首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Global total ozone does not show any evident connection during the period 1958–1984 with 10.7 cm solar flux (F10.7). However, when the data are separated according to the east or west phase of the Quasi-Biennial-Oscillation (Q.B.O.) in the equatorial stratosphere, the following connection is found: when the Q.B.O. is in its west phase the global total ozone is positively correlated with the solar cycle; the opposite holds for the east phase of the Q.B.O.  相似文献   

2.
Although diagnostic studies and mechanistic model experiments have found that, on average, the polar vortex in northern winter is stronger and colder in the west than in the east years of the equatorial Quasi-Biennial Oscillation (QBO), we show with an expanded data base that the results are not statistically significant. The reason for the insignificance is that in 36% of the winters (13 out of 36) the vortex was warm and weak in the west, and cold and strong in the east years. Only at low activity in the 11-yr solar cycle did the difference between the west (cold) and the east (warm) years become statistically significant. At high solar activity the west years had a warm and the east years a cold polar vortex in the mean. We show this association with the 11-yr solar cycle also in terms of the geostrophic wind.  相似文献   

3.
This statistical correlation study is based on two upper mesospheric temperature data sets for the region around 90 km, on the phase of the quasi-biennial oscillation (QBO) and on the solar 10.7-cm radiation. The temperatures are measurements from passive OH1-spectrometers and lidar sounding experiments carried out between 1980 and 1988 at geographic latitudes between 50°N and 70° N. An anticorrelation exists betwen the 10.7-cm flux and the temperatures. Two different types of significance tests were used to check the confidence level of the correlation. The anti-correlation is highly significant (confidence ⪢ 99.99%) for latitudes around 50°N if the QBO is in its east phase and for the spring/summer temperatures. The anti-correlation is not significant for the QBO west phase and for fall/winter temperatures (confidence < 95%). For higher latitudes, around 79°N, no significant correlation was found.  相似文献   

4.
The monthly means for the years 1964–1991 of 30 hPa temperatures over the North Pole and averaged over the 70–90°N region are analyzed. A multiple regression model is used to find long-term monthly trends and possible linear associations between these temperatures and the QBO, ENSO, and the 11-yr solar cycle. The model's residuals are examined for detection of other periodic interannual fluctuations in Arctic temperatures.It is found that the interannual variations of temperature at 30 hPa over the Arctic are a superposition of the oscillations due to the QBO, ENSO, the 11-yr solar cycle, and approximate 6-yr periodic fluctuations of unknown origin. The QBO, ENSO, and the solar cycle effects in the Arctic temperature explain about 35% of the total variance of the temperature monthly anomalies. In winter, the QBO, ENSO, and the 11-yr solar cycle signals in the temperature data depend on the phase of the equatorial QBO. The polar vortex seems to be warmer (colder) than normal when the West (East) phase of the equatorial QBO in a period of high solar activity. The monthly temperature trends over the Arctic show seasonal variations with positive trends in February and March. The year-round trends (sum of the monthly trends) are about −0.5 K per decade.  相似文献   

5.
The (30 mb) stratospheric temperatures at the North Pole during the winter months (November–February) showed large QBO (Quasibiennial Oscillations) but of an intermittent nature, different for different months and not matching in phase with the QBO of the tropical zonal wind. When the QBO was minimized by moving averages over two successive (yearly winter) values and then further over three successive values, the resultant series showed clear solar cycle variations with lags or leads of ~ (0–2) yr for temperature maxima with respect to sunspot maxima. However, in solar cycle 21 from 1978 onwards, temperatures seem to be more depressed, indicating enhanced stratospheric cooling in recent years, probably due to an increase of greenhouse gases. No relationship with El Nino events is indicated.  相似文献   

