首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparing vertical incidence ionograms during spread-F conditions at the equatorial station Huancayo and modified range time interrsity records of 50 MHz scatter echoes at Jicamarca, it has been shown that the range type of spread-F is very efficient for the back-scattering of VHF radio waves. On the otherhand, the frequency type of spread-F does not seem to produce strong echoes. It is suggested that the range type of spread-F ionogram is due to the reflection (ω = ωp) of radio waves from large scale irregularities with structure as small as 3 m below or near the base of the F-region The frequency type spread-F ionogram is suggested due to scattering from large scale irregularities with no 3 m counterpart situated around the region of peak ionisation density.  相似文献   

2.
Forty-one days of measurements of the upward flux of zonal momentum associated with internal atmospheric gravity waves propagating in the upper mesosphere and lower thermosphere, made in thirteen 2–5 day periods, in each season, for the years 1981 and 1982 are presented, and the zonal mean flow acceleration is calculated for each period. For five periods of observation the upward fluxes of both zonal and meridional momentum are presented and for these, the total mean flow acceleration is calculated. When averaged over periods of 2–5 days, the magnitude of the upward flux of zonal momentum is typically less than about 3 m2 s−1, with the largest values tending to occur in the summer and winter months, suggesting a semi-annual variation with minima at the equinoxes, although large fluctuations in magnitude and sign are possible. About 70% of the upward flux of horizontal momentum appears to be due to motions with periods less than 1 h and their contribution to the mean flow acceleration is comparable. The zonal mean flow acceleration is often in the correct sense, and of sufficient magnitude, to decelerate the zonal wind component and to balance the Coriolis torque due to the mean meridional wind, when experimental uncertainties are taken into account. When averaged over periods of around 3 days, zonal mean flow accelerations with magnitudes of up to 190 m s−1 day−1 were calculated, but more typical values are between 50 and 80 m s−1 day−1. Magnitudes of the meridional and zonal mean flow accelerations were found to be similar, so that the total mean flow acceleration is not aligned with the zonal direction in general.  相似文献   

3.
Five foil chaff and two falling sphere rockets flown during the MAC/SINE Campaign on 15 July 1987 at Andenes, Northern Norway (69°17′N). From these rocket measurements, turbulent energy dissipation rates, vertical wind shears and Richardson numbers as functions of height were derived in the range from 82 to 92km. Turbulent energy dissipation rates generally range from 1.4 × 10−5 to 2.0 × 10−2W/kg and are consistent with other experiments performed at the same latitude. Strong wind shears of the order of 50–90 m/s/km are observed at various heights. Good correspondence between turbulence intensity peaks, regions of strong wind shear and low Richardson number is found. Vertical wavenumber spectra of the five scalar winds measured by the foil chaff rockets indicate that there is an excellent agreement with the saturation hypothesis, suggesting that the turbulence intensity peaks measured in this salvo are linked directly to the saturation of gravity wave motions via dynamical instabilities.  相似文献   

4.
The results of an analysis of mesospheric wind data collected simultaneously at Grahamstown (South Africa) and Adelaide (South Australia) during the summer appearances of the quasi-two-day wave over a period of eight years are presented and discussed. It is concluded that the apparent zonal wave-number k which characterises the westward travelling wave is significantly less than the value of 3 suggested by current theories. Differences in local conditions and/or observing techniques are found to be unlikely causes of the discrepancy. It is shown that these results, as well as certain global features observed by satellite, could arise as a result of the superposition of modes with different k but similar frequencies.  相似文献   

