首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A simple model of the equatorial electrojet is used to try to reproduce observed current density profiles and it is found that an increase in neutral density is required. The effects of neutral density changes of various kinds are investigated. Changes in the electron density profile due to the j × B force are found to be fairly small and, in the cases studied here, are decreases at all heights.  相似文献   

2.
The observed polarisation of the horizontal magnetic components of whistler mode signals received at Halley, Antarctica (L≈ 4.3), is in many cases that expected from a simple model of the transionospheric and sub-ionospheric propagation in the southern hemisphere; i.e. right-hand elliptical (field vectors rotate clockwise, looking towards the source) for ionospheric exit points close to the receiver, tending towards linear for more distant exit points. This suggests it may be possible to use the observed polarisation to estimate the propagation distance. However, in other cases, in certain frequency ranges, left-hand elliptically polarised signals have been observed. More realistic models do predict polarisation reversals at certain frequencies and exit point to receiver distances, but not over such a wide frequency range as has sometimes been observed. Also, in some cases, signals with nearly right-hand circular polarisation have been observed for exit points at large distances where linear polarisation would be expected.  相似文献   

3.
Fractional whistlers, whistlers, and proton whistlers are automatically identified and characterized by means of a neural network. A feed-forward neural network with Time Delay Neural Network (TDNN) architecture is used. It has the ability to represent structures in frequency time diagrams; a set of 50 spectrogram elements (5 Fourier components × 10 time intervals) serves as input to the network. Applications to date have used ELF data recorded on board the low-altitude AUREOL-3 satellite. A first neural network was designed to identify and characterize fractional whistlers and whistlers. A set of 997 vector data is used for the training phase and 1088 other vector data are used for evaluating performance. It is observed that fractional whistlers and whistlers can be distinguished from noise with an accuracy of 90%. A second neural network, with the same architecture, was used for studying proton whistlers. Although the training database contains less examples, the accuracy of the classification is 89%. Neural networks of this type could be used in satellites for real-time classification and characterization of electron and proton whistlers.  相似文献   

4.
Satellite and ground-based VLF recordings were made at SANAE, Antarctica from 1976 to 1979. In this paper we combine ground and satellite observations to determine temperatures in the plasmasphere. Scale heights in the plasmasphere are determined at high altitudes using a diffusive equilibrium model and measurements of equatorial electron densities and densities at about 3000 km. The temperatures corresponding to these scale heights show a gradual increase with increasing L-value and sharp increases of about 2000 K just inside the plasmapause.  相似文献   

5.
DC electric field and ion density measurements near density depletion regions (that is, equatorial plasma bubbles) are used to estimate the vertical neutral wind speed. The measured zonal electric field in a series of density depletions crossed by the San Marco D satellite at 01.47-01.52 UT on 25 October 1988, can be explained if a downward neutral wind of 15–30 m s−1 exists. Simultaneously, the F-region plasma was moving downward at a speed of 30–50 m s−1 These events appear in the local time sector of 23.002̄23.15 in which strong downward neutral winds may occur. Indeed, airglow measurements suggest that downward neutral velocities of 25–50 m s−1 are possible at times near midnight in the equatorial F-region.  相似文献   

6.
A theoretical model is described which predicts electron temperature in the day-time F-region above EISCAT on geomagnetically quiet days, given the observed values of electron concentration, ion temperature and heat conduction, the daily average of solar radiation at 10.7cm and the MSIS-86 model of the neutral atmosphere. The values predicted by the model agree very closely with the observed temperatures, both for average conditions and for individual days. On two occasions the onset of a geomagnetic disturbance after a period of quiet conditions was accompanied by a growing divergence between the predicted and observed values, which corresponds to an additional source of electron heating such as would be provided by low energy particle precipitation.  相似文献   

7.
The observed discrepancies between A1 absorption meaurements and numerical estimation of the same using IRI electron density profiles are attributed to the assumption made in the Sen-Wyleer generalized magneto-ionic theory that the momentum transfer collision frequency of electrons with neutrals is proportional to the square of the electron thermal speed. Based on Budden's (1985) suggestion that, in the lower thermosphere and mesosphere, the momentum transfer collision frequency is proportional to the electron thermal speed, a generalized magneto-ionic theory has been outlined. The new theory brings experimental measurements of A1 absorption closer to the theoretical deductions based on IRI-90 electron density profiles.  相似文献   

8.
A realistic model for the temperature variation along geomagnetic field lines is described. For high altitudes (>1500 km) the temperature is taken to increase as the nth power of radial distance (n−2), giving temperatures consistent with those measured in situ by high altitude satellites. For realistic temperatures at low altitude an extra term is included. The temperature gradient along the field line is then 0.9–1.6° km−1 during the day and 0.5–0.7° km−1 during the night at 1000 km, reducing to about half these values at 2000 km, for the latitude range 35–50°. This is consistent with calculations made from nearly simultaneous satellite measurements at 1000 and 2500 km. It is shown that assuming diffusive equilibrium, including the new temperature model, more realistic equatorial electron density profiles result than for isothermal field lines.The temperature gradient model is also purposely formulated to be of a form that enables the temperature modified geopotential height to be obtained without numerical integration. This renders the model particularly suitable for ray-tracing calculations. A ray-tracing model is developed and it is shown that unducted ray paths are significantly altered from the corresponding paths in an equivalent isothermal model; there is greater refraction and magnetospheric reflection takes place at lower altitudes. For summer day conditions, an inter-hemispheric unducted ray path becomes possible from 26° latitude that can reach the ground at the conjugate.  相似文献   

