首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report δ18O and δ13C data from modern carbonate in soils and dung samples from 3 recently abandoned livestock corrals in northern Kenya. Calcium carbonate content is higher within ∼5 cm depth that contains a mixture of dung and surface soils of corrals than in soils below 5 cm depth. We radiocarbon dated carbonates from 0.5 to 40 cm depths in two corrals and one control site. Surface carbonates (0.5 cm) from the two corrals were formed from modern carbon (>1955) when the corrals were active, while all other carbon is >16,000 years (BP) old. Shallow carbonate is also enriched in 18O (δ18O up to 3.0‰) and depleted in 13C (δ13C up to −12.0‰) with respect to carbonate at deeper levels and at two control sites. The δ18O and δ13C of soil carbonates (δ18OSC and δ13CSC respectively) in corrals are inversely correlated for depths up to about 15 cm where organic carbon is greater than 0.5%. Below that depth, there is a positive correlation between δ18OSC and δ13CSC values, similar to that observed in a control site.  相似文献   

2.
While political integration can be achieved by many means, here we focus on the use of feasting and statecraft in the Inka Empire of the Andean Late Horizon (c. AD 1400-1532) in South America. In order to examine Inka political integration of the Lake Titicaca Basin of Bolivia, we examine paleomobility and paleodiet through radiogenic strontium and stable oxygen and carbon isotope data in archaeological camelid remains from the site of Tiwanaku. Mean radiogenic strontium isotope values from all archaeological camelid enamel and bone samples is 87Sr/86Sr = 0.70998 ± 0.00179 (1σ, n = 48), mean stable oxygen isotope values from a sub-set of archaeological camelid enamel and bone samples is δ18Ocarbonate (VPDB) = −10.0‰ ± 2.6‰ (1σ, n = 18) and mean stable carbon isotope values from a sub-set of archaeological camelid enamel and bone samples is δ13Ccarbonate (VPDB) = −9.0‰ ± 1.7‰ (1σ, n = 18). While many camelids consumed in these feasting events were likely local to the Lake Titicaca Basin, others came from a variety of different geologic zones, elucidating our understanding of Inka statecraft and the role of feasting in political integration in empires in the past.  相似文献   

3.
Rice and millet were staple crops at Liangchengzhen, a late Neolithic Longshan site in Shandong, China, but the degree of dietary variation is not known. This study uses stable isotope analysis of human and faunal skeletal remains to quantitatively address the importance of these crops as well as terrestrial domesticates and aquatic resources in the diet at Liangchengzhen. Although no collagen could be extracted from the poorly preserved human bones, the δ13C stable isotope results for 2 apatite sample and 16 tooth enamel samples averaged −9.8‰ suggesting that diet was based on foods averaging from −24‰ to −18‰, with millet and millet-fed animals comprising at most approximately 25–30% of the diet. Pig faunal δ13C isotope values suggested that during the earlier Longshan period pigs were fed mainly millet with more C3 foods such as rice included by the later Longshan period. Solid ceramic residues from two guan jar sherds produced δ13C values averaging −18‰ and δ15N values averaging +16‰, suggesting both vessels contained fish. The results of the study indicate that by the Longshan period, people in southeastern Shandong no longer relied as heavily on millet and that the agricultural crop of rice had increased in importance at Liangchengzhen. Unfortunately, without human collagen samples to provide nitrogen isotope results, we cannot estimate the relative contribution of aquatic and terrestrial protein to the diet of people at Liangchengzhen. In general, however, the pattern of a diverse agricultural system on the basis of the macrobotanical remains from Liangchengzhen is supported by the isotopic results.  相似文献   

4.
Fifty-eight dental calculus samples from medieval and post-medieval skeletons from Vitoria, Spain, and a single sample from an Alaskan Inuit were tested for stable carbon and nitrogen isotope compositions. There was sufficient carbon and nitrogen concentrations to obtain δ13C and δ15N values, and the samples from Spain produced results that were replicable and comparable to European isotope values based on bone collagen collected from literature sources. The Alaskan Inuit calculus sample yielded a δ15N value of +17.5‰, well beyond the range of the Spanish samples, but consistent with literature data for modern Greenlandic Inuit consuming a diet rich in marine food. There are several potential sources for carbon and nitrogen in calculus. The results of this study yield stable isotope values consistent with those obtained from other biomaterials used as isotope proxies for paleodietary research, including bone collagen, hair, and fingernails, although further work is necessary to verify the fidelity of calculus as an isotope proxy. Many studies in bioarchaeology are precluded by curatorial concerns regarding the destructive analysis of primary biomaterials. However, calculus is an “add-on”, or secondary biomaterial, that is not an integral part of the dental or skeletal system. Hence, its consumption during analysis is technically not destructive. Therefore, isotope analysis of dental calculus may provide a potential new avenue for paleodietary analysis where the use of other primary biomaterials is precluded.  相似文献   

