首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Calculations using a numerical model of the convection dominated high latitude ionosphere are compared with observations made by EISCAT as part of the UK-POLAR Special Programme. The data used were for 24–25 October 1984, which was characterized by an unusually steady IMF, with Bz < 0 and By > 0; in the calculations it was assumed that a steady IMF implies steady convection conditions. Using the electric field models of Heppner and Maynard (1983) appropriate to By > 0 and precipitation data taken from Spiroet al. (1982), we calculated the velocities and electron densities appropriate to the EISCAT observations. Many of the general features of the velocity data were reproduced by the model. In particular, the phasing of the change from eastward to westward flow in the vicinity of the Harang discontinuity, flows near the dayside throat and a region of slow flow at higher latitudes near dusk were well reproduced. In the afternoon sector modelled velocity values were significantly less than those observed. Electron density calculations showed good agreement with EISCAT observations near the F-peak, but compared poorly with observations near 211 km. In both cases, the greatest disagreement occurred in the early part of the observations, where the convection pattern was poorly known and showed some evidence of long term temporal change. Possible causes for the disagreement between observations and calculations are discussed and shown to raise interesting and, as yet, unresolved questions concerning the interpretation of the data. For the data set used, the late afternoon dip in electron density observed near the F-peak and interpreted as the signature of the mid-latitude trough is well reproduced by the calculations. Calculations indicate that it does not arise from long residence times of plasma on the nightside, but is the signature of a gap between two major ionization sources, viz. photoionization and particle precipitation.  相似文献   

3.
The problem is formulated, and boundary conditions are developed, in order to solve numerically the equations for the penetration of hydromagnetic waves of horizontal cylindrical symmetry through a stratified high latitude ionosphere and atmosphere due to sources above the ionosphere. There are two orthogonal polarization modes. The numerical results are shown for various cases. It is found that near the ground the horizontal components of both the electric and magnetic fields along the circumference direction are much smaller than the radial components.  相似文献   

4.
Ariel 3 and 4 satellite observations of the GBR 16 kHz and NAA 17.8 kHz transmissions above the ionosphere in the conjugate hemisphere show that their wave-fields generally show a rapid reduction in signal strength for geomagnetic latitudes greater than 55°–60°. Sometimes, however, the signal strength has been observed to be high in the invariant latitude range > 60°. At certain times during these observations, the signal showed clear evidence of amplification, whilst at other times the pattern of signal strength was displaced to higher latitude with the signal strength integrated over latitude being unchanged from that normally observed.It is shown that the plasmapause can guide both the NAA and GBR signals but that the efficiency of this guiding depends on the plasmapause position. The important condition is found that the plasmapause must be situated sufficiently equatorwards that half the equatorial electron gyrofrequency at the plasmapause position is greater than (or approximately equal to) the transmitter signal frequency. Ray-tracing calculations in a realistic magnetosphere model indicate that for the 16 kHz GBR signal, the efficiency of guiding falls off for Lpp, (the L-value of the plasmapause) > 3.0 and guiding effectively ceases for Lpp > 3.5.Guidance by the plasmapause results in a wave-field at higher latitude than for non-guided propagation. This will only occur when, following geomagnetic storms, the plasmapause position is at a sufficiently low L-value. This is in agreement with the experimental observations of anomalously high latitude signal reception following strong magnetic storms (Kp ≥ 4+).  相似文献   

5.
The possible generation and suppression of ion-cyclotron waves in a collisional plasma by external high power electromagnetic (EM) waves with frequency close to the local upper-hybrid frequency is considered. It is shown that the ion cyclotron instability can be destabilized (stabilized) for ω0UH0 > ωUH), where ω0 is the pump frequency of the EM wave. The results are applied to naturally occurring ion-cyclotron instabilities in the high latitude ionosphere.  相似文献   

