data have also been processed using an interferometry (INT) technique [Van Baelen and Richmond 1991, Radio Sts. 26, 1209–1218] and two spaced antenna (SA) techniques [Meek, 1980, J. atmos. terr. Phys. 42, 837–839; Briggs. 1984, MAP Handbook, Vol. 13, pp. 166–186] to determine the three dimensional wind vector. These are then compared with the IDI results. Tidal amplitudes and phases were calculated using the generalized analysis of Groves, 1959, S. atmos. terr. Phys. 16, 344–356, historically used on meteor wind radar data. Results show a predominance of the diurnal S11 tidal mode in the altitude range 70–110 km, reaching a maximum amplitude 45 ms−1 at 95 km, with semidiurnal amplitudes being about 10–15 ms−1 throughout the height range considered. There is evidence of the two day wave in data from 86–120 km, with amplitudes on the order of 20 ms−1.  相似文献   

14.
F-region density depletions in the afternoon/evening sector of the auroral zone are studied with the EISCAT UHF radar. Four case studies are presented, in which data from three experiment modes are used. In each case the density depletion can be identified with the main ionospheric trough. For the two cases occurring in sunlit conditions the electron densities recovered significantly after the trough minimum. Tristatic ion velocity measurements show the development of poleward electric fields of typically 50–100 m Vm−1, which maximize exactly in the trough minimum. A special analysis technique for incoherent scatter measurements is introduced, based on the ion energy equation. By assuming that the ion temperature should obey this equation it is possible to fix this parameter in a second analysis and to allow the ion composition to be a free parameter. The results from two experiments with accurate velocity measurements indicate that the proportion of O+ near the F-region peak decreased from 100% in the undisturbed ionosphere to only 10% and 30%, respectively, in the density minimum of the trough. The loss of O+ is explained by the temperature dependence of recombination with nitrogen molecules. Temperatures derived from radar measurements are very sensitive to the assumed ion composition. For the above case of 10% O+ the deduced electron temperature in the trough was transformed from a local minimum of < 2000 K to a local maximum of 4000 K.  相似文献   

15.
Global scale longitudinal gradients of pressure in the plasmasphere may be formed naturally by ionospheric processes, or caused by electrostatic fields of ionospheric dynamo origin. It is shown that plasmaspheric gradients of pressure, orthogonal both to the magnetic field (B) and to grad B, generate geophysically significant field-aligned currents. Considering the ionosphere and plasmasphere as a coupled electrodynamic system, these currents alter non-negligibly the self-consistent ionospheric electric field and current. Criteria are established for this coupling mechanism (a kind of plasmaspheric impedance) to be significant. This has implications for the relationships of ionospheric electric fields and currents, F-region drifts, and magnetic variations, due to upper atmosphere tides and winds.  相似文献   

16.
Diurnal variations in the electron content (Nt) and peak density (Nm) of the ionosphere are calculated using a full time-varying model which includes the effects of electric fields, interhemispheric fluxes and neutral winds. The calculation is iterated, adjusting the assumed hourly values of neutral wind until a good match is obtained with mean experimental values of Nt and Nm. Using accurate ionospheric data for quiet conditions at 35°S and 43°S, winds are derived for summer, equinox and winter conditions near solar maximum and solar minimum. Solar maximum results are also obtained at 35°N. Changes in the neutral wind are found to be the major cause of seasonal changes in the ionosphere, and of differences between the two hemispheres. Calculated winds show little variation with latitude, but the winds increase by about 30% at solar minimum (in equinox and winter). The HWM90 wind model gives daytime winds which are nearly twice too large near solar maximum. The theoretical VSH model agrees better with observed daytime variations, and both models fit the observed winds reasonably well at night. Results indicate that modelling of the quiet, mid-latitude ionosphere should be adequate for many purposes when improved wind models are available. Model values for the peak height of the ionosphere are also provided; these show that wind calculations using servo theory are unreliable from sunrise to noon and for several hours after sunset.  相似文献   

17.
The relative importance of the equatorial plasma fountain (caused by vertical E x B drift at the equator) and neutral winds in leading to the ionospheric variations at equatorial-anomaly latitudes, with particular emphasis on conjugate-hemisphere differences, is investigated using a plasmasphere model. Values of ionospherec electron content (IEC) and peak electron density (Nmax) computed at conjugate points in the magnetic latitude range 10–30° at longitude 158°W reproduce the observed seasonal, solar activity, and latitudinal variations of IEC and Nmax, including the conjugate-hemisphere differences. The model results show that the plasma fountain, in the absence of neutral winds, produces almost identical effects at conjugate points in all seasons; neutral winds cause conjugate-hemisphere differences by modulating the fountain and moving the ionospheres at the conjugate hemispheres to different altitudes.At equinox., the neutral winds, mainly the zonal wind, modulate the fountain to supply more ionization to the northern hemisphere during evening and night-time hours and, at the same time, cause smaller chemical loss in the southern hemisphere by raising the ionosphere. The gain of ionization through the reduction in chemical loss is greater than that supplied by the fountain and causes stronger premidnight enhancements. in IEC and Nmax (with delayed peaks) in the southern hemisphere at all latitudes (10–30°). The same mechanism, but with the hemispheres of more flux and less chemical loss interchanged, causes stronger daytime IEC in the northern hemisphere at all latitudes. At solstice, the neutral winds, mainly the meridional wind, modulate the fountain differently at different altitudes and latitudes with a general interhemispheric flow from the summer to the winter hemisphere at altitudes above the F-region peaks. The interhemispheric flow causes stronger premidnight enhancements in IEC and Nmax and stronger daytime Nmax in the winter hemisphere, especially at latitudes equatorward of the anomaly crest. The altitude and latitude distributions of the daytime plasma flows combined with the longer daytime period can cause stronger daytime IEC in the summer hemisphere at all latitudes.  相似文献   

18.
High-resolution daytime incoherent scatter radar measurements of plasma temperatures and drifts in the ionospheric E-region above Millstone Hill (42.6°N, 71.5°W) have been used to derive horizontal neutral winds and temperatures in the lower thermosphere (105–130 km) during five multi-day campaigns in 1987–1991. The underlying semi-diurnal tidal component has been determined from the observations, with characteristic average amplitudes of 50 ± 15 m/s and 30 ± 10 K. Phase propagation with altitude follows the expected structure of semi-diurnal tidal modes, but reveals complex coupling of tidal modes, particularly above 115 km. Day-to-day variability in the winds and temperatures is large, and the deviations from the semi-diurnal harmonic can exceed 40 m/s and 50 K. No strong correlations have so far been found with geophysical parameters to explain the observed variability.  相似文献   

19.
Combined optical and radar measurements of ion drift at high latitudes near the terminator show that large downward field-aligned ion flows occur below the F-peak. At an invariant latitude of 72° and in the local time period from 1100 to 1500, downward velocities of 400 m s −1 have been observed. At the same time, the poleward component of field-perpendicular ion velocity was only 100 m s −1. The high latitude ionospheric model of Queganet al. (1982), as modified by Allenet al. (1984), predicts downward field-aligned velocities with the same sign morphology as the observations, but with only one fifth of the magnitude. However, the existence of downward neutral winds might lead to non-linear amplification of the downward ion motion. Using the vertical wind measurements of Reeset al. (1984), a possible explanation of the fast ion flow is suggested.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号