5.
The aim of the project was to test the hypothesis, using oxygen and strontium isotopes, that a group of burials in the Late Roman cemetery of Lankhills, Winchester, southern England, were migrants from the Danube region of central Europe. The method assumes that the oxygen isotope composition of immigrants from this locale would be significantly more depleted that any one British origin and that the restricted range in Sr isotope compositions produced by chalk in the overlying biosphere of southern England would discriminate between the local population and settlers from elsewhere. As a control for the immigrant group a sample of Romano-British individuals were examined to provide a comparative data set. The results showed that the majority of the individuals used to define the “local” control group plotted in a restricted field of strontium and oxygen isotope composition that was consistent with the values expected for the Hampshire area of southern England. By contrast, the “exotic”, putatively immigrant population generated a much more dispersed field including four with δ18O drinking water values of −10‰ or less, which supports a non-British origin for these individuals. The study shows that the archaeological data suggesting that there is an exotic population buried at the Lankhills cemetery is generally supported by the isotope work, although the “exotic” group appears to a rather dispersed set of individuals rather than a single population from a restricted overseas location.  相似文献   

6.
Spacing between stable isotope values in bones and teeth is a valuable tool for examining dietary influences and diagenesis. This study examines carbon and oxygen isotope values from collagen and hydroxyapatite (structural carbonate and phosphate) in archaeological human bones and teeth to derive species‐specific correlation equations and isotope spacing values. The δ13Ccollagen and δ13Cstructural carbonate in bone and dentin collagen show a strong correlation (R = 0.87, 0.90, respectively) with an average Δ13Ccarb‐coll spacing of 5.4‰. The consistency of this isotope spacing with other large mammals and in humans with both low and high protein intake (as indicated by enriched δ15N values) suggests a similar allocation of protein‐derived carbon and whole diet‐derived carbon to collagen and structural carbonates, respectively, as other terrestrial mammals regardless of absolute meat intake. The δ18Ostructural carbonate and δ18Ophosphate show the strongest correlation in enamel (R = 0.65), weaker correlations in dentin (R = 0.59) and bone (R = 0.35), with an average Δ18Ocarb‐phos of 7.8‰. This isotope spacing is slightly lower than previously reported for large mammals and limited available data for humans. The results potentially indicate species‐specific fractionations and differing access to body water and blood‐dissolved inorganic carbonates in the presence of collagen formation. The use of correlation between δ18Ostructural carbonate and δ18Ophosphate to determine diagenetic state is not recommended. The strength of this correlation observed in bones and teeth is variable and alternate indicators of diagenetic state (i.e. C:N ratios of collagen) provide more robust and independent evidence of isotope preservation despite presence/absence of a strong isotope correlation. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

7.
Carbon and nitrogen stable isotope analysis was undertaken on bone collagen extracted from archaeological human (n = 48) and animal (n = 45) skeletons from the Nukdo site, Location I C, South Korea. This shell midden and grave site is dated from the late Mumun (550–300 BC) to early Iron Age (300 BC-1 AD) periods. The herbivorous mammals fell within the range of C3 consumers, with average values of δ13C = −21.0 ± 0.5‰ and δ15N = 3.6 ± 0.5‰ for deer (n = 16) and δ13C = −20.6 ± 0.5‰ and δ15N = 4.5 ± 2.0‰ for wild boar (n = 17). Humans from this site averaged δ13C = −18.3 ± 0.4‰ and δ15N = 11.2 ± 0.7‰ for adults (n = 15) and δ13C = −18.7 ± 0.7‰ and δ15N = 12.5 ± 1.1‰ for juveniles (n = 33). These δ13C values indicate that there was no significant input of C4 plants in the human diets and this may be associated with the spread of rice agriculture in the Mumun period. Human bone collagen δ13C and δ15N values indicate that there was some consumption of marine foods, although the main protein sources were from terrestrial foods. The isotope data demonstrate that the humans at Nukdo had mixed diets that included marine and terrestrial protein, including C3 plants such as rice. Finally, the isotope results from the juveniles indicate that weaning occurred before the age of 1.5 years in this period.  相似文献   