6.
Saskatoon (52 N, 107 W) medium frequency (MF) radar data from 1979 to 1990 have been analyzed to investigate the solar activity effects on upper middle atmospheric winds and tidal amplitudes. The period of study covers two solar maxima and a solar minimum; the continuous data allow a systematic analysis of solar cycle dependence on mean winds and tides. The height region of 79–97 km sampled in the study shows an apparent but very weak dependence of mean winds and tidal amplitudes on solar activity variation. The observed features are fairly consistent with the early results reported by Sprenger and Schmindkr [(1969) J. atmos. terr. Phy. 31, 217). The mean zonal wind and the semidiurnal tidal amplitudes appear to exhibit positive and negative correlations with the solar activity, respectively; the statistical significances of these correlations are generally low. There is a biennial periodicity evident in the zonal wind oscillations but this docs not have a consistent phase relationship with the equatorial stratospheric wind oscillations (QBO). The meridional winds and the tidal amplitudes are characterized with different and quite irregular periods of oscillations (2–5 yr). The diurnal tidal variations over the solar cycle are small and irregular, although amplitudes are slightly larger during the solar minimum years.  相似文献   

7.
A quantitative assessment has been made of the longitude-dependent differences and the interannual variations of the zonal wind components in the equatorial stratosphere and troposphere, from the analysis of rocket and balloon data for 1979 and 1980 for three stations near ±8.5° latitude (Ascension Island at 14.4°W, Thumba at 76.9°E and Kwajalein at 67.7°E) and two stations near 21.5° latitude (Barking Sands at 159.6°W and Balasore at 86.9°E). The longitude-dependent differences are found to be about 10–20 m s−1 (amounting to 50–200% in some cases) for the semi-annual oscillation (SAO) and the annual oscillation (AO) amplitudes, depending upon the altitude and latitude. Inter-annual variations of about 10 m s−1 also exist in both oscillations. The phase of the SAO exhibits an almost 180° shift at Kwajalein compared to that at the other two stations near 8.5°, while the phase of the AO is independent of longitude, in the stratosphere.The amplitude and phase of the quasi-biennial oscillation (QBO) are found to be almost independent of longitude in the 18–38 km range, but above 40 km height the QBO amplitude and phase have different values in different longitude sectors for the three stations near ±8.5° latitude. The mean zonal wind shows no change from 1979 to 1980, but in the troposphere at 8.5° latitude strong easterlies prevail in the Indian zone, in contrast to the westerlies at the Atlantic and Pacific stations.  相似文献   

8.
We have investigated the middle atmospheric response to the 27-day and 11-yr solar UV flux variations at low to middle latitudes using a two-dimensional photochemical model. The model reproduced most features of the observed 27-day sensitivity and phase lag of the profile ozone response in the upper stratosphere and lower mesosphere, with a maximum sensitivity of +0.51% per 1% change in 205 nm flux. The model also reproduced the observed transition to a negative phase lag above 2 mb, reflecting the increasing importance with height of the solar modulated HOx chemistry on the ozone response above 45 km. The rnodel revealed the general anti-correlation of ozone and solar UV at 65–75 km, and simulated strong UV responses of water vapor and HOx species in the mesosphere. Consistent with previous 1D model studies, the observed upper mesospheric positive ozone response averaged over ±40° was simulated only when the model water vapor concentrations above 75 km were significantly reduced relative to current observations. Including the observed temperature-UV response in the model to account for temperature-chemistry feedback improved the model agreement with observations in the middle mesosphere, but did not improve the overall agreement above 75 km or in the stratosphere for all time periods considered. Consistent with the short photochemical time scales in the upper stratosphere, the model computed ozone-UV sensitivity was similar for the 27-day and 11-yr variations in this region. However, unlike the 27-day variation, the model simulation of the 11-yr solar cycle revealed a positive ozone-UV response throughout the mesosphere due to the large depletion of water vapor and reduced HOx-UV sensitivity. A small negative ozone response at 65–75 km was obtained in the 11-yr simulation when temperature-chemistry feedback was included,In agreement with observations, the model computed a low to middle latitude total ozone phase lag of +3 days and a sensitivity of +0.077% per 1% change in 205 nm flux for the 27-day solar variation, and a total ozone sensitivity of +0.27% for the 11-yr solar cycle. This factor of 3 sensitivity difference is indicative of the photochemical time constant for ozone in the lower stratosphere which is comparable to the 27-day solar rotation period but is much shorter than the 11-yr solar cycle.  相似文献   

