首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The possibility of the generation of decameter scale ionospheric plasma density irregularities, that must be responsible for dusk scatter, by the plasma gradient drift instability (GDI) at F-region altitudes is considered. It is shown that the dusk scatter could be produced by the ion density perturbations which appear as a result of the development of the GDI produced by the maximum westward plasma drift in the region poleward of the trough minimum. Possible reasons for the appearance of growth of the GDI waves as a result of the development of the trough plasma GDI during or just after sunset in the F-region are discussed. It is shown that, if the GDI begins after sunset, then the influence of the drift velocity shear results in the action of the GDI during 1–2 hours after sunset, which is close to the duration of dusk scatter.  相似文献   

2.
Low-latitude plasma drifts (zonal and meridional) in the F-region are inferred from the observed night-time thermospheric neutral wind velocities and temperature gradients, together with models for the neutral density (MSIS-86 model) and the electron density (IRI model). The thermospheric neutral winds and temperatures are derived from measurements of Doppler shifts and widths of the Oi 630.0 nm airglow emission line, respectively, using a Fabry-Perot interferometer at Cachoeira Paulista (23°S, 45°W), Brazil. The equations considered are the ideal gas law and the momentum equation for the thermosphere, which includes the time variation of the neutral wind, the pressure gradient which is related to the temperature and density gradients and the ion drag force. The present method to infer the night-time plasma drift using observed neutral parameters (time variation of neutral wind velocities and temperature gradients) showed results that are in reasonable agreement with our calculated plasma drifts and those observed in other low-latitude locations. On the other hand, it is surprising that sometimes the winds flow from the observed coldest sector to the hottest part of the thermosphere during many hours, suggesting that plasma drift can drive the neutral winds at low latitudes for a period of time.  相似文献   

3.
Using the EISCAT system it is possible to determine the total vector of plasma velocity—and hence the electric field—both in the “monostatic” and “tristatic” mode.Results are presented for the evening of 18 May 1982 during the reversal of plasma velocity from westward to eastward. A comparison demonstrates that the random errors in the measured velocity are smallest in the monostatic mode using data taken at Tromsø, where the signal-to-noise ratio is highest. There is, however, a systematic error in the monostatic measurements due to horizontal gradients in plasma velocity.  相似文献   

4.
Radio signals in the VHF/UHF range from the geostationary satellite ATS-6 were recorded using a system of three spaced antennas at Slough. Simultaneously, the integrated electron content (TEC) was monitored between the satellite and ground. Full correlation analysis and similar fade techniques were used to deduce the drift velocities of irregularities responsible for random and quasiperiodic (QP) ‘ringing’ scintillations. Similar drift velocities were found for the disturbances responsible for both types of scintillations at the times when QP and random scintillations occurred in a sequential pattern. A southward-drifting disturbance was responsible for rare, multiple QP scintillations which were followed by large scale fluctuations in electron density. In general, QP-scintillation-producing irregularities drifted southward, with velocities whose median magnitude and azimuth were 64 m s−1 and 178°E of N respectively.The sequential occurrence pattern of QP-random scintillations as well as the time delay between occurrences of large fluctuations in TEC and QP scintillations, appear to be consistent with a reflection model of generation of the ringing fading of the signal.  相似文献   

5.
Intervals of F-region electron density depletions associated with the main (mid-latitude) ionospheric trough have been studied using latitude scanning experiments with the EISCAT UHF radar. From 450 h of measurements over a one year period at solar minimum (April 1986–April 1987) the local time of appearance of the trough at a given latitude is observed to vary by up to about 8 h. No seasonal dependence of location is apparent, but troughs are absent in the data from summertime experiments. A weak dependence of trough location on Kp is found, and an empirical model predicting the latitude of the trough is proposed. The model is shown to be more appropriate than other available quantitative models for the latitudes covered by EISCAT. Detailed studies of four individual days show no relationship between local magnetic activity and time of observation of the trough. On all four of these days, however, the edge of the auroral oval, evidenced by enhanced electron densities in the E-region, is found to be approximately co-located with, or up to 1° poleward of, the F-region density minimum. Simultaneous ion drift velocity measurements show that the main trough is a region of strong (> several hundred metres per second) westward flow, with its boundary located approximately 1°–2° equatorward of the density minimum. Within the accuracy of the observations this relationship between the convection boundary, the trough minimum and the precipitation boundary is independent of local time and latitude. The relevance of these results is discussed in relation to theoretical models of the F-reregion at high latitudes.  相似文献   