5.
First VHF radar measurements with height resolution of 300 m and angular resolution of 1.7° were carried out in low latitudes at the Arecibo Observatory, Puerto Rico. A short outline is given of the experimental set-up which consisted of a 160W average power radar-transceiver and a self-contained digital radar control and data acquisition unit. The new VHF feed system of the Arecibo dish is described shortly. Reliable radar echoes were detected from the troposphere, lower stratosphere and from some heights in the mesosphere, indicating that the described VHF radar is capable of proper investigations of dynamical processes in the low latitude middle atmosphere. The angular dependence of aspect sensitive tropospheric and stratospheric turbulence structures was measured to be 1.5–2.5 dB degree−1. Echoes from the mesosphere indicate a patchy structure of turbulence. The analysis of the signal-to-noise ratio shows considerably high reflectivity in the upper troposphere, which can be caused by high-reaching tropical cumulus convection. Wind profiles measured with the VHF radar between 7.5 and 19.5 km with a height resolution of 300m are very similar to radiosonde wind profiles. Mesospheric VHF radar winds are roughly consistent in amplitude with tidal winds.  相似文献   

6.
The influence of the higher harmonics of an internal gravity wave on the formation of nonlinear quasi-periodic disturbances in the F-region of the Earth's ionosphere is considered. It is shown that the Boussinesq approximation cannot be used in describing a plane nonlinear gravity wave as nonlinearities associated with the compressibility of the atmosphere have to be taken into account.  相似文献   

7.
Five vertical profiles of scalar horizontal winds have been measured at high resolution (25m) in the range from 80–95 km during the last salvo of the MAC/SINE campaign in the summer 1987 at Andenes, Northern Norway (69.3°N). Our purpose in this study is to examine the consistency of the motion spectrum with the saturated spectrum of gravity waves proposed by Smith S. A., Fritts D. C. and Van Zandt T.E., (1987, J. atmos. Sci. 44, 1404). An analysis of vertical wavenumber spectra of the five horizontal wind profiles is presented and it is found that (a) the average slope of the five vertical wavenumber spectra is −3.0 ± 0.2 for wavelengths in the range from 6.4 km to 100 m. The slope is considerably steeper than the vertical wavenumber spectra of the horizontal velocity discussed in the literature, (b) the average vertical wavenumber spectrum shows that there is excellent agreement between the observed spectrum and the saturated spectrum in both slope and amplitude, suggesting that saturation processes do indeed act to control spectral amplitudes at large wavenumbers, and (c) a dominant vertical wavelength of 6.4 km is found in the mesosphere. Taken together, our observations provide further support for the saturated spectrum theory.  相似文献   

8.
The wave-wave interaction theory has been used successfully in describing one class of weakly non-linear wave phenomena. The application of this theory to the atmosphere shows the possibilities of energy and momentum transfer among three interacting gravity waves, as well as from the gravity wave to the other modes of motion. It has been found that the non-resonant interaction of a gravity wave with two vortical modes can proceed at a reasonably rapid rate. With the gravity wave viewed as the primary wave and the two vortical modes as the secondary waves, the interaction equation can be linearized and solved. The resulting analytic formula gives the growth rate of the interaction. In the absence of the Earth's rotation, the growth is limited to a threshold effect. The theory shows that whenever the horizontal air parcel velocity of a gravity wave exceeds a factor of √2 times the horizontal trace velocity of the wave, energy and momentum transfer from the gravity wave to the vortical modes can proceed. The rotation of the Earth will blur this threshold effect by making the interaction more likely to occur. Thus, through this mechanism, a gravity wave can transfer its energy and momentum to the horizontal velocity field in the vortical mode. In this sense, the small scale vortical motions would serve as the sink of both energy and momentum of a propagating gravity wave. When scales of vortical modes reach sufficiently small values, dissipation through viscosity becomes important. At this scale and smaller, the vortical modes are damped out quickly and its energy spectrum must exhibit a sharp decay.  相似文献   