8.
Human and domesticate animal bone collagen δ15N values in prehistory differ generally by 3‰ or more from Neolithic to post- Roman times in Northwest Europe, leading to an assumed dietary animal protein fraction of 60–80% using a standard interpretation of δ15N values. We examine the assumptions on which this model rests and the limitations of our knowledge in the analysis of δ15N values in archaeology. We have developed a set of models which, with small changes made in assumptions (on the order of 1‰), can produce substantially lower estimates of the dietary animal protein fraction for given δ15N values. We consider the implications of various dietary animal protein fractions on agricultural carrying capacities and human population densities in prehistory.  相似文献   

9.
We analyzed stable carbon and nitrogen isotope ratios of human and animal remains from the Ando shell midden, South Korea. The Ando site is a rare Incipient Chulmun (Neolithic) site (ca. 6000–5000 BC), which contains well-preserved human and animal bones in shell mounds. The stable isotope results for humans (average δ13C = −13.5 ± 0.5‰ and δ15N = 15.2 ± 0.5‰) indicate that Ando people in the Incipient Chulmun period strongly depended on marine resources. There were no isotopic differences between humans of different sex and age at this site. We compared our data with other previous published isotopic data from the Chulmun sites and found that the Ando people had similar isotope values to the southern Chulmun people (Tongsamdong and Daepo), but different isotopic ratios than the western Chulmun people (Daejukri and Konamri). These results indicate that marine foods were the main food resources in the southern coastal regions, but not in the western coastal regions in Chulmun Korea.  相似文献   

10.
The aim of this study is to assess the potential of charred archaeobotanical cereal grain and pulse seed δ13C and δ15N values to provide evidence of crop growing conditions and as a potential component of palaeodietary studies. In order to reliably interpret archaeobotanical δ13C and δ15N values it is necessary to take into account the impact of charring, burial and laboratory pre-treatment procedures. We examine the effects of charring and burial on bulk δ13C, δ15N, %C, %N and C:N ratios in modern cereal and pulse material, and of cleaning by acid–base–acid (ABA) pre-treatment on modern and archaeobotanical charred material. Our study utilised bulk grain and seed samples to help account for within-ear/pod and between-plant variability in δ13C and δ15N values. Heating at relatively low temperatures and for prolonged times (230 °C for up to 24 h) is conducive to the formation of well preserved, undistorted charred cereal grain and pulse seed. Heating for 24 h has a systematic and predictable effect on δ15N values, with increases of around 1‰ on average in cereal grains and pulse seeds, and no consistent impact on δ13C values. Increases in δ15N are likely due to the loss of lighter 14N via N-containing volatiles. Burial (for up to 2 years) and ABA pre-treatment have no significant effects on δ13C or δ15N values. After pre-treatment, however, the %C and %N contents of the archaeobotanical material more closely resembles that of the modern charred grains and seeds, suggesting that archaeobotanical remains accumulate non-structural material during burial but retain their original carbon and nitrogen content. Therefore %C, %N contents and C:N ratios can provide useful criteria for assessing archaeobotanical preservation.  相似文献   

11.
The remains of the Kwäd?y Dän Ts'ìnch? individual, a frozen male human, were recovered from a retreating glacier within the Tatshenshini-Alsek Park in British Columbia in August 1999. In order to provide information on both the geographical origin of this individual and low long he spent in the remote interior region prior to his death, molecular analysis and compound-specific carbon isotope analyses were performed on individual amino acids purified from his skin and bone. Gas chromatographic quantification of constituent amino acids of both tissues revealed a molecular distribution characteristic of collagen, dominated by glycine and to a lesser extent proline, hydroxyproline and alanine. Chiral gas chromatography indicated that protein preservation in both tissues was exceptional. Carbon isotope analysis of a faunal assemblage from an earlier prehistoric site from southern British Columbia provided reference dietary amino acid δ13C values for terrestrial (deer and domestic dog) and marine species (salmon and sealion), showing clear separation in all amino acids, particularly glycine which was extremely 13C-enriched in the marine animals. The distinction between terrestrial and marine organisms was increased by exploring Δ13CGlycine-Phenylalanine values (6.6 ± 0.6‰ and 15.0 ± 2.1‰, respectively), which were higher in the latter by approximately 8‰, mirroring the increased δ15NBulk collagen values observed for the marine animals (R2 = 0.78; p < 0.001). The Kwäd?y Dän Ts'ìnch? individual's bone had a similarly elevated Δ13CGlycine-Phenylalanine value of 15.6 ± 1.0‰, indicating his extreme reliance on marine dietary resources throughout early life. The skin amino acid δ13C values were consistently lower than those observed for bone, with a concurrently lower Δ13CGlycine-Phenylalanine value of 12.7 ± 0.9‰. The shift between the carbon isotope composition of bone (long-term diet) and skin amino acids (short-term diet) confirmed a sudden divergence away from marine food sources in the last months of life, consistent with his discovery 80 km inland.  相似文献   