6.
7.
HF doppler observations of vertical plasma drifts in the post-sunset equatorial F-region at Trivandrum (dip 0.9°S), conducted over a range of solar and geomagnetic conditions, are presented. The observations show that under magnetically quiet conditions, the characteristic post-sunset enhancement in the vertical plasma drift is quite sensitive to solar activity; the peak velocity drops by about a factor of 3 as the solar flux index (S10.7) changes from about 125 to 70. It is found that the drift velocity enhancement has strong magnetic activity dependence only during high solar activity; the drift velocity drops by more than a factor of 2 from quiet to moderate activity, but builds back to the quiet day level for high magnetic activity. The occurrence of equatorial spread-F (ESF) is seen to be closely linked to the post-sunset enhancement in the vertical drift velocity, both showing essentially the same dependence on solar and magnetic activities. A comparison with Jicamarca observations shows that while the gross characteristics of the drift velocity pattern are about the same for the two stations, there are significant differences in the detailed variations, particularly for magnetically disturbed conditions.  相似文献   

8.
DC electric field and ion density measurements near density depletion regions (that is, equatorial plasma bubbles) are used to estimate the vertical neutral wind speed. The measured zonal electric field in a series of density depletions crossed by the San Marco D satellite at 01.47-01.52 UT on 25 October 1988, can be explained if a downward neutral wind of 15–30 m s−1 exists. Simultaneously, the F-region plasma was moving downward at a speed of 30–50 m s−1 These events appear in the local time sector of 23.002̄23.15 in which strong downward neutral winds may occur. Indeed, airglow measurements suggest that downward neutral velocities of 25–50 m s−1 are possible at times near midnight in the equatorial F-region.  相似文献   

9.
The STARE and SABRE auroral radars use double pulses to measure one value of the autocorrelation function (ACF) to obtain the Doppler velocity of the irregularities in the E-region auroral zone. If the pulse separation of each double pulse is τ, then the measured velocity tends towards the mean velocity VDP as τ → 0, and towards the velocity of the long-lived irregularities VLL as τ → ∞. A practical implementation using these results is presented, which allows measurement of these two physically important velocities from just four pulse spacings, rather than the 11 or 15 currently used to obtain the full velocity spectrum in the STARE and SABRE radars, and thus gains greater precision or better time resolution. The two line-of-sight velocities, VDP and VLL, are in general not equal, with VLL greater in magnitude than VDP (sometimes much greater). Comparison of VDP and VLL for the two STARE stations and one of the SABRE stations shows interesting differences, and a number of statistically significant features. VLL probably measures the velocity of primary irregularities whenever these exist with the appropriate k vector. Both velocities ought to be measured routinely, and also for comparison with other techniques.  相似文献   

10.
To study equatorial plasma bubble dynamics, telemetry signals (4 GHz) were recorded simultaneously from two geostationary satellites. INSAT-1B (74°E) and INSAT-1C (94°E) at Sikandarabad satellite Earth station (dip 42.0°) from January to December 1989 and at the Chenglepet satellite Earth station (dip 10.5°) during September–October 1989 along the same geomagnetic meridian. The characteristics and occurrence pattern of the scintillations suggest that these are equatorial plasma bubble induced events. Observations from the two satellites recorded simultaneously at each of these locations were utilized to estimate the east-west plasma bubble irregularity motion. Plasma bubble rise velocities over the magnetic equator were calculated from the systematic onset time differences observed between an equatorial and a low latitude station. The east-west plasma bubble velocity estimated at Sikandarabad, corresponding to 1200 km altitude in the equatorial plane, shows a night time variation pattern with a peak at around 2100 LT. The mean values over Chenglepet, which correspond to 400 km altitude, start decreasing right from 1900 LT and seem to be influenced by the plasma bubble rise velocities. The differences in magnitude observed between the present results and those reported elsewhere by other techniques are interpreted in terms of vertical shears in the plasma zonal flow over the equator. The near alignment of the two observing stations along a common geomagnetic meridian and the simultaneous use of two satellites located twenty degrees apart in longitude provided an excellent data base to study plasma bubble dynamics.  相似文献   

