首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
VELOX (VLF/ELF Logger Experiment), a new facility for systematically studying the characteristics of magnetospherically generated ELF/VLF radio noise received at a high-latitude ground station (Halley, Antarctica, 76°S, 26°W, L = 4.3), measures continuously at 1 s resolution the absolute power (peak, mean, and minimum), arrival azimuth, and polarisation ellipticity in 8 logarithmically spaced frequency bands ranging from 500 Hz to 9.3 kHz. All filtering etc. is done in real time using Digital Signal Processing (DSP) techniques. Key parameters (1 kHz and 3 kHz power channels only, at 1-minute intervals) for each day are extracted and regularly transferred to the Global Geospace Study Central Data Handling Facility. Data from the first year of operation (1992) show that, whilst the upper channels (6 kHz and 9.3 kHz) are dominated by thunderstorm (spheric) noise, which is strongest at night and repeatable from day to day, magnetospheric chorus and hiss emissions are more important in the 1–4 kHz range of high attenuation in the Earth-ionosphere waveguide. They are highly variable in intensity from below system noise level (15–20 dB above the reference level 10−33 T2 Hz−1) up to a maximum of 60–70 dB. Three classes of event are usually observed during specific local time sectors: substorm-related chorus events in the midnight-dawn sector, dawn chorus, and hiss-like events in the afternoon; all may occasionally be completely absent on quiet days. The substorm chorus events are shorter (typically 10–20 minutes) and more narrow-band than dawn chorus. Both upper and lower cut-off frequencies rise rapidly (∼ 100 Hz/min), consistent with the energy dispersion of resonant electrons as they drift eastward from injection near midnight, and with the inward drift, driven by substorm-enhanced electric fields, of whistler ducts which support propagation to the ground. Afternoon emission events are often punctuated by sudden deep fading, to noise level within 1–2 minutes, usually followed by complete recovery after a few minutes. All frequencies in the emission band are affected simultaneously. The explanation for this effect is unknown, though it could be a cut-off of propagation through the ionosphere to the ground by irregularities or gradients tilting the wave-normals out of the transmission cone. A similar system to VELOX will be deployed on a network of Automatic Geophysical Observatories extending to higher latitudes, south of Halley.  相似文献   

2.
A polar map of the occurrence rate of broad-band auroral VLF hiss in the topside ionosphere was made by a criterion of simultaneous intensity increases more than 5 dB above the quiet level at 5, 8, 16 and 20 kHz bands, using narrow-band intensity data processed from VLF electric field (50 Hz–30 kHz) tapes of 347 ISIS passes received at Syowa Station, Antarctica, between June 1976 and January 1983.The low-latitude contour of occurrence rate of 0.3 is approximately symmetric with respect to the 10–22 MLT (geomagnetic local time) meridian. It lies at 74° around 10 MLT, and extends down to 67° around 22 MLT. The high-latitude contour of 0.3 lies at invariant latitude of about 82° for all geomagnetic local times. The polar occurrence map of broad-band auroral VLF hiss is qualitatively similar to that of inverted-V electron precipitation observed by Atmospheric Explorer.(AE-D) (Huffman and Lin, 1981, American Geophys. Union, Geophysics Monograph, No. 25, p. 80), especially concerning the low-latitude boundary and axial symmetry of the 10–22 h MLT meridian.The frequency range of the broad-band auroral VLF hiss is discussed in terms of whistler Aode Cerenkov radiation by inverted-V electrons (1–30 keV) precipitated from the boundary plasma sheet. High-frequency components, above 12 kHz of whistler mode Cerenkov radiation from inverted-V electrons with energy below 40 keV, may be generated at altitudes below 3200 km along geomagnetic field lines at invariant latitudes between 70 and 77°. Low-frequency components below 2 kHz may be generated over a wide region at altitudes below 6400 km along the same field lines. Thus, the frequency range of the downgoing broad-band auroral hiss seems to be explained by the whistler mode Cerenkov radiation generated from inverted-V electrons at geocentric distances below about 2 RE (Earth's radius) along polar geomagnetic field lines of invariant latitude from 70 to 77°, since the whistler mode condition for all frequencies above 1 kHz of the downgoing hiss is not satisfied at geocentric distance of 3 re on the same field lines.  相似文献   