9.
A systematic method of deriving from MST radar data the group velocity and phase velocity of the atmospheric wave along the radar beam direction is proposed and verified by a series of numerical simulations. We apply the method to two data sets measured by Chung-Li radar under different background wind conditions. It is found that the vertical group velocity and phase velocity are mostly in the opposite direction when the background wind is weak. The energy source of downgoing wave packets was evidently related to the instability in the upper height range (10.5–11.7 km) where strong wind shear existed. When the background wind and wind shear are stronger, the vertical group and phase velocities may propagate in the same direction. We also found from numerical simulation and data analysis that the wave packet of gravity waves following power law spectrum are short-lived. A by-product of the group velocity measurement is that the horizontal wavelength may also be deduced from a vertical radar beam measurement from the dispersion relation if it is valid.  相似文献   

10.
Internal gravity wave perturbation velocity subject to constant dynamic viscosity and constant kinematic viscosity are approximately derived based on an energy conservation principle. When the dynamic viscosity is assumed to be a constant, the velocity at any height relative to the velocity at the saturation height, Zsat, is found to be solely dependent on the number of scale heights measured from Zsat. Gravity wave energy dissipation due to constant dynamic viscosity primarily occurs from one scale height below to one scale height above the saturation height. When the kinematic viscosity is assumed to be a constant, the perturbation amplitude either increases or decreases monotonically with height depending on whether the energy dissipation rate due, to viscosity, can offset the effect of the decreasing atmospheric density with increasing height. The derivations are made simple by assuming that the non-dissipative dispersion relation is applicable to the dissipative situation. The condition for the assumption to be approximately valid is also given.  相似文献   

11.
Simultaneous measurements were made using a 2.66 MHz interferometer radar, infrared photometers, and imaging systems during the total lunar eclipse of 6 July 1982. The radar data showed that a series of six discrete scatterers passed overhead at 103 km with an average spacing of 54 min, and two passed overhead at 88 km, also 54 min apart. The 88 km events were approximately 27 min out of phase with those at 103 km. One of the 88 km events was examined in detail; the radar returns appeared to come from a single scatterer or a few clustered scatterers, with a velocity of 135 m s−1 almost due south, at 6° below the horizontal. The speed and period give a horizontal wavelength of 440 km, and the phase shift between 88 and 103 km activity suggests a 30 km vertical wavelength, in agreement with values for typical medium-scale traveling ionospheric disturbances (TIDs). Infrared images were made in the near infrared, and photometric measurements were made on and off the 8−3 band of OH. These observations, made from one site near the radar and a second site 575 km south, showed wavelike structures appearing first over the radar, then further south until they filled most of the sky. The speed of development of the infrared structure pattern in the sky is consistent with the 135 m s−1 southward wave speed observed by the radar, but the structures themselves appeared in place, then drifted slowly northward at 10 m s−1. The photographically determined wavelengths were 30–60 km, considerably shorter than the 440 km determined with the radar.  相似文献   

12.
During early spring, 1985, the MAE-3 (Middle Atmospheric Electrodynamics) Program was conducted at Poker Flat Research Range, Alaska to study the origin of wintertime mesospheric echoes observed with the Poker Flat MST radar there, by probing the mesosphere with in situ rocket measurements when such echoes occurred. Pre-launch criteria required the appearance of echoes exhibiting some wave structure on the MST radar display; these could be met even under weak precipitation conditions with riometer absorption near or above 1.0 dB. Two morning rockets were launched under such conditions, the first (31.048) on 29 March 1985, at 1703 UT and the second (31.047) on 1 April 1985, at 1657 UT. Both payloads were deployed on a high altitude parachute near a 95 km apogee to provide a stable platform for data acquisition within the mesosphere (below 80 km). Each payload carried a solid state detector to measure energetic electrons between 0.1 and 1.0 MeV and an NaI crystal detector to measure x-rays from >5 to >80 keV. Payload 31.048 also carried a positive ion ‘turbulence’ probe which measured ion density changes (ΔNi/Ni) during payload descent, whereas 31.047 carried a nose tip ‘turbulence’ probe designed to measure electron density changes (ΔNe/Ne) during upleg ram conditions plus a Gerdien condenser for the measurement of bulk ion properties during downleg. The energy deposition curves for each event exhibited peak deposition rates between 75 and 80 km with a half width of 16–18 km, almost exclusively induced by precipitating relativistic electrons. They also showed a maximum bottomside gradient between 65 and 75 km. Radar echoes and atmospheric turbulence were observed in the same altitude domain, consistent with the anticipated need for adequate free thermal electron gradients to make such phenomena visible on the radar. The vertical wave structure from radar echoes was found to be consistent with that observed in horizontal wind and temperature profiles measured by Datasondes flown shortly after each large rocket. An analysis of the wave structure from radar data has shown that although large scale waves (λz ~ 7 km) were found to be present, a higher frequency shorter wavelength (∼ 1–3 km) component probably played a more significant role in modulating the signal-to-noise structure of the radar echoes.  相似文献   