11.
Whistler-mode signals observed at Faraday, Antarctica (65° S, 64° W, Λ=50.8°) show anomalous changes in group delay and Doppler shift with time during the main phase of intense geomagnetic activity. These changes are interpreted as the effect of refracting signals into and out of ducts near L=2.5 by electron concentration gradients associated with edges of the mid-latitude ionospheric trough. The refraction region is observed to propagate equatorwards at velocities in the range 20–85 ms−1 during periods of high geomagnetic activity (Kp ≥ 5), which is in good agreement with typical trough velocities. Model estimates of the time that the trough edges come into view from Faraday show a good correlation with the observed start times of the anomalous features. Whistler-mode signals observed at Dunedin, New Zealand (46° S, 171° E, Λ=52.5°) that have propagated at an average L-shell of 2.2 (Λ=47.6°) do not show such trough-related changes in group delay. These observations are consistent with a lower occurrence of the trough at lower invariant latitudes.  相似文献   

12.
Using models of a line current and a band current with a parabolic intensity distribution across the width, techniques to deduce the speed, the direction of motion and the zenith crossing time of the electrojet from observations of surface magnetic perturbations are studied.From the current motions deduced by these techniques and the observed traces of the Auroral Infrasonic Waves (AIW), the following four facts are established.
  • 1.(1) The time between the zenith crossing of the current and the arrival of AIW at the ground is reasonable.
  • 2.(2) The direction of travel of AIW is considered to be parallel to the current drift or parallel to the current flow.
  • 3.(3) The trace velocity of AIW is equal to the calculated drift velocity of the current.
  • 4.(4) AIW can be produced only by a line (or a narrow band) current.
Several minutes before the AIW arrive at the ground, the existence of certain motions of westward current which satisfy the AIW emission conditions proposed by Wilson (1972) have been confirmed. However there are several cases in which a succession of two equatorward supersonic zenith crossings of westward current have induced only one AIW.  相似文献   

13.
Combined optical and radar measurements of ion drift at high latitudes near the terminator show that large downward field-aligned ion flows occur below the F-peak. At an invariant latitude of 72° and in the local time period from 1100 to 1500, downward velocities of 400 m s −1 have been observed. At the same time, the poleward component of field-perpendicular ion velocity was only 100 m s −1. The high latitude ionospheric model of Queganet al. (1982), as modified by Allenet al. (1984), predicts downward field-aligned velocities with the same sign morphology as the observations, but with only one fifth of the magnitude. However, the existence of downward neutral winds might lead to non-linear amplification of the downward ion motion. Using the vertical wind measurements of Reeset al. (1984), a possible explanation of the fast ion flow is suggested.  相似文献   

14.
Plasma flow vectors have been derived from data recorded by the Advanced Ionospheric Sounder (operating as a Dynasonde) at Halley, Antarctica (76°, 27°W). Single bulk flow vectors derived from the motion of echo reflection surfaces in the overhead F-region ionosphere are consistent both with plasma flow vectors, poleward of Halley, observed simultaneously by the PACE HF radar and also, for various levels of geomagnetic activity, with published mean plasma flow at the same invariant geomagnetic latitude (62°). The results demonstrate application of the method and lend support to existing evidence that the velocity measured by this kind of technique, at least for moderate to active geomagnetic activity at high latitudes, represents ionospheric plasma flow.  相似文献   

15.
A dual coherent 50 MHz auroral radar installed at Siple Station, Antarctica, continuously monitored echo intensity and mean-Doppler velocity from 29 December 1976 until late March 1978. We describe here the experimental technique and present some statistical results including yearly averaged echooccurrence patterns and irregularity drift velocity characteristics. Our results show that:
  • 1.(1) the irregularity drifts are approximately westward (poleward electric fields) in the evening, and eastward (equatorward electric fields) in the morning following the electric field reversal in the region of the Harang discontinuity;
  • 2.(2) the Harang discontinuity under disturbed conditions (average Kp = 50) as seen by both radars is located around 2100–2300 MLT;
  • 3.(3) the relationship between the irregularity drift velocity and the actual electron drift velocity is strongly dependent on the angle between the radar beam and the earth's magnetic field, as predicted by linear theory.
  相似文献   