3.
When the Interkosmos-14 and Interkosmos-19 satellites crossed the region of spatially varying electron concentration in the topside ionosphere adjacent to the high-latitude boundary of the main ionospheric trough, it was discovered that there were simultaneous fluctuations of plasma density, temperature and the amplitudes (Hx and Ey) of the ELF and VLF radio/plasma emissions. The probability characteristics of the naturally perpendicular Hx and Ey fluctuations are analysed. The correlation coefficient R(H, Ey) turned out to be less than 0.6 at frequencies of F ⩽ 4.65 kHz, while at higher frequencies R increases, up to 0.9 at 15 kHz. The following interpretations are proposed:
  1. 1.1. While measuring noise emissions, as a rule a mixture of numerous elementary waves is recorded.
  2. 2.2. At frequencies exceeding the local lower hybrid resonance frequency (in our case fLHR ≈ 5 kHz), a mixture of electromagnetic waves experiencing the influence of the inhomogeneous electron concentration Ne is registered.
  3. 3.3. At frequencies which are lower than the local value fLHR the mixture mainly consists of ELF waves. The wave field has a complicated structure, and the dynamical coherence between electric and magnetic field components is not as simple as at VLF frequencies (f ≈ 15 kHz).
  4. 4.4. It is shown that the wave components for a mixture of electromagnetic and electrostatic waves (for instance a mixture of VLF and lower hybrid frequency waves) have a lower correlation coefficient because the electrostatic waves are unrelated to the electromagnetic waves.
  5. 5.5. The correlation analysis offers an opportunity to detect the presence of waves of various types in the wave mixture.
  相似文献   

4.
VLF radio signals (12.9 kHz) transmitted from Ω-Argentina (43°12′S, 65°24′W) were received in Atibaia, Brazil (23°11 'S, 46°33'W) during the total solar eclipse of 30 June 1992. The surface path of the totality crossed the VLF propagation path in the sunrise transition period causing a phase delay of 6.4 μs and an amplitude change of 1.3 dB. The ionospheric response to the Sun's obscuration was compared with the phase delays reported for several solar eclipses that occurred from 1966 to 1979. The results are mainly discussed in terms of the length of VLF propagation path affected. Some similarities between a sudden phase anomaly and a reversed eclipse effect are also raised.  相似文献   

5.
Winds and tides were measured by a number of MLT (Mesosphere, Lower Thermosphere) radars with locations varying from 43–70°N, 35–68°S, during the first LTCS (Lower Thermosphere Coupling Study) Campaign, 21–25 September 1987. The mean winds were globally westerly, consistent with early winter-like (NH) and late winter (SH) circulations.The semi-diurnal tide had vertical wavelengths near or less than 100 km at most locations, with some latitudinal variation (longer/shorter at lower latitudes in the NH/SH)—amplitudes decreased at high latitudes. The global tide was closer to anti-symmetric, with northward components being in phase at 90 km. Numerical model calculations [Forbes and Vial (1989), J. atmos. lerr. Phys. 51, 649] for September have rather similar wavelengths and amplitudes; however, the global tide was closer to symmetric, and detailed latitudinal trends differed from observed.The diurnal tide had similar wavelengths in each hemisphere, with short values (~30 km) at 35°, long (evanescence) at 68–70°, and irregular phase structures at mid-latitudes. The tide was neither symmetric nor anti-symmetric. Model calculations for the equinox [Forbes. S and Hagan (1988), Planet. Space Sci. 36, 579] were by nature symmetric, and showed the short wavelengths extending to mid-latitudes (43–52°). Southern hemisphere phases were significantly (6–8 h) different from observations. Amplitudes decreased at high latitudes in model and observation profiles.  相似文献   

6.
A model to calculate electron densities and electrical conductivities in the ionospheric E-region at low latitudes has been developed. Calculations have been performed under photochemical equilibrium and including plasma transport due to the electric field and neutral winds. Results have been compared with observations at Arecibo (18.15°N, 66.20°W), Thumba (8°32′N, 76°51′E) and SHAR (14.0°N, 80.0° E). Good agreement is obtained for Arecibo. For Thumba and SHAR agreement is satisfactory for altitudes above 110 km. Below 100 km, model predictions are too low in comparison with the observed data. The effect of plasma transport on electron densities and Hall and Pedersen conductivities is investigated in detail. A combination of neutral winds and a downward (or westward) electric field can compress the plasma into a thin layer. An upward electric field along with the neutral winds gives rise to a broad, multilayered profile. The ratio of height-integrated Hall to Pedersen conductivities changes from 1.2 to 2 in some cases.  相似文献   