12.
Calcite veins in Paleoproterozoic granitoids on the Baltic Shield are the focus of this study. These veins are distinguished by their monomineralic character, unusual thickness and closeness to Neoproterozoic dolerite dykes and therefore have drawn attention. The aim of this study was to define the source of these veins and to unravel their isotopic and chemical nature by carrying out fine‐scale studies. Seven calcite veins covering a depth interval of 50–420 m below the ground surface and composed of breccias or crack‐sealed fillings typically expressing syntaxial growth were sampled and analysed for a variety of physicochemical variables: homogenization temperature (Th) and salinity of fluid inclusions, and stable isotopes (87Sr/86Sr, 13C/12C, 18O/16O), trace‐element concentrations (Fe, Mn, Mg, Sr, rare earth elements) and cathodoluminescence (CL) of the solid phase. The fluid‐inclusion data show that the calcites were precipitated mainly from relatively low‐temperature (Th = 73–106°C) brines (13.4–24.5 wt.% CaCl2), and the 87Sr/86Sr is more radiogenic than expected for Rb‐poor minerals precipitated from Neoproterozoic fluids. These features, together with the distribution of δ13C and δ18O values, provide evidence that the calcite veins are not genetic with the nearby Neoproterozoic dolerite dykes, but are of Paleozoic age and were precipitated from warm brines expressing a rather large variability in salinity. Whereas the isotopic and chemical variables express rather constant average values among the individual veins, they vary considerably on fine‐scale across individual veins. This has implications for understanding processes causing calcite‐rich veins to form and capture trace metals in crystalline bedrock settings.  相似文献   

13.
The stable isotopic analysis of archaeological and paleontological bones has become a common method to examine questions of ecology, climate, and physiology. As researchers addressing such questions incorporate museum collections in their studies, it is necessary to understand the isotopic effects of common preservation techniques utilized in such collections to ensure the preservation of original isotopic values. This study examines the effects of PVAc glue (polyvinyl acetate) applied in acetone solution and the subsequent removal of PVAc using various organic solvents on the δ13C and δ15N values of extracted bone collagen, the δ13C and δ18O values of carbonate in bone hydroxyapatite, and the δ18O values of phosphate in hydroxyapatite. The data demonstrate that isotopic values in the collagen and phosphate are unaffected by any combination of PVAc treatment and solvent application. The carbonates show little variation in δ13C values, but exhibit variable δ18O values upon exposure to the PVAc solution. It is here suggested that δ18O values from carbonates in PVAc-treated bones do not retain an original isotopic value and should not be included in future studies.  相似文献   

14.
Seasonality determination using stable oxygen isotope (δ18O) analyses in archaeological mollusk shell has been largely limited to aquatic settings where one of the two factors that control shell δ18O – water δ18O (or salinity) and temperature – is assumed to be constant. Open coastal marine environments reflect the former situation, and tropical estuaries constitute the latter. In an effort to expand stable isotope seasonality to an ecological setting where neither variable remains constant, we present a model of annual shell δ18O cycle of aragonite deposition derived from instrumental data on salinity and temperature from San Francisco Bay, California. The predicted range of modeled shell δ18O is consistent with observed δ18O values in prehistoric and modern shells when local conditions are considered. Measurements of δ18O taken at 0 mm and 2 mm from the terminal growth margin were made on 36 archaeological specimens of Macoma nasuta from a late Holocene hunter-gatherer site CA-ALA-17, and season of collection was inferred using the shell δ18O model. We conclude that shellfish exploitation occurred through the year with the exception of fall, which may indicate scheduling conflicts with acorn harvesting or other seasonally abundant resources elsewhere. The model supports the feasibility of stable isotope seasonality studies in temperate estuaries, provided that instrumental records are available to quantify the relevant water conditions at appropriate spatial and temporal scales.  相似文献   