9.
Evidence for a temperature variation above about 55 km between years of high and low solar activity is found in rocket data of Volgograd (49°N, 44°E) 1969–1983, reaching a solar-cycle amplitude of 6K, whereas below 55 km no statistically significant solar cycle effect is detected. This mesospheric temperature variation is in qualitative agreement with a pressure variation at 80 km derived from lower ionosphere radio reflection heights near 51°N, 13°E, measured at Kühlungsborn/GDR, covering almost two solar cycles. When the solar cycle variation has been removed from these 80 km pressure data by means of a regression analysis, there remains a quasi-cycle of about 20 yr, which agrees well with observations of a general cooling of the northern mid-latitude stratosphere between 1965 and 1977, reported by other authors.  相似文献   

10.
Hourly values of IEC and of f0F2 (critical frequency) for a low latitude station, Hawaii (21.2°N, 157.7°W), during the solar maxima (1969 and 1981) and minima (1965 and 1985) years of two consecutive solar cycles, 20 and 21, are used to study the day to day variabilities of the ionospheric parameters IEC and NP. It is found that there is good correspondence in the day to day variations of IEC and NP from one solar cycle to the other for both solar maximum and minimum years in the two solar cycles. Depending on solar phase and season, while the mean daytime IEC and NP variations range from about 20% to 35%, the mean night time values vary from about 25% to 60%. The mean daytime variations in NP for the solar minimum phase are remarkably higher in all the three seasons compared to the solar maximum phase. However, no such increase is observed in the mean daytime IEC variations, indicating the highly variable nature of the daytime ionospheric F region compared to the topside during solar minimum for this low latitude station. The winter night time IEC also seems to be a relatively stable parameter during the solar minimum. The short term day to day variabilities of the day time peak values of IEC and NP (ie IECmax and NPmax) are not closely associated with the variations in F10.7 solar flux. Contrary to the common expectation, the variabilities in both the parameters, particularly in NPmax, are somewhat reduced during the solar maximum (when the variability in F10.7 solar flux is much higher compared to the solar minimum) which is more evident in the stronger 21 solar cycle. A larger number of significant components are seen in the spectra of the percentage variation of both IECmax and NPmax during both solar phases of the two solar cycles compared to the corresponding F10.7 solar flux spectra. The number of additional components for both the parameters with periods less than 15 days are more for the low solar activity years than for the solar maximum years.  相似文献   

11.
When seasonal variations were eliminated by evaluating 12-month running means, the ionospheric parameters foE, foF2 and hmF2 at Juliusruh (54.6°N, 13.4°E) showed large solar cycle variations. However, when further 3-yr running averages were evaluated and subtracted, QBO (Quasi-biennial oscillations) were noticed in all these parameters. Sunspot series did not reveal a QBO, but geomagnetic Ap did show a QBO. The peaks of the ionospheric QBO and QBO of Ap could be roughly compared, with lags or leads of a few months. Also, these compared roughly with the well-known QBO peaks of tropical stratospheric (50 mb) zonal winds. Similar analyses at other locations are warranted.  相似文献   

12.
Solar data have been used as parameters in a great number of studies concerning variations of the physical conditions in the Earth's upper atmosphere. The varying solar activity is distinctly represented by the 11-yr cycle in the number of sunspots. The length of this sunspot period is not fixed. Actually, it varies with a period of 80–90 yr. Recently, this variation has been found to be strongly correlated with long-term variations in the global temperature. Information about northernhemisphere temperature based on proxy data is available back to the second half of the sixteenth century. Systematic monitoring of solar data did not take place prior to 1750. Therefore, a critical assessment of existing and proxy solar data prior to 1750 is reported and tables of epochs of sunspot minima as well as sunspot cycle lengths covering the interval 1500–1990 are presented. The tabulated cycle lengths are compared with reconstructed and instrumental temperature series through four centuries. The correlation between solar activity and northern hemisphere land surface temperature is confirmed.  相似文献   