7.
In 1989, two series of rocket measurements were carried out to investigate middle atmosphere electric fields. The measurements were taken both in the Northern Hemisphere on Heiss Island (80°37′N and 58°03′E) and in the Southern Hemisphere in the Indian Ocean (40–60°S and ~45°E) on board the research vessel ‘Akademik Shirshov’. Along with the vertical electric fields, aerosol content and positive ion density were also measured. Some of the rocket launches were made during the extremely strong solar proton events (SPE) of October 1989. The experiments showed the strong variability of the electric fields in the middle atmosphere at polar and high middle latitudes. In all the measurements the maximum of the vertical electric field height profile in the lower mesosphere was observed to be more than ~ 1 V/m. The electric field strength and the field direction at maximum varied considerably among the launches. A maximum value of + 12 V/m was detected at a height of about 58 km at 58°30′S on 21 October 1989 during the SPE. The simultaneous measurements of the electric field strength, positive ion density and aerosols point out both an ion -aerosol interaction and a connection between the mesospheric electric fields and aerosol content.  相似文献   

8.
Measured field strengths from VLF transmitters are used to determine improved daytime values of ionospheric parameters to enable improved VLF propagation predictions. These parameters are the traditional H′ (height in km) and β (sharpness in km−1) as used by Wait and by NOSC in their Earthionosphere waveguide computer program. They are found by comparing the predictions of the NOSC program with the observed VLF field strengths over both long and short paths.Experimental observations from two nearly north-south paths are used to determine the solar zenith angle dependence of both H′ and β for low latitude (or summer mid-latitude) conditions. These results are then used to predict the daytime variations in VLF field strengths with solar zenith angle (and hence time) on other suitable paths and good agreement is found with measurements made on these paths.The absolute value of β for overhead Sun is found to be 0.45 km−1 and is principally determined by the attenuation on the very long, west to east, fully sunlit, 14.4 Mm path from NWC (Australia, 22°S) to San Francisco (37°N), after applying small corrections for the solar zenith angle variations along the path at midday. Further support is obtained from results from the 8.6 Mm path NDT (Japan) to San Francisco, an 8.2 Mm path NPM (Hawaii) to New Zealand, and an east to west 7.5 Mm path from NPM to Townsville, Australia. The conditions studied are solar maximum. The frequencies studied are 15–30 kHz.  相似文献   

9.
Group delays and Doppler shifts from ducted whistler-mode signals are measured using the VLF Doppler experiment at Dunedin, New Zealand (45.8°S, 170.5°E). Equatorial zonal electric field and plasmasphere-ionosphere coupling fluxes are determined for L ≈ 2.3 at June solstice and equinox during magnetically quiet periods. The general features of the electric field measured at Dunedin agree with those predicted from ionospheric dynamo theory with a (1,−2) tidal component. Some seasonal variations are observed, with the electric field measured during equinox being smaller and predominantly westward during the night. The electric field at June solstice is also westward during the evening and for part of the night, but turns sharply eastward during the pre-dawn and dawn period at the duct entry site. The June electric field appears to follow a diurnal variation whereas the equinox electric field shows a possible 4-hourly periodic variation. Seasonal variations in the neutral wind pattern, altering the configuration of the ionospheric dynamo field, are the probable cause of the seasonal differences in the electric field. The seasonal variation of the coupling fluxes can be explained by the alteration of the E x B drift pattern, caused by the changes in the electric field.  相似文献   

10.
To study the behaviour of the electron concentration at the reflection level of very low frequency (VLF) waves, two years of phase and amplitude records of the 12.9 kHz signals emitted from Omega-Argentina (43.20°S; 294.60°E) and received at Tucumán (26.90°S; 294.70°E) have been used. The experimental results are compared with values derived from the International Reference Ionosphere model (IRI-79). The experimental data show a seasonal variation not predicted by the model. Differences are explained in terms of changes of night-time atomic oxygen concentration, which control the electron density profile at the base of the night-time D-region, not taken into account in the IRI model. Values of atomic oxygen necessary to explain VLF data are comparable with published data.  相似文献   

