首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Excitation of the guided acoustic-gravity waves in the upper thermosphere in response to enhanced auroral electrojets is calculated in the absence of dissipation under a fully ducted condition. It is shown that a model atmosphere terminated with an isothermal half-space supports a long-period, high-speed mode, which is the interface mode guided along the half-space termination of the atmosphere. The dispersion properties and the vertical distributions of the kinetic energy density of this mode are similar to those of the so called ‘gravity pseudomode’. The excitation of this mode is computed to show how the wave generation depends on the source mechanism (the Lorentz force and joule heating) and on the source altitude. Joule heating can generate the waves with appreciable amplitudes. On the other hand, the Lorentz force prevailing in the lower region cannot excite the waves with any observable amplitudes. The waves are intensified with increasing the heat source altitude. The gross features of the calculated waves indicate that the ducted thermospheric gravity waves are capable of producing observable thermospheric waves. It is therefore suggested that further examination of the excitation of the ducted acoustic-gravity waves undergoing partial reflections due to viscosity and thermal conduction should be useful for the theory of large-scale travelling ionospheric disturbances.  相似文献   

2.
Diurnal variations in the propagation direction of atmospheric gravity waves, and the travelling ionospheric disturbances to which they give rise, have been observed in many experimental observations and several modelling studies have demonstrated that this is primarily due to the corresponding diurnal rotation in the direction of the thermospheric wind. Other variations have been attributed to seasonal or other effects, but the effects of variations in the thermospheric temperature have not previously been analysed in detail. We present results from a study of the propagation of gravity waves through a layered atmosphere in which the thermospheric wind and temperature are derived from a three-dimensional time-dependent model. The analysis has been carried out for a range of wave speeds and periods, and for a range of times, seasons and propagation azimuths. Results suggest that a significant diurnal variation in the transmission coefficient for waves propagating through the thermosphere exists with seasonally dependent maxima. Transmission increases for increasing wave period up to about 50 min, after which it remains approximately constant. Maximum transmission occurs for wave phase speeds around 200–250 m/s and falls to zero for speeds less than about 100 m/s. An exception to this rule occurs for waves with periods less than 40 min and speeds less than 50 m/s for which significant transmission appears to be theoretically possible.  相似文献   

3.
Some recent investigations of thermosphere dynamics, carried out in the U.S.S.R., are reviewed briefly. The global empirical models of thermospheric motions are obtained on the basis of ground-based HF and meteor radar measurements of ionospheric irregularities drifts. Numerical modelling of large scale thermospheric electrodynamics for the low and mid-latitudes for quiet geomagnetic conditions, is presented. Disturbances of thermospheric wind systems from high latitude heat sources are considered. The response of lower thermosphere dynamics due to variations of solar and geomagnetic activity are discussed.  相似文献   

4.
Internal gravity wave perturbation velocity subject to constant dynamic viscosity and constant kinematic viscosity are approximately derived based on an energy conservation principle. When the dynamic viscosity is assumed to be a constant, the velocity at any height relative to the velocity at the saturation height, Zsat, is found to be solely dependent on the number of scale heights measured from Zsat. Gravity wave energy dissipation due to constant dynamic viscosity primarily occurs from one scale height below to one scale height above the saturation height. When the kinematic viscosity is assumed to be a constant, the perturbation amplitude either increases or decreases monotonically with height depending on whether the energy dissipation rate due, to viscosity, can offset the effect of the decreasing atmospheric density with increasing height. The derivations are made simple by assuming that the non-dissipative dispersion relation is applicable to the dissipative situation. The condition for the assumption to be approximately valid is also given.  相似文献   

5.
The role of gravity waves for the momentum and heat budget of the atmosphere between approximately 70 and 110 km height is considered. Parameterization schemes for vertical gravity wave diffusivity, generalized Rayleigh friction, viscous force, heat conduction and kinetic energy dissipation are reviewed. Eddy diffusion parameterization and its relation to the gravity wave approach is also discussed and it is shown that principal similarities exist in both concepts, especially when irregular (stochastic) contributions to the perturbations are modeled. Special attention is paid to the dissipation of perturbation kinetic energy and its contribution to the heat budget of the mesopause region. It is concluded that the amount of energy which can be attributed to the part of the gravity wave spectrum contributing to generalized Rayleigh friction above the mesopause is of the order of 10% of the total perturbation energy.  相似文献   