15.
A Sensitive High Resolution Ion MicroProbe (SHRIMP II) has been used to make high spatial resolution in situ micro-analyses of oxygen isotopes in fish otoliths, and teeth from fossil herbivores and a Neanderthal. Large intra-tooth variations in the oxygen isotopic composition (up to 9‰) were observed in the enamel of herbivores from the Neanderthal fossil site of Payre, consistent with preservation of seasonal cyclicity. The range of isotopic compositions observed in Neanderthal tooth enamel was much smaller (∼3‰), possibly the result of a longer enamel maturation time averaging out variability. An archaeological otolith from a Preceramic site in Northern Peru exhibited marked changes in δ18O over life, due either to the fish occasionally migrating from the sea to a lower salinity habitat, or to short-lived rises in sea water temperature. A fish otolith from Australia's Willandra Lakes World Heritage Area showed clear seasonal variations, but also a general trend towards isotopically heavier and more saline water, as indicated by higher δ18O and Sr/Ca values resulting from increased evaporation. The results of these case studies are compared to results of oxygen isotope analysis using more conventional methods and demonstrate the ability of the SHRIMP II to provide precise high spatial resolution in-situ oxygen isotope analyses of a variety of biogenic materials. This approach has major advantages over conventional methods. It can provide rapid, micro-scale isotopic analyses of sub-permil precision without the need for chemical preparation of the sample.  相似文献   

16.
Maize (Zea mays) was a primary food crop for aboriginal societies of the arid American Southwest. Water used for maize production in these arid zones could have come from precipitation and runoff during the summer monsoon, from perennial streams and springs, or from stored soil water fed by snowmelt. The oxygen stable isotope ratio (δ18O) of summer and winter precipitation on the Colorado Plateau naturally differ by more than 10‰ providing a powerful tool for distinguishing winter- from summer-derived water sources used in cultivation of maize. We investigated whether variation in δ18O of potential source waters is preserved in the δ18O of cellulose (δ18Ocellulose) of maize cobs by growing four aboriginal and one modern maize variety in pots irrigated with water of known δ18O composition. The δ18Ocellulose values of cobs ranged from 26.8 to 36.4‰ (averaged within varieties) and were highly correlated with δ18O values of the source irrigation water (−15.8 to −8.2‰). Cob δ18Ocellulose from five archaeological sites on the Colorado Plateau in southeastern Utah ranged from 27.3 to 34.6‰, closely matching the range of values observed in experimental plants. A δ18Ocellulose model developed originally for tree rings was parameterized and applied to the archaeological maize cobs. The model indicated that monsoonal precipitation accounted for 0–20% of the moisture for archaeological cob samples from a site adjacent to a perennial stream and 43–98% for samples from an upland site, more distant from a perennial water source. These results reveal the potential for using δ18Ocellulose to investigate prehistoric irrigation practices and source water used for maize production in the American Southwest.  相似文献   

17.
Stable isotope analyses of faunal remains provide valuable information about human–environment interactions in the past, including insights into past animal husbandry and land management strategies. Here, we report stable carbon (δ13C) and nitrogen (δ15N) isotope values of collagen and carbonate from archaeological fauna from Ka?dus, a medieval settlement in North-Central Poland, to better understand human–environment interactions during a period of increasing urbanism and marketization. Wild and domestic animals can be separated on the basis of their isotopic values. The mean δ15N value for 12 domesticated animals is 7.6 ± 1.2‰ and for 5 wild animals is 4.3 ± 0.5‰ (p = 0.002). The mean collagen δ13C value for domesticated animals is −20.6 ± 1.1‰ and for wild animals is −22.0 ± 0.5‰ (p = 0.004). The mean carbonate δ13C value for domesticated animals is −13.14 ± 1.3‰ and for wild animals is −14.14 ± 0.9‰ (p = 0.034). The “canopy effect” and anthropogenic effects that alter stable isotope ratios of plants (manuring, swidden agriculture and ploughing) are discussed in relation to these differences. Fish are isotopically variable, which suggests broad-spectrum fishing strategies and/or trade, and increases our awareness of the difficulties in interpreting human paleodiet when freshwater fish were on the menu.  相似文献   