11.
VLF whistler-mode signals with very low group delays (75–160 ms) received at night in Dunedin, N.Z., from the 23.4 kHz MSK transmissions of NPM, Hawaii (21.5°N, 158°W), are explained by ray-tracing along unducted paths. The typical vertical and horizontal electron density gradients of the night equatorial ionosphere are found to be sufficient to explain not only the typical group delays but also their decrease during the night and the typical frequency shifts observed on these signals. An important feature appears to be the decreasing starting and finishing latitudes (and the decreasing maximum height of the path) during the course of the night. The amplitude of the signals in relation to the expected collisional absorption in the ionosphere is discussed. A simple but quite accurate analytical expression suitable for ray-tracing is derived for the night electron density in the height range 170–1400 km, based on non-isothermal diffusive equilibrium and O+/O friction.  相似文献   

12.
Rapid onset (few ms), rapid decay (~ls) perturbations or RORDs occur frequently on the west-to-east signal from NWC to Dunedin, more often than not with classic Trimpis. They do not appear on an NWC mimic signal directly injected into the antenna and so cannot be broadband bursts. There is no delay between the initiating sferic and RORD start, implying that they are produced not by whistler-induced electron precipitation but directly by lightning. Observations on a multi element array show that classic Trimpis and RORDs initiated by the same sferic usually come from measurably different directions, so the lightning-induced ionisation enhancements (LIEs) which cause them must be laterally displaced. They may also be vertically displaced to explain the differing decay rates (30s versus 1 s). We conclude that RORDs are VLF echoes from vertical columns of ionisation at around 40km altitude and having vertical dimensions of some tens of km and horizontal dimensions of 1–2km, since such a column would scatter sufficient signal to fit observed amplitudes. Cloud-to-ionosphere (CID) lightning discharges (also called “cloud-to-space” and “cloud-to-stratosphere” discharges) of these visible dimensions have been observed on mountain observatories and on board the Space Shuttle.  相似文献   

13.
The behaviour of the diurnal tide at 95 km over various years between 1965 and 1986 is studied using radar data from Heiss Island (81°N), Mawson (67°S), Molodezhnaya (68°S) and Scott Base (78°S). The observations are also compared with the model results of FORBES and HAGAN [(1988) Planet. Space Sci. 36, 579] for the same latitudes. There are substantial fluctuations in amplitude and phase at all stations, particularly in winter. Phase fluctuations can be as large as a uniform random distribution over the 24-h cycle. In summmer the phases of the meridional components are well defined and suggest the presence of a dominant symmetric mode. The meridional amplitudes are larger in summer whereas the zonal components have a greater variation and show no significant variation with season.  相似文献   

14.
Simultaneous daytime observations of E region horizontal irregularity drift velocities in the equatorial electrojet and F region vertical plasma drifts were made on a few magnetically quiet days at the magnetic equatorial station of Trivandrum (dip 0.5°N). Measurements of the electrojet irregularity velocities by VHF backscatter radar and the F region vertical plasma drifts by HF Doppier radar are used to deduce the daytime East-West electric fields in the E and F regions, respectively. The fluctuating components of the electric fields are separated and subjected to power spectral analysis. The E and F region electric field fluctuations are found to be well correlated; the estimated correlation coefficient is in the range of 0.52–0.8. The fluctuation amplitudes are of the order of 15% over the background for the E region and 25% for the F region. The spectral analysis reveals dominant components in the range of 30–90 min with F region components stronger than those of the E region by a factor of about 1.5 on the average. The F region electric fields during daytime being coupled from the low latitude E region, the good correlation observed between the E and F region perturbations suggests that the electric fields in the E region at low and equatorial latitudes are coherent for the temporal scales of the order of few tens of minutes. The spectral characteristics are such that the commonly occurring medium scale gravity waves could possibly be the source for the observed fluctuations in the E and F region electric fields.  相似文献   