6.
The thermosphere is primarily energised by the combination of three sources of energy and momentum. Solar UV and EUV energy is absorbed globally on the dayside within the middle and upper thermosphere. There is a persistent, but highly variable, inflow of energy and momentum from the magnetosphere. These magnetospheric inputs are usually confined to high latitudes, except at times of very large geomagnetic disturbances. Tides and gravity waves upwell from their sources in the troposphere and stratosphere to deposit energy and momentum at levels from the middle mesosphere to the upper thermosphere. Solar EUV radiation between 120 ran and 250 nm photo-dissociates the molecules which dominate the composition of the lower thermosphere, in particular producing atomic oxygen which dominates the composition of the upper thermosphere. The combination of solar EUV radiation at wavelengths shorter than 120 nm, plus energetic (mainly) charged particles from the magnetosphere, also ionise the neutral constituents of the thermosphere, creating the ionosphere. Particularly at high latitudes, within the geomagnetic polar caps and auroral ovals, the energetic, dynamical and chemical coupling and interactions between the thermosphere and ionosphere dominate the structural and dynamical response of both the thermosphere and ionosphere to solar and geomagnetic inputs of energy and momentum.Comparisons between predictions using global thermosphere-ionosphere coupled models and comparable observational sets have shown encouraging agreement during periods of relatively quiet geomagnetic activity. This indicates that the major energetic, ionisation, chemical and dynamical processes and interactions can be described in models with reasonable accuracy. During periods of high geomagnetic activity, and particularly during major geomagnetic storms, large rapid disturbances of the thermosphere occur with extremely rapid variations. These disturbances are observed as large increases of temperature, density, major changes of neutral composition, and with the development of high speed wind flows and large amplitude waves which may propagate to affect the entire globe. Since the ionosphere is formed from thermospheric constituents and affected by thermospherc dynamics, the gross disturbances of the ionosphere during highly disturbed periods are related to contemporary changes of density, composition and flows of the thermosphere, as well as changes of ionisation sources and electric fields. Observations which describe the nature and scale of disturbances of the thermosphere during geomagnetic storms will be used, in combination with appropriate global numerical simulations, to aid interpretation of storm-time ionospheric phenomena. The role of energetic, dynamical and chemical coupling between the thermosphere and ionosphere is emphasised.  相似文献   

7.
A high resolution wind observation of the mesosphere and lower thermosphere (73–95 km) was conducted with the aid of the high power UHF Doppler radar at Arecibo (18.4°N, 66.8°W). Zonal wind velocities were continuously observed during day-time hours on 1–15 August 1980. We discuss here the observed wind fluctuations with periods of 1–4 h in the light of internal gravity waves. The phase propagation associated with these fluctuations is, on average, shown to be downward, indicating an upward energy flux. A space-time spectral analysis shows that waves with vertical wavelengths shorter than 10 km disappear around the mesopause (about 85km), while those with longer vertical wavelengths exist throughout the observational height. This result is explained in terms of wave absorption at a critical layer where the mean zonal wind has a westerly shear with height. This feature is consistent with the behavior expected for internal gravity waves around the summer mesopause in order to explain general circulation models.  相似文献   

8.
9.
A method of using experimental data on the F1-layer to study variations in the mean thermospheric gas composition is described and a comparison made with modern empirical thermosphere models. Good agreement is obtained for relative variations in atomic oxygen density at 150 km.  相似文献   

10.
High time resolution measurements of Doppler shift and broadening of the (OI) >1630 nm emission in the night airglow and aurora have provided determinations of vertical velocities and temperatures in the neutral thermosphere over Mawson, Antarctica. The vertical wind exhibits a large, rapid and complex response to geomagnetic energy input. Upward winds greater than 50 m s−1 are frequently associated with the expansion phase of auroral substorms. Following the disturbance, prolonged periods of downward winds produce temperature enhancements of 200K outside the source region, thus providing a mechanism for the redistribution of geomagnetic energy. Oscillatory behaviour consistent with thermospheric gravity waves is observed during both quiet and disturbed conditions.  相似文献   