18.
We have investigated change in subsistence during the transition to agriculture in the site of Jiahu, Henan Province, China, using stable isotopic analysis of collagen and apatite in human bones. Millet agriculture is well documented at drier high latitudes of the Yellow River Valley, while rice agriculture predominated at wetter lower latitudes of the Yangtze Valley region. The early Neolithic site of Jiahu lies near the boundary between the drier north and wetter south. Archaeobotanical evidence shows that rice was a significant component of diet at Jiahu, but its δ13C value is similar to that of other foods, and therefore cannot be conclusively identified by carbon isotope analysis. Foxtail and broomcorn millets are the only C4 crops known for the Chinese Neolithic. Because of their high δ13C values, their consumption can be evaluated by stable carbon isotope analysis of human bone. Collagen reflects mainly the δ13C value of dietary protein, and apatite accurately records that of the whole diet. Isotopic analysis of 15 well-preserved samples from three periods shows that collagen δ13C values were very low for almost all individuals, suggesting C3-based foods dominated their diets. However, apatite carbonate δ13C values and δ13C spacing between collagen and apatite (Δ13Cap-co) indicate that millet may have been a minor component of the diet in this region. Individuals, who consumed the smallest amounts of animal protein, as indicated by low δ15N, generally had the highest apatite δ13C values. Archaeobotanical evidence for millet at Jiahu is needed to support this interpretation.  相似文献   

19.
During the early medieval period in Ireland, Dublin was established as the largest Viking settlement on the island in the ninth century AD. A previous biodistance study has suggested that the population of the town consisted of a polyethnic amalgam of immigrant and indigenous. In this study, we use biogeochemistry to investigate paleomobility and paleodiet in archeological human remains from the ninth to eleventh century levels at the sites at Fishamble Street II (National Museum of Ireland excavation number E172), Fishamble Street III (E190) and John’s Lane (E173), as well as twelfth-century remains from Wood Quay (E132). Through radiogenic strontium isotope, stable oxygen, carbon, and nitrogen isotope, and elemental concentration analyses, we investigate the origins of the individuals who lived and died in early and late Viking Dublin. Mean archaeological human enamel and bone isotope values from Dublin are 87Sr/86Sr = 0.70975 ± 0.00139 (2σ, n = 22), δ13Ccarbonate(V-PDB) = −14.8‰ ± 0.8‰ (1σ, n = 12), and δ18Ocarbonate(V-PDB) = −7.2‰ ± 1.0‰ (1σ, n = 12). Archaeological human bone samples exhibit mean δ13Ccollagen(V-PDB) = −20.8‰ ± 0.5‰ (1σ, n = 12) and mean δ15Ncollagen(AIR) = +10.0‰ ± 1.7‰ (1σ, n = 12). Comparing these data with archaeological faunal data from Dublin and published data from northern Europe, we argue that there are no clear immigrants from other parts of the North Atlantic, although there is one clear outlier in both origins and diet. Overall, the relative homogeneity in both paleomobility and paleodiet may support models of acculturation in Viking Dublin, rather than a high number of first-generation immigrants or continued migration from Scandinavia.  相似文献   

20.
In this study we examine the effects of alkaline cooking on carbon and oxygen stable isotopic ratios of mineralized tissues from nine pigs raised on monotonous mixed C3/C4 vegetarian diets. Two sources of collagen (humerus and mandible) and two sources of apatite (humerus and enamel) were analyzed. Within each diet group, humerus and mandible collagens were found to record equivalent δ13C and δ18O ratios; however, enamel apatite was found to be enriched over bone apatite by 2.3‰ in carbon and 1.7‰ in oxygen. Alkaline cooking was found to slightly, but significantly increase the Δ13Ccollagen-diet and Δ18Ocollagen-diet of bone collagen. A similar trend towards enrichment was observed in bone and enamel Δ13Capatite-diet and Δ18O apatite-diet, but the differences were not significant. Observed isotopic shifts were consistent with increased nutrient utilization of the alkaline-cooked maize as compared to raw maize. In addition, a reexamination of the relationship between diet and tissue carbon isotopic values suggests that species and alimentary type should be considered when interpreting ancient diets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号