15.
16.
We attempt to find the northern hemisphere zonal wavenumber for a striking quasi-2-day wave “event” or “burst” observed near 90 km altitude in the summer of 1992. A unique set of data on the upper atmosphere from nine radar sites is analysed (spacings ∼400– ∼ 12,000 km), and compared with expectations from models. The 2-day wave phase comparison, which finds zonal wavenumber m = 4, is conclusive. Determination of n, which defines the meridional wave amplitude structure, is not attempted, as the sites here have only a small latitude spread (21°N to 55°N). Also the amplitude seems to be unstable showing some sort of modulation which is not simultaneous at all sites. Finally, the radars have not been “calibrated” against each other in terms of wind speed. This calibration would have to be done before small differences in wave amplitude could be believed. A similar event in 1991 for which fewer sites are available is also discussed. Here the choice between m = 3 and 4 is not as clear.  相似文献   

17.
Radar wind measurements made at Adelaide (35°S, 138°E) and Kyoto (35°N, 136°E) are used to construct climatologies of solar tidal wind motions in the 80–185 km region. The climatologies, in the form of contour plots of amplitude and phase of the diurnal (24 h) and semidiurnal (12 h) tides, show that there are significant asymmetries between Adelaide and Kyoto. The amplitude of the diurnal tide is significantly larger at Adelaide than at Kyoto. At both stations the phase changes in a systematic way with lime such that the phases of the zonal wind components tend to be in anti-phase at the solstices. At Adelaide, there is more evidence of the propagating (1,1) diurnal mode. At both stations, the semidiurnal tide is strongest and has the longest vertical wavelengths (>100 km) in late summer; short vertical wavelength (~ 50–80 km) oscillations are most in evidence in winter. In order to place the Adelaide and Kyoto observations in context they are compared with observations made at other latitudes and with recent numerical simulations. There is encouraging agreement between the observations and models, especially for the semidiurnal tide.  相似文献   

18.
In the geometrical optics approximation, a synthesis oblique ionogram of ionospheric and magnetospheric HF radio wave signals propagating between magnetic conjugate points has been carried out. The magnetospheric HF propagation is considered for a model of the waveguide formed by field-aligned irregularities with depleted electron density. The characteristic peculiarities of the magnetospheric mode have been determined: (i) strong disperion of the group delay with a frequency at 14–18 MHz, from − 1.4 to 0.6 ms/MHz for magnetically conjugate points at geomagnetic latitudes φ = 30°, 40° and 50°, respectively, (ii) spreading ∼ 1–2 ms, and (iii) a possibility of propagation between magnetic conjugates points at moderately low geomagnetic latitudes φ0 ∼ 30–40° at frequencies exceeding 1.5 times the maximum usable frequency (MUF) of multi-hop ionospheric propagation.  相似文献   

19.
The Antarctic continent has been modelled as a spherical cap whose pole is coincident with that of the South Pole, which totally absorbs VLF radio waves attempting to propagate over it. The propagation of Omega navigation signals around this model icecap has then been computed using Kirchhoff diffraction theory. Spherical caps extending to 66.5 and 75.5°S have been found to accurately model the signals from Omega La Reunion and Argentina, respectively, received on flights between Christchurch, New Zealand and Scott Base in Antarctica, up to the boundary of the theoretical icecap. These model icecaps were found to be good fits to the boundary of the Antarctic continent, when measured at the 1–1.5 km contour of ice thickness, in the region where the VLF waves diffracted around the icecap. The good agreement obtained between the experimental field strength data and those computed theoretically, using only simple diffraction theory, suggests that coastal refraction plays at most only a secondary role in circumpolar propagation.  相似文献   

20.
Whistler mode signals from VLF transmitters received at Faraday, Antarctica (65° S, 64° W) during 1986–1991 show an annual variation in the number of hours over which signals are observed, with a maximum in June and a minimum in December. The variation was larger at solar minimum than at maximum and can be understood in terms of changes in absorption of VLF signals in the D-region, where the high geographic latitude of Faraday plays an important role in producing low attenuation levels during the austral winter. In contrast, very little such variation was observed at Dunedin, New Zealand (46° S, 171° E) in 1991. Nighttime whistler mode signals have start and end time trends that are consistent with the influence of F-region absorption. Increases in whistler mode occurrence appear to be associated with periods of high geomagnetic activity at solar maximum but not during solar minimum. A possible mechanism involving decreased F-region absorption is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号