6.
7.
Angles of arrival of first echoes (those directly reflected from the ionosphere) and second echoes (those twice reflected from the ionosphere with an intermediate reflection from the ground) were measured. It is easy to show that under specified conditions the off-vertical angle of arrival of the second echo ought to be twice that of the first echo. It is consistently found to be less than this for much of the time. Several possibilities are canvassed, but none provide a convincing explanation. The place on the Earth from which the second echo was reflected was nearly always the sea or flat ground. Apparently, rapid phase variations, as the tilt of the ionosphere changed, prevented recognition of the second echo by this particular radar system for echoes reflected from rough terrain.  相似文献   

8.
Data taken by EISCAT are presented as contours of electron density, ion and electron temperature and plasma velocity versus invariant latitude and local magnetic time.Three nights near midsummer were studied and in each case a trough in electron density occurred north of invariant latitude 64° shortly after local midnight (MLT 0200) and remained a prominent feature for about 3 h before moving poleward. The minimum in electron density was associated with a marked increase in ion temperature, but the electron temperature showed litttle change. In this respect the high latitude trough is clearly different from the mid-latitude trough.Full velocity measurements were not available for all three nights, but it seems that the appearance of the trough followed the start of a strong eastward plasma velocity combined with a strong upward velocity along the magnetic field line. The sudden change in plasma velocity causes frictional heating, which explains the increase in ion temperature. Upward plasma velocity is a major factor in the formation of the trough, with enhanced recombination making a smaller contribution.  相似文献   

9.
A model of the O+ and H+ distributions in the plasmasphere and high-latitude ionosphere is described and first results are presented. The O+ and H+ continuity and momentum equations are solved from the F-region to the equatorial plane in the inner plasmasphere, and to an altitude of 1400 km in the outer plasmasphere and high-latitude ionosphere. Account is taken of high-latitude convection, departure from corotation inside the plasmasphere, and neutral air winds. The neutral air winds are consistent with the assumed convection pattern. For equinox and magnetically quiet conditions the calculations show that a mid-latitude trough in F-layer electron concentration is present from 1600 to 0600 LT and the trough may occur either inside or outside the plasmasphere. The movement of the trough in this period is from higher to lower latitudes and is in qualitative agreement with AE-C and ESRO-4 data. A light-ion trough feature is apparent in the H+ distribution in the topside ionosphere at all local times. During the day the upward H+ flow increases with latitude to produce the light-ion trough. At night the H+ trough may be directly produced by the occurrence of the mid-latitude O+ trough. The relationships between the position of the plasmapause and the trough are discussed. Also discussed are the influence of particle ionization in the auroral zone and the effect of the neutral air wind.  相似文献   

10.
We have derived analytic expressions connecting the three plasma parameters namely hm, the height of the F2-peak; Nm, the peak density and Ym, the radius of curvature of the vertical profile at hm, which help us to explain certain features of the plasma distribution in the ionosphere. Although both Nm and TEC (total electron content) exhibit the equatorial anomaly in response to the fountain effect, TEC does not show a noon-time bite-out whereas Nm does. Moreover, we predict that the response of TEC towards the fountain effect is weaker than that of Nm, which we substantiate with simultaneous observations of Nm and TEC in the Indian zone. Thus we have shown that even one-dimensional analysis can explain those effects which are generally thought of as two-dimensional phenomena.  相似文献   

11.
Long series of laser sounding of the sodium layer have been performed at Heyss Island (80.4°N) during the polar winters of 1977–1978 and 1978–1979. The measurements show large and rapid variations of the sodium total content (a factor of 2, about 1000s). Those variations and the correlated modification of the sodium layer could be interpreted as the response of the layer to internal gravity waves.  相似文献   