13.
Wind fluctuations in the middle atmosphere behave like colored noise processes. They have a continuum of scales without dominant features and a power spectrum density (PSD) that often decays with frequency ƒ as ƒ−β. Spectral index β is generally obtained through least-square fit to PSD estimated by Fourier methods. Graphs of colored noise have fractal plane-filling properties depending on β. An efficient method for finding β using the fractal dimension (D), based on analysis of 1/ƒ noise in galactic X-ray luminosities by McHardy I. and Czerny B., (1987, Nature325, 696), is described. An empirical relation is found between D and β and its validity is confirmed in limiting cases. Then D is obtained from power-law dependence of a length metric L(μ) on scale μ. The method is applied to middle-atmospheric velocity data from the Poker Flat radar in Alaska. Variations of D follow those in β, from an earlier analysis by Bemraet al., (1986, Handbook for MAP20, 216), but show an offset of 0.1–0.2 even after corrections for outliers, gaps, and additive noise. Usefulness of this method for screening data as an aid to spectral analysis is examined.  相似文献   

14.
By accurately calibrating the SOUSY radar in West Germany it has been made possible to measure absolute values of effective reflection coefficients and turbulence structure constants. Some typical values of these parameters as a function of altitude are presented. Such profiles are presented for both a vertically directed beam, and also for two beams directed 7° off-vertical. Comparisons of powers on the vertical and off-vertical beams show that scatter became more aspect sensitive at the tropopause and in the lower stratosphere, but, unexpectedly, scatter was observed to become considerably more isotropic in the higher regions of the stratosphere (above 15–18 km) on this occasion. An enhancement of signal from the tropopause occurred not only on the vertical beam, but also on the off-vertical beams.Comparisons of signal strengths scattered from the mesosphere and measured with the vertical and off-vertical beams showed that for the present observations mesospheric scatter was close to isotropic. The backscatter cross-sections at VHF have been compared with other measurements at medium and high frequencies at other locations, and these comparisons help set some limits on the scales of turbulent and specular scatterers in the mesosphere.  相似文献   

15.
A two dimensional numerical model is used to compute the saturation of small scale gravity waves in the region near the critical level. The vertical wave number spectrum of horizontal velocity fluctuations in the unstable region (USR) where shear instability develops is found to be governed by wave-shear interaction and follows a theoretical saturation spectrum ~ωb2/2m3. Wave-shear interaction is also found to be responsible for the observed fact that the variance of vertical velocity fluctuations is significantly lower than the level predicted by linear gravity wave theory. On the other hand, the corresponding spectrum in the stable region (SR) following a much shallower spectrum ~m−2 is found to result from the combined effects of wave-wave interactions and eddy diffusion. The key step in our simulation is the separate parameterization of horizontal and vertical eddy diffusion coefficients instead of a constant molecular viscosity coefficient.  相似文献   

