首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
During early spring, 1985, the MAE-3 (Middle Atmospheric Electrodynamics) Program was conducted at Poker Flat Research Range, Alaska to study the origin of wintertime mesospheric echoes observed with the Poker Flat MST radar there, by probing the mesosphere with in situ rocket measurements when such echoes occurred. Pre-launch criteria required the appearance of echoes exhibiting some wave structure on the MST radar display; these could be met even under weak precipitation conditions with riometer absorption near or above 1.0 dB. Two morning rockets were launched under such conditions, the first (31.048) on 29 March 1985, at 1703 UT and the second (31.047) on 1 April 1985, at 1657 UT. Both payloads were deployed on a high altitude parachute near a 95 km apogee to provide a stable platform for data acquisition within the mesosphere (below 80 km). Each payload carried a solid state detector to measure energetic electrons between 0.1 and 1.0 MeV and an NaI crystal detector to measure x-rays from >5 to >80 keV. Payload 31.048 also carried a positive ion ‘turbulence’ probe which measured ion density changes (ΔNi/Ni) during payload descent, whereas 31.047 carried a nose tip ‘turbulence’ probe designed to measure electron density changes (ΔNe/Ne) during upleg ram conditions plus a Gerdien condenser for the measurement of bulk ion properties during downleg. The energy deposition curves for each event exhibited peak deposition rates between 75 and 80 km with a half width of 16–18 km, almost exclusively induced by precipitating relativistic electrons. They also showed a maximum bottomside gradient between 65 and 75 km. Radar echoes and atmospheric turbulence were observed in the same altitude domain, consistent with the anticipated need for adequate free thermal electron