11.
Recently, two interesting advancements in the study of non-migrating tides have occurred. There are currently two distinct approaches to this subject. One. based on mechanistic models that consider heating due to non-uniform global distribution of water vapour or heating only over lands, solves the primitive equations. One model of this approach that shows insolution absorption of the non-uniformly distributed water vapour produces non-migrating tides with 15% of the migrating ones in the lower thermosphere. The planetary boundary layer heating can explain very enhanced tides over land masses and those with short vertical wavelengths in the stratosphere. The other approach uses a general circulation model (GCM) simulation. This model can produce tides globally and in many details. The model predicts enhancement of the non-migrating modes as eastwards traveling modes with a wave number 3 and westwards traveling modes with a wave number 5 that is in a surprisingly good agreement with observation at sea-level, at 700 mb and at 300 mb.Whilst the GCM simulation is to be developed so as to include thermospheric tides, the mechanistic model should consider more realistic situations so as to include winds. Observation of tides at many heights and locations is essential in future studies.  相似文献   

12.
The wave-wave interaction theory has been used successfully in describing one class of weakly non-linear wave phenomena. The application of this theory to the atmosphere shows the possibilities of energy and momentum transfer among three interacting gravity waves, as well as from the gravity wave to the other modes of motion. It has been found that the non-resonant interaction of a gravity wave with two vortical modes can proceed at a reasonably rapid rate. With the gravity wave viewed as the primary wave and the two vortical modes as the secondary waves, the interaction equation can be linearized and solved. The resulting analytic formula gives the growth rate of the interaction. In the absence of the Earth's rotation, the growth is limited to a threshold effect. The theory shows that whenever the horizontal air parcel velocity of a gravity wave exceeds a factor of √2 times the horizontal trace velocity of the wave, energy and momentum transfer from the gravity wave to the vortical modes can proceed. The rotation of the Earth will blur this threshold effect by making the interaction more likely to occur. Thus, through this mechanism, a gravity wave can transfer its energy and momentum to the horizontal velocity field in the vortical mode. In this sense, the small scale vortical motions would serve as the sink of both energy and momentum of a propagating gravity wave. When scales of vortical modes reach sufficiently small values, dissipation through viscosity becomes important. At this scale and smaller, the vortical modes are damped out quickly and its energy spectrum must exhibit a sharp decay.  相似文献   

13.
Low-latitude plasma drifts (zonal and meridional) in the F-region are inferred from the observed night-time thermospheric neutral wind velocities and temperature gradients, together with models for the neutral density (MSIS-86 model) and the electron density (IRI model). The thermospheric neutral winds and temperatures are derived from measurements of Doppler shifts and widths of the Oi 630.0 nm airglow emission line, respectively, using a Fabry-Perot interferometer at Cachoeira Paulista (23°S, 45°W), Brazil. The equations considered are the ideal gas law and the momentum equation for the thermosphere, which includes the time variation of the neutral wind, the pressure gradient which is related to the temperature and density gradients and the ion drag force. The present method to infer the night-time plasma drift using observed neutral parameters (time variation of neutral wind velocities and temperature gradients) showed results that are in reasonable agreement with our calculated plasma drifts and those observed in other low-latitude locations. On the other hand, it is surprising that sometimes the winds flow from the observed coldest sector to the hottest part of the thermosphere during many hours, suggesting that plasma drift can drive the neutral winds at low latitudes for a period of time.  相似文献   