12.
By the full-wave algorithm with Fourier synthesis, 3-D propagation of a whistler beam incident on the pre-dawn lower ionosphere at very low latitude is numerically investigated. Processes of transmission, reflection, and coupling with the Earth-ionosphere waveguide are discussed via the wave energy and polarisation distributions and their dependence on the wave parameters and the ionospheric profile (such as the Es-layer). It is shown that the dominant wave above 90 km altitude has the propagation characteristics of the magneto-ionic whistler mode, and absorption, spreading, reflection and mode conversion mainly occur at, and are greatly affected by, the bottom of the ionosphere. It is found that the transmitted energy density along the Earth's surface is reduced by 20 dB or more. Beam transmission loss varies asymmetrically with the incident angle, but changes little with the frequency. In the region 150 km (for 5 kHz) away from the ‘exit area’ where whistlers emerge, the bearing measurements using ground-based VLF direction-finders may be in error because direction-finding algorithms assume plane wave propagation. Only a small portion (about −25 dB at 5 kHz) of the incident energy is reflected up to an altitude of 150 km, and major reflection takes place in a small range of altitude at the bottom of the ionosphere with little spreading and lateral shift with respect to the incident beam. Reflection is enhanced considerably at lower frequency. Our results also suggest that an Es-layer or an ionospheric gradient refracting waves to higher latitudes would be favorable factors for multi-hop echoes to be received on the ground.  相似文献   

13.
Diurnal variations in the electron content (Nt) and peak density (Nm) of the ionosphere are calculated using a full time-varying model which includes the effects of electric fields, interhemispheric fluxes and neutral winds. The calculation is iterated, adjusting the assumed hourly values of neutral wind until a good match is obtained with mean experimental values of Nt and Nm. Using accurate ionospheric data for quiet conditions at 35°S and 43°S, winds are derived for summer, equinox and winter conditions near solar maximum and solar minimum. Solar maximum results are also obtained at 35°N. Changes in the neutral wind are found to be the major cause of seasonal changes in the ionosphere, and of differences between the two hemispheres. Calculated winds show little variation with latitude, but the winds increase by about 30% at solar minimum (in equinox and winter). The HWM90 wind model gives daytime winds which are nearly twice too large near solar maximum. The theoretical VSH model agrees better with observed daytime variations, and both models fit the observed winds reasonably well at night. Results indicate that modelling of the quiet, mid-latitude ionosphere should be adequate for many purposes when improved wind models are available. Model values for the peak height of the ionosphere are also provided; these show that wind calculations using servo theory are unreliable from sunrise to noon and for several hours after sunset.  相似文献   

14.
Statistical analysis methods used to define the amplitude distributions of signals returned from the ionosphere are discussed in this paper. Emphasis is placed on determining accurately the parameter B, which is the ratio of steady to random components present in a signal. Thus B > 1 if the signal is dominated by the steady component, and B < 1 when the random components dominate. This study investigates the characteristics of B for F-region and E-region ionospheric echoes, as well as some types of spread-F, observed at the southern mid-latitude station Beveridge (37.3 S and 144.6 E). The results indicate that amplitude measurements obtained in approximately 100 s are adequate for determining B. The results also illustrate some effects that the E-region can have on F-region echoes.It is found that frequency spreading, the most common type of spreading observed at Beveridge, displays strong specular reflections and some signal variation due to interference at the leading edge of the F-region echo (i.e. B > 2). Within the spread echo B fluctuates between 0 and about 1.5 but is typically less than 1. The autocorrelation function of signal amplitude has a relatively large coherence interval, suggesting that this type of spread-F is due to interference of specular reflections from coherent irregularity structures with horizontal scale sizes of tens of kilometres rather than scattering from small scale irregularities. A second form of spread-F which would generally be classified as frequency spreading on standard ionoerams is actually due to off-vertical reflections from patches ol irregularities which originate south (poleward) of Beveridge. Echoes within this oblique spread-F (OS-F) do not exhibit coherence indicating that the irregularities responsible are of a smaller scale than those producing normal frequency spread. Finally, the phenomenon of spreading occurring on the second hop, but not the first hop trace is studied. It is shown that the form of the second hop echoes can be reproduced using a simple geometric model of ground scatter. The interpretation is supported by the fact that B for spread second hop echoes is less than 1 whereas it is much greater than 1 for the corresponding first hop echoes.  相似文献   