16.
A sodium LIDAR instrument located at Andenes, Norway (69°N; 16°E) observed several sudden developments of narrow sodium layers in the 90–100 km altitude region. These layers grow with typical time constants of 5 min and have a width of 1 km in altitude. We present the temporal and spatial properties for a number of these events. In a first step towards identifying the processes which create these layers we study the correlation of the growth phase of sudden sodium layers and of sporadic E layers. The latter have been recorded by an ionosonde located 129 km east of the LIDAR site. Within the mutual altitude and time resolution available in our common records a strong correlation of simultaneous occurrence of sudden sodium layers and Esl layers is observed, which establishes a strong link between the formation of the two types of layers. We further discuss processes which potentially could give rise to the formation of sudden sodium layers.  相似文献   

17.
Numerical application is made of the theory of scattering by long, curved, field-aligned irregularities of ionization density in the F-region developed by Ferguson and Booker. Using an intermediate-scale regime of irregularities with an outer scale equal to the scale height of the F-region and an inner scale equal to the ion gyroradius, combined with a small-scale regime with an outer scale equal to the ionic gyroradius and an inner scale equal to the electron gyroradius, calculations are made corresponding to (i) equatorial spread-F in the VHF and UHF bands, (ii) long-range transequatorial propagation of the type observed by Nielson and (iii) short-range transequatorial propagation of the type observed by Cohen and Bowles. The same ionospheric model yields field-strengths of the right order of magnitude in all three cases. The theory also predicts a focusing phenomenon that should be looked for experimentally.  相似文献   

18.
The problem of electromagnetic field disturbances produced by the interaction between winds of acoustic gravity waves (AGW) origin and the ionospheric plasma has been considered. It is shown that, when not allowing the electrostatic approach, electromagnetic field disturbances represent shear Alfvén and compressional modes modified by ionospheric Pedersen and Hall conductivities. It is further shown that the quasielectrostatic Alfvén type disturbances give the main contribution to electric field perturbations. Magnetic field perturbations due to Alfvén and compressional modes have the same order of magnitude. Two numerical models for simulation of the problem under consideration have been developed. The first model is intended for the simulation of Alfvén type disturbance production and transmission into the magnetosphere, taking into account the dipole geometry of the geomagnetic field, but a mutual transformation of Alfvén and compressional modes is ignored. The second model is constructed for the simulation of both electromagnetic field disturbance production and their mutual transformation in the ionosphere. The results of numerical simulations with these models show that there is an opportunity for AGW activity monitoring in the lower thermosphere by ground-and satellite-based recordings of magnetic and electric field variations.  相似文献   

19.
Vertically propagating gravity waves can transport momentum and energy from the troposphere up to the mesosphere and thus modify the circulation of the middle atmosphere. The effects of regional gravity wave sources, together with temporal changes of gravity wave activity, are studied under solstice conditions in a 3-D circulation model using a simplified parameterization scheme for the gravity momentum deposition. In this way we can reproduce the reversal of the mean zonal wind with height and very low temperatures at the summer mesopause region. Using a stochastic forcing by taking the gravity wave parameters at random, characteristic oscillations are found with periods in the planetary scale range (2, 4 and 5 days) and in the tidal range (1 day, 16 h and 12 h).  相似文献   

20.
Using asymptotic expansions of the hydrodynamic equations in the Rossby number and the method of multiple time scales, we derive approximate expressions for the inhomogeneous “forcing” terms which describe the continuous generation of inertio-gravity waves by quasi-geostrophic motions. As a result of numerical modelling applied to the evolution of tropospheric meso- and macro-scale wave sources, the values of these forcing terms are estimated. A three-dimensional numerical simulation of wave propagation from a mesometeorological tropospheric eddy into the upper atmosphere was done to estimate the gravity wave response to the sources described. The results of the calculations show that the most part of the wave energy propagates quasi-horizontally carried by two-dimensional inertio-gravity waves. At the same time, a part of the energy is transported into the upper atmosphere by internal-gravity waves which can create regions of wave disturbance in the upper atmosphere at considerable distances from the source site. The amplitudes of these waves increase with increasing intensity and decreasing time scales of the wave sources and can reach the values observed in the upper atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号