14.
The University College London Thermospheric Model and the Sheffield University Ionospheric Convection Model have been integrated and improved to produce a self-consistent coupled global thermospheric/high latitude ionospheric model. The neutral thermospheric equations for wind velocity, composition, density and energy are solved, including their full interactions with the evolution of high latitude ion drift and plasma density, as these respond to convection, precipitation, solar photoionisation and changes of the thermosphere, particularly composition and wind velocity. Four 24 h Universal Time (UT) simulations have been performed. These correspond to positive and negative values of the IMF BY component at high solar activity, for a level of moderate geomagnetic activity, for each of the June and December solstices. In this paper we will describe the seasonal and IMF reponses of the coupled ionosphere/thermosphere system, as depicted by these simulations. In the winter polar region the diurnal migration of the polar convection pattern into and out of sunlight, together with ion transport, plays a major role in the plasma density structure at F-region altitudes. In the summer polar region an increase in the proportion of molecular to atomic species, created by the global seasonal thermospheric circulation and augmented by the geomagnetic forcing, controls the plasma densities at all Universal Times. The increased destruction of F-region ions in the summer polar region reduces the mean level of ionization to similar mean levels seen in winter, despite the increased level of solar insolation. In the upper thermosphere in winter for BY negative, a tongue of plasma is transported anti-sunward over the dusk side of the polar cap. To effect this transport, co-rotation and plasma convection work in the same sense. For IMF BY positive, plasma convection and co-rotation tend to oppose so that, despite similar cross-polar cap electric fields, a smaller polar cap plasma tongue is produced, distributed more centrally across the polar cap. In the summer polar cap, the enhanced plasma destruction due to enhancement of neutral molecular species and thus a changed ionospheric composition, causes F-region plasma minima at the same locations where the polar cap plasma maxima are produced in winter.  相似文献   

15.
The EISCAT incoherent scatter radar, operating in a full tristatic mode, provided data on the ionospheric plasma drift above northern Scandinavia, during the 24 h period, 11 UT 25 November to 11 UT 26 November 1982. For the hours of darkness, 14 UT until 05 UT, observations of thermospheric winds were made by means of a ground-based Fabry-Perot interferometer (FPI) operated at Kiruna Geophysical Institute (21° E, 68° N). During this period, the radar observations describe well the ebbing and flowing of regions of strong convective ion flow associated with the auroral oval. As individual geomagnetic disturbances occur, the overall ion flow pattern intensifies and moves equatorward. The zonal thermospheric wind observed by the FPI responds rapidly to surges of the local ionospheric convection, while the meridional wind response is slower and apparently to much larger-scale features of the geomagnetic input to the high latitude thermosphere. From the data base, periods of strong heating of the ionospheric ions and of the thermospheric gas can be identified, which can be compared with Joule and particle heating rates deduced from the observations of ionospheric drifts, neutral winds, electron densities and auroral emission rates. A three-dimensional, time-dependent global thermospheric model is used to distinguish local and global features of the thermospheric wind field. Meridional and zonal wind components at 312 km may be theoretically derived from the EISCAT data using an appropriate model (MSIS) for neutral temperature. The EISCAT-derived meridional wind is within about 50 m s−1 of the FPI observations throughout the period of joint observations. The EISCAT-derived zonal wind is systematically larger (by about 50%) than the FPI measurement, but the two independent measurements follow closely the same fluctuations in response to geophysical events until 03 UT, when the EISCAT solution is driven away from the FPI measurement by a sharp increase in both neutral and ion temperatures. Between 03 and 05 UT the EISCAT-derived zonal wind is 200–400 m s−1 westward. Allowance for the neutral temperature rise would reduce the EISCAT values towards the very small zonal winds shown by the FPI during this period. We describe the relatively straightforward analysis required to derive the meridional wind from the radar data and the limitations inherent in the derivation of zonal wind, using the ion energy equation, due to the lack of precise knowledge of the background neutral temperature from the EISCAT data alone. For analysis of EISCAT ion drift observations at 312 km, the ground-based FPI temperature measurements do not improve the accuracy of the analysis, since the median altitude of the FPI measurement is probably in the range 180–240 km throughout the observation period. This median altitude and the temperature gradient both fluctuate in response to local geomagnetic events, while the temperature gradient may be considerably greater than that predicted by standard atmospheric models. When the neutral temperature is well known, or when there is a large enhancement of the ion temperature, the EISCAT-derived zonal wind exceeds the FPI measurement, but the consistency with which they correlate and follow ion-drag accelerations suggests that the differences are purely due to the considerable altitude gradients which are predicted by theoretical models.  相似文献   