15.
High latitude quiet summer ion composition values in the altitude range from 200 to 245 km have been derived from a combined ion line/plasma line experiment in a full five-parameter fit. The EISCAT UHF radar was used with a 5 × 14 μs multipulse scheme for the ion line measurements, giving a range resolution of 3 km. Plasma line signals from the same altitudes were measured with a 70 μs pulse using a spectrum analyzer. Significant deviations from the standard EISCAT composition model were found, mainly at the upper altitudes. The O+ content was generally lower than predicted by the model. For the largest composition deviations, significant effects were seen in the temperatures, particularly in the electron temperature. The electron temperatures derived by a standard ion line fit applying the model were underestimated by up to 15%.  相似文献   

16.
Two classes of ‘Trimpi’ modulation of VLF signals in the Earth-ionosphere waveguide have been identified in the literature. The more common type occurs l s or more after causative lightning strokes, the second in less than 100 ms. We explore the possibility that these early Trimpi events result from lighting-generated, electric field impulses lowering the mirror altitudes of trapped electrons. To overcome the mirror force on energetic electrons, upward-directed electric fields with strengths of a few tens of mV/m are required. This is well within the range of electric fields observed on sounding rockets above thunderstorms.  相似文献   

17.
Positive ion composition, total ion and electron density and ion production by energetic electrons were measured by rocket-borne experiments above Andøya (69.3°N, 16.0°E) in northern Norway. Observed altitudes of transition from molecular ions to proton hydrates and from electrons to negative ions are compared to results from an ion-chemical model. Nitric oxide and water vapour densities are inferred from the ion composition.  相似文献   

18.
On 17 December 1990 a series magnetic impulsive events (MIEs) were observed at high latitudes near local noon. EISCAT, situated some 5 hours of MLT away from the noon sector, detected simultaneous impulsive electron density enhancements at heights between 90 and 120 km. The MIEs at noon were also associated with riometer absorption spikes. The correlated EISCAT and riometer observations indicate that there was an elongated electron precipitation region some 3000 km wide stretching from local noon to morning. In close association with the impulsive electron precipitation, VLF emissions were observed by groundbased stations in the morning side. We interpret the large scale electron precipitation and VLF emissions as signatures of a global compression of the Earth's magnetosphere. This is confirmed by the specific type of magnetic variations simultaneously recorded at the worldwide network of magnetometers. We conclude that the small scale MIEs with their drifting ionospheric current vortex structures can (but do not necessarily have to) occur in conjunction with large scale SIs. Moreover, MIEs and SIs have a common origin: the interaction of solar wind inhomogeneities with the Earth's magnetosphere. They do, however, represent different effects of the same primary agent.  相似文献   

19.
We report the recovery of short fragments of PCR amplifiable ancient DNA from exoskeletal fragments of the grain weevil Sitophilus granarius (L.) extracted from Roman and medieval deposits in Northern England. If DNA preservation in archaeological insect remains is widespread then many applications in the spheres of evolutionary studies and archaeology can be conceived, some of which are outlined.  相似文献   

20.
Eighteen days of EISCAT data were used in a systematic study of the high latitude trough. Apart from a few days at midwinter, the pattern was the same in all cases. Near midnight the reversal of plasma flow from westward to eastward caused significant frictional heating of the ion population. At the same time a strong plasma velocity was observed upwards along the magnetic field line. This was the result of
  • 1.(i) a southward neutral wind
  • 2.(ii) a vertical wind driven by Joule heating
  • 3.(iii) diffusion. Both enhanced recombination—associated with the increase in ion temperature—and the escape of plasma along the field line contribute to the drop in electron density.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号