13.
Stratospheric electric field and conductivity measurements during a wide variety of weather and solar conditions are presented. These data are all from high latitude sites (> 50°N GG) in the months of either April or August. The vector electric field is determined by orthogonal double probes connected through high impedance inputs to differential electrometers. The direct conductivity measurement involves determining the relaxation time constant of the medium after refloating a shorted pair of separated probes. Vertical electric field data from several balloon flights with average duration of 18 h at ceiling in fair weather are shown to be well modeled by a simple exponential altitude dependent equation. Examples of solar flare and magnetospheric effects on stratospheric electric fields are shown. Data collected over electrified clouds and thunderstorms are presented along with a discussion of the thunderstorm related electric currents. Lightning stroke signatures in the stratosphere during a large thunderstorm are identified in the electric field data. Current surges through the stratosphere due to DC currents as well as the sferic are calculated. In nearly 1000 h of balloon data no direct solar influence is identified in these data except during major flares. However, variations in all three components of the electric field during magnetically active conditions are discussed.  相似文献   

14.
The VHF radar at Jicamarca, Peru (12.0°S, 76.9°W) was used to probe the tropical lower stratosphere on 3–4 October and 6–8 December 1977. Velocity data obtained during these experiments exhibit features indicative of winds and waves in the stratosphere as follows:
  • 1.(1) The amplitude and phase of a diurnal oscillation in the observed horizontal wind compare well with theoretically predicted values of the solar diurnal tide. An observed semidiurnal oscillation differs considerably from theoretical values, although minimal phase variation with height is a fundamental property of both theory and observation. The observed vertical wind oscillations are larger than theoretical values of vertical tidal components, although the data is consistent with recent rocket observations.
  • 2.(2) Dominant velocity oscillations with periods near the Brunt-Väisälä period are frequently observed.
  • 3.(3) Downward phase progression of the westerly regime of the quasi-biennial wind oscillation is observed during the course of the two observations. A long-period oscillation with a period exceeding two days also appears to be superposed on the quasi-biennial oscillation.
  • 4.(4) Systematic differences are found between horizontal winds measured by the radar and those measured by rawinsondes launched from the Lima-Callao airport some 30 km west of Jicamarca.
  相似文献   

15.
The variation of temperature in the middle atmosphere (15–80 km) at Volgograd (49°N, 44°E) during an 11-year solar cycle (1971–1982) has been studied. The temperature of the stratosphere did not show any significant influence of the sunspot cycle, but the temperatures of the mesosphere showed a strong in-phase relationship with the solar cycle. Computed correlation and regression coefficients were positive and highly significant in this region. At 60 and 70km the temperature variations were almost linearly related to the sunspot number. Seasonal studies indicated that solar activity has a much stronger influence on temperature during the winter than during the summer.  相似文献   

16.
A correlative study of ozone and the solar UV flux on the time scale of a solar rotation shows an anomalous response of ozone in the upper stratosphere during solar cycle 22. The study, which is based on the analysis of ozone and solar UV flux measured by the SBUV/2 spectrometer on NOAA 11 (January 1989–December 1990), shows a sharp transition from an in-phase relation between ozone and the solar UV flux below 2 mb to an almost out-of-phase relation above 1 mb. Such a phase change is not predicted by photochemical models and was not observed during solar cycle 21. The ozone measurements from the Nimbus-7 SBUV spectrometer from 1979 to 1984 showed an almost in-phase relation between ozone and the solar UV flux at these heights (in agreement with model predictions). Similar studies of ozone and temperature relations between 30 and 1 mb did not show significant changes from the solar cycle 21 to 22. The temperature oscillations appear to be primarily of dynamical origin, with no apparent correlation with solar UV flux.  相似文献   