16.
A study has been made of data taken with EISCAT using the Common Program CP-3-C (F-region meridian scan) which shows that regions of enhanced ion temperature (in excess of 3000K at all three EISCAT stations) are found on most days when Kp exceeds 2 or 3, usually accompanied by ion drift velocities of more than 1 km s−1. These periods are often accompanied by anisotropy of the ion temperature and abnormally low apparent electron temperature, consistent with the presence of a non-Maxwellian ion velocity distribution such as would result from large but not exceptional ion drifts. Data for a selected period have been fitted using theoretical ion velocity distributions based on the relaxation collision model and assuming that the ion composition is 100% O+. The results confirm the presence of non-Maxwellian distributions, but a detailed comparison with theory reveals some discrepancies, indicating that the analysis may need to be extended to include effects due to, for example, molecular ions and instabilities.  相似文献   

17.
Data taken by EISCAT are presented as contours of electron density, ion and electron temperature and plasma velocity versus invariant latitude and local magnetic time.Three nights near midsummer were studied and in each case a trough in electron density occurred north of invariant latitude 64° shortly after local midnight (MLT 0200) and remained a prominent feature for about 3 h before moving poleward. The minimum in electron density was associated with a marked increase in ion temperature, but the electron temperature showed litttle change. In this respect the high latitude trough is clearly different from the mid-latitude trough.Full velocity measurements were not available for all three nights, but it seems that the appearance of the trough followed the start of a strong eastward plasma velocity combined with a strong upward velocity along the magnetic field line. The sudden change in plasma velocity causes frictional heating, which explains the increase in ion temperature. Upward plasma velocity is a major factor in the formation of the trough, with enhanced recombination making a smaller contribution.  相似文献   

18.
The plasmapause and the mid-latitude ionospheric trough have been observed simultaneously from two Antarctic stations, Halley and Faraday, during five winter nights covering a range of geomagnetic disturbance conditions. The equatorial radius of the plasmapause was measured using whistlers recorded at Halley, whilst the poleward edge of the trough was located from ionospheric soundings at one or other of the stations.Before midnight the trough was well poleward of the plasmapause (by 1–2 L) when first observed (typically at ~21 LT), but then moved rapidly equatorwards. After local magnetic midnight the two features were roughly coincident, and in general moved slowly to lower L-shells with increasing local time. At no time were there simultaneous and identical movements of the two features, suggesting a lack of coupling between them. Agreement of the observations with statistical studies and models was fair, given the considerable variability among the five cases studied. For the geomagnetically quieter nights the trough data fit the Spiro model predictions, whereas in the most disturbed case, agreement is better with the Quegan et al. model. The latter model predicts a difference in L between the two features which would fit the data better if shifted 1–2 h later in local time.  相似文献   

19.
The development of an auroral arc in the midnight sector, from diffuse to discrete with subsequent large scale folding, is studied with the aid of several ground-based observations, including incoherent scatter radar, and data from a HILAT satellite pass. Ion drift velocities in the F-region, as measured by EISCAT, were consistently eastward throughout and after the whole period of development, whilst the ion temperature showed two large enhancements just prior to the appearance of the main auroral fold. The fold moved eastwards and crossed the EISCAT antenna beam, appearing as a short-lived spike in electron density at altitudes between about 100 km and 400 km. The spike in electron density came progressively later at higher altitudes. The observations are interpreted as the result of enhanced convection in the ionosphere and in the magnetosphere. The auroral arc folding is suggested to be caused by the Kelvin-Helmholtz instability in a velocity shear zone in the magnetosphere.  相似文献   

20.
Group delays and Doppler shifts from ducted whistler-mode signals are measured using the VLF Doppler experiment at Dunedin, New Zealand (45.8°S, 170.5°E). Equatorial zonal electric field and plasmasphere-ionosphere coupling fluxes are determined for L ≈ 2.3 at June solstice and equinox during magnetically quiet periods. The general features of the electric field measured at Dunedin agree with those predicted from ionospheric dynamo theory with a (1,−2) tidal component. Some seasonal variations are observed, with the electric field measured during equinox being smaller and predominantly westward during the night. The electric field at June solstice is also westward during the evening and for part of the night, but turns sharply eastward during the pre-dawn and dawn period at the duct entry site. The June electric field appears to follow a diurnal variation whereas the equinox electric field shows a possible 4-hourly periodic variation. Seasonal variations in the neutral wind pattern, altering the configuration of the ionospheric dynamo field, are the probable cause of the seasonal differences in the electric field. The seasonal variation of the coupling fluxes can be explained by the alteration of the E x B drift pattern, caused by the changes in the electric field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号