9.
Existing evidence for the ionospheric dynamo being the source of quiet time electric fields in the plasmasphere is reviewed. Part of a 24 h set of whistler data recorded continuously at Sanae, Antarctica (L = 4), during quiet magnetic (average Kp = 1) is analysed to obtain westward electric fields in the equatorial plane. These electric fields are examined as a function of L-value in order to infer their source. It is found that for periods of outward flow of plasma during the noon-midnight local time period, the electric fields are consistent with the dominant source being the ionospheric dynamo. There is some evidence that during the evening period of inward flow the electric fields are magnetospheric in origin, although this could also be consistent with a refined dynamo model. The observed whistler duct convection patterns do not fit either of two theoretical models, which invoke a magnetospheric field but not a dynamo field.  相似文献   

10.
This paper presents a first attempt to use oblique incidence ionograms over the 4500 km path from Sanae, Antarctica, to Grahamstown, South Africa, to deduce information about the ionosphere in the intervening regions. It is shown that existing methods for the reduction of oblique incidence ionograms to N(h) profiles give reasonable results even over the two-hop path involved. By comparison with vertical incidence ionograms made from a research ship below the reflection regions it is shown that the maximum observed frequency is normally limited by conditions at the southernmost reflection point, though this may be modified by ionospheric tilts, sunrise and sunset.  相似文献   

11.
Special types of VLF signals, which follow whistlers and spherics and have an anomalous dispersion near the lower hybrid resonance (LHR) frequency, have been observed on the low-altitude Intercosmos satellites. These signals have been named LHR whistlers and LHR spherics, respectively. A mechanism is suggested for the formation of their spectra, based on the peculiarities of quasi-resonance wave propagation at frequencies near the LHR frequencies. It is shown that the large dispersion observed may be accounted for by a significant increase in the propagation time of the wave as its frequency approaches the maximum in the LHR frequency profile.  相似文献   

12.
Using satellite radio beacon transmissions, travelling ionospheric disturbances have been observed in the electron content at L = 4. Waves are a common feature at this latitude, present for at least 98% of all daylight hours. The amplitude is usually 1–4% of the mean electron content and periods range between 15 and 90 minutes. Simultaneous observation of two satellite beacons, giving an effective east-west separation of 350 km, indicated apparent east-to-west velocities of 200–700 m/s.A search was made for a likely source of the waves, using data from magnetometers and riometers, from incoherent scatter radar measurements of Joule heating, and from orbiting satellite measurements of electron influx, but no definite source could be established.It is also shown that travelling disturbances are closely related to occurrences of spread-F on ionograms at high latitudes.  相似文献   

13.
14.
A modelling study has been carried out of field-aligned ion flows in the topside ionospheres of conjugate hemispheres under solstice conditions at mid to low latitudes. In the model calculations coupled time-dependent O+, H+ and electron continuity, momentum and heat balance equations are solved along dipole magnetic field lines at L = 1.5 and 3.0 Sunspot medium and sunspot minimum atmospheric conditions are considered.It has been found that thermal coupling between conjugate hemispheres gives rise to strong flows of O+ in the topside ionosphere of the summer hemisphere that are directed upwards at conjugate sunrise and directed downwards at conjugate sunset. At conjugate sunrise in the winter hemisphere there is a small upward-directed signature in the O+ field-aligned flux; there is no observable signature in the O+ field-aligned flux in the winter hemisphere at conjugate sunset. There are strong upward and downward flows of O+ at local sunrise and local sunset, respectively, in both the summer and winter hemispheres.At both L = 1.5 and 3.0 the 24 h time-integrated interhemispheric H+ flux is in the direction summer hemisphere to winter hemisphere. At L = 1.5 its magnitude is in good agreement with the magnitude of the 24 h time-integrated plasma (O+ + H+) field-aligned flux at 1000 km altitude; there are no such agreements at L = 3.0.A study of the roles played by the individual terms of the O+ momentum equation has demonstrated the complex structure of momentum balance. Certain of the terms may be orders of magnitude greater than the combined total of the individual terms, i.e. the O+ field-aligned flux.  相似文献   