17.
The total ozone observations of Tromsö (Northern Norway), Sodankylä (Northern Finland) and Murmansk (Northwestern Soviet Union) for 1987–1989 have been studied. Comparisons of the total ozone with stratospheric temperatures observed at Sodankylä have been made. These values have also been compared with the long-term mean total ozone at Tromsö and the long-term means of stratospheric temperatures at Sodankylä. No severe ozone depletions were observed. The exceptionally high total ozone values at these stations in February 1989 were connected to abnormally high stratospheric temperatures. The comparison of total ozone observed at roughly the same southern latitudes revealed great differences in the springtime.The 1989 ozone sounding observations of Sodankylä, Bear Island and Ny Ålesund (Spitzbergen) did not reveal any indications of pronounced ozone depletion. A comparative study of ozone, temperature and relative humidity indicated that the springtime variability of ozone in the lower stratosphere was clearly connected to meteorological variability. The lower tropospheric ozone had two distinct maxima, one in spring with large-scale photochemical causes and the other in summer connected with the emissions of hydrocarbons and oxides of nitrogen in Europe.Temperature observations made at Sodankylä over 24 yr revealed the existence of a potential for polar stratospheric cloud formation in the lower stratosphere in winter and early spring. A trend analysis of 50 hPa temperature revealed a negative trend of −0.16 K/yr in January and a positive trend of 0.15 K/yr in April; the annually-averaged trend was only −0.02 K/yr for this 24-yr period. When the January–February mean temperatures are separated according to the phase of the QBO in the tropical stratosphere, correlations between temperatures and sunspot numbers are found.  相似文献   

18.
The monthly mean hourly values of total electron content data obtained at Lunping Observatory (geographic coordinates 25.00°N, 121.17°E; geomagnetic coordinates 14.3°N, 191.3°E) by using the ETS2 satellite beacon signal during the period from March 1977 to December 1990 have been used to analyze the solar cycle variations of total electron content (TEC) around equatorial anomaly crest region in East Asia. Positive, correlations were found between the 12 month running average of monthly mean TECs and sunspot numbers. By using the linear regression analysis method, the contour charts for real diurnal and seasonal variations of TEC at certain sunspot numbers were constructed and described. The diurnal variation of TEC was represented by the sum of its diurnal mean and first three harmonic components. The solar cycle variations of these components have also been discussed.  相似文献   

19.
There is growing interest in the role that the Sun's magnetic field has on weather and climatic parameters, particularly the ~11 year sunspot (Schwab) cycle, the ~22 yr magnetic field (Hale) cycle and the ~88 yr (Gleissberg) cycle. These cycles and the derivative harmonics are part of the peculiar periodic behaviour of the solar magnetic field. Using data from 1876 to the present, the exploratory analysis suggests that when the Sun's South Pole is positive in the Hale Cycle, the likelihood of strongly positive and negative Southern Oscillation Index (SOI) values increase after certain phases in the cyclic ~22 yr solar magnetic field. The SOI is also shown to track the pairing of sunspot cycles in ~88 yr periods. This coupling of odd cycles, 23–15, 21–13 and 19–11, produces an apparently close charting in positive and negative SOI fluctuations for each grouping. This Gleissberg effect is also apparent for the southern hemisphere rainfall anomaly. Over the last decade, the SOI and rainfall fluctuations have been tracking similar values to that recorded in Cycle 15 (1914–1924). This discovery has important implications for future drought predictions in Australia and in countries in the northern and southern hemispheres which have been shown to be influenced by the sunspot cycle. Further, it provides a benchmark for long‐term SOI behaviour.  相似文献   

20.
Cycle-to-cycle evolution of zonal wind QBO is studied making use of meteorological balloon and M-100 rocket data at Trivandrum (8.5°N, 77°E) for a period of about 19 yr from 1971 to 1990. The height of occurrence of zonal wind QBO maxima is found to vary systematically from one cycle to the next. The successive QBO maxima (easterly or westerly) occur progressively at greater heights and, after reaching a particular height, the next maximum (easterly or westerly) occurs at a lower height. Thereafter, the upward progression of the successive maxima starts again. It is found that the upward progression of the QBO maxima is closely associated with the occurrence of an El Niño event. A simple physical mechanism is suggested for this relationship between the QBO and El Niño. It is hypothesized that if the vertical wavelength of the Kelvin and mixed Rossby-gravity (MRG) waves are smaller during an El Nino event, the observed upward progression of the QBO maxima can be explained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号