16.
A new quartic dispersion equation in the square of the complex vertical wave number is derived by employing the ‘shallow atmosphere’ approximation and an ion drag approximation. These approximations allow the coefficients of the quartic equation to be given in terms of the corresponding cubic equation, which neglects the Coriolis force and the zonal ion drag component, but modified to take into account these neglected effects. Coupling between the extraordinary viscosity wave mode and the other three wave modes is highlighted and numerical solutions are compared for this quartic equation, an exact eighth order equation and the cubic equation. For the first time the validity of using the ‘shallow atmosphere’ approximation to describe internal gravity wave motions is demonstrated.  相似文献   

17.
In a zonally-averaged dynamic model the steady state circulation of the middle atmosphere between 10 and 110 km altitude has been calculated for solstice. To investigate the combined effect of turbulent heat conduction and dissipation of eddy kinetic energy on the mean circulation, the dissipative heating has been parameterized in terms of the buoyancy term modified by a residual Richardson number. It is shown that turbulence will result in net heating of the mesopause region to be consistent with a zero mass flux through a pressure surface. It is also demonstrated that the combined effect of turbulent heat conduction and dissipation can modify the mean circulation remarkably if the Richardson number is made latitude-dependent.  相似文献   

18.
The vertical structure of AGW (atmospheric gravity wave) associated fluctuations of ionospheric plasma parameters for the 100–240 km altitude range in the daytime of 7 September 1988 has been investigated by making use of the data provided by the Tromsø measurements in the EISCAT CP1 observation mode.The wave power profile vs height has been studied by integrating the power spectral density in each altitude. The essential feature of the power variation can be explained in terms of the energy conservation of AGWs propagating in a dissipative thermosphere. Intrinsic propagation parameters of the dominant AGW have been successfully estimated with a method based on the retrieval of the Doppler effect due to the horizontal prevailing wind. From the fluctuation structure analysis in a time-altitude frame, a downcoming AGW has been clearly identified. This downcoming wave might have been reflected from a wind shear at the altitude around 200 km, which is inferred from the meridional prevailing wind profile.  相似文献   

19.
Vertical fluxes of momentum and energy through the middle atmosphere are calculated by using a simple semi-empirical model of quasi-monochromatic internal gravity waves with dominant vertical wavenumbers. In this model those dominant gravity waves are assumed to saturate and break at each observational altitude by an effective critical-layer mechanism. The dominant value of the vertical wave-number is expressed by an exponential function of altitude, decreasing upward with a scale height of 34 km. This expression gives the momentum and energy flux densities decreasing upward with scale heights of 12 and 18 km, respectively, and typical values at 100 km altitude are estimated as 4 × 10−5 Pa and 4 × 10−3 W/m2. A heat flux induced by wavebreaking turbulence also has an order of magnitude similar to that of the wave energy flux. Variabilities around these values and comparisons with other momentum and heat inputs to the upper atmosphere are only briefly discussed.  相似文献   

20.
A discussion is given of gravity wave saturation and its relation to eddy diffusion in the middle atmosphere. Attention is focused on the saturation process and some of its observable manifestations. It does not serve as a review of all related work. Although a theoretical point of view is taken, the emphasis is on which wave parameters need be measured to predict quantitatively the influence of gravity waves on eddy transport. The following considerations are stressed: the variation of spectra with observation time T; that eddy diffusivities are determined by velocity spectra; the anisotropic nature of diffusivity; a unified approach to saturation; an attempt to make eddy diffusivity more precise; the relationship between eddy diffusivity and wave dissipation.The subjects of ‘wave drag’ (momentum flux deposition) and heat flux need only be treated briefly, because they are related to eddy diffusivity in simple ways. Consideration is also given to two different theoretical mechanisms of wave saturation—wave induced convective instability and strong nonlinear wave interactions. The saturation theory is then used to predict a globally averaged height profile of vertical diffusivity in the middle atmosphere. This calculation shows that gravity waves are a major contributor to eddy diffusion from heights of 40–110 km, and that they are significant down to 20 km. A more detailed calculation of wave induced eddy diffusion, including latitudinal and seasonal variations, can be made if wave velocity spectra become available. The paper closes with recommendations for future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号