15.
Accurate measurement of the electron density profile and its variations is crucial to further progress in understanding the physics of the disturbed equatorial ionosphere. To accomplish this, a plasma frequency probe was included in the payload complement of two rockets flown during the CONDOR rocket campaign conducted from Peru in March 1983. In this paper we present density profiles of the disturbed equatorial ionosphere from a night-time flight in which spread-F conditions were present and from a day-time flight during strong electrojet conditions. Results from both flights are in excellent agreement with simultaneous radar data in that the regions of highly disturbed plasma coincide with the radar signatures. The spread-F rocket penetrated a topside depletion during both the upleg and downleg. The electrojet measurements showed a profile peaking at 1.3 × 105cm−3 at 106 km, with large scale fluctuations having amplitudes of roughly 10 % seen only on the upward gradient in electron density. This is in agreement with plasma instability theory. We further show that simultaneous measurements by fixed-bias Langmuir probes, when normalized at a single point to the altitude profile of electron density, are inadequate to correctly parameterize the observed enhancements and depletions.  相似文献   

16.
The results of numerical modelling of powerful HF radio wave propagation through the ionosphere plasma are presented. Comparison of the heating wave parameters with those of a low powerwave gives the possibility to study the self-action of the powerful HF wave. At low altitudes the ‘translucence’ of the ionosphere plasma takes place. At high altitudes the wave absorption sharply increases. Both self-action effects lead to the reduction of the altitude range of the heated region. The dependence of self-action effects and the resulting electron temperature profiles on the initial electron density profiles are studied.  相似文献   

17.
Two Centaure rockets were launched from Thumba (0 47′S dip). India, with a new arrangement of double probe sensors for the simultaneous measurements of the irregularities in the electron density and the electric field along and perpendicular to the spin axis of the rocket. These experiments were carried out during the period when type I irregularities were observed with the VHF backscatter radar at Thumba. Irregularities with scale sizes ranging from a few meters to a few kilometers in the electron density and in the electric field components both in the east-west and the vertical direction could be studied with these experiments. Irregularities in the electric field in the medium scale size range (30–300 m) were observed with peak to peak amplitudes up to 20 mV m−1 and in the small scale (⩽ 15 m) with peak to peak amplitudes up to 5 mV m−1. Horizontally propagating waves with horizontal scale sizes up to 2.5 km were observed in the region below 105.5 km. Using linear theory for the electrojet irregularities, it was found that for 5 % perturbations in the electron density, the amplitude of the electric field can be as large as 20–30 mV m−1. The spectrum of the irregularities in the vertical electric field in the rocket frame of reference was calculated and it was found that for the range of scale sizes between 10 and 70 m, the mean spectral index was −2.7 and −2.6. while in the scale size range 2–10 m it was −4.0 and −5.1 for the flights C-77 and C-73, respectively.  相似文献   

18.
Diffusion equations for O+ and H+ ions for ionosphere-plasmasphere interaction are derived from the transport equations formulated by Schunk. Low speed geomagnetic field aligned flow was assumed and the interaction between different kinds of ions, between ions and electrons and between ions and neutrals taken into account. The appropriate terms of the equations have been derived and the transport coefficients calculated using parameters typical for the mid-latitude ionosphere and the ionospheric main trough. It is found that interaction of ions with neutral particles influences to some extent the ion thermal diffusion. Diffusion equations retaining only terms not smaller than one-tenth of the largest are given in the paper.  相似文献   

19.
When geomagnetic activity is moderate, the geosynchronous orbit crosses the plasmasphere bulge region in which the variations of plasma density from day to day can therefore be detected by geosynchronous satellites. The plasma density was measured by the Relaxation Sounder onboard ESA's GEOS-2 satellite. Variations of plasma density reflect the combined effects of refilling of particles from the ionosphere and loss of plasma by convection. The saturation level of the electron density at the geo-synchronous orbit and the refilling rate under different conditions of geomagnetic activity have been obtained and are found to be 70.5 cm−3 and 7–25 cm−3 day−1, respectively. In this paper the refilling morphology and the relationship between the refilling process and magnetic activity (Dst index) are analysed. The refilling rate or refilling time constant inferred from the data, either directly on fairly well-defined refilling events, or indirectly through a simple model, are found to compare reasonably well with the refilling time constant expected by theory. The observed correlation of refilling rate with Dst index is interpreted as resulting from the modification of the composition of the topside ionosphere occurring after intense storms.  相似文献   

20.
Small scale sub-auroral F-region irregularities were observed on 6–7 February 1984 by the two HF radars of the EDIA experiment while the EISCAT UHF system was scanning the ionosphere between 57° and 66° invariant latitude at a slightly different longitude. The bistatic EDIA system was mainly designed to detect the F-region irregularities at sub-auroral latitudes and to measure their perpendicular velocities. This paper is devoted to an examination of the morphology of the irregularity regions detected by the HF radars and of their production mechanisms, by comparison with the horizontal and vertical electron density profiles measured by EISCAT. It is shown that decametric irregularities observed at about 360–430 km height are not associated with any large scale horizontal density gradients in the F-region (350km). However, a strong north-south gradient observed at lower altitudes (150–200km), which is likely to indicate the southern boundary of the high energy particle precipitation zone, is well correlated with the strong scattering regions observed by the HF radars. The EISCAT electron temperature measurements at 350km height also show horizontal gradients which are well correlated with the small scale F-region irregularities. We discuss implications of these observations on the mechanisms of production of irregularities in the sub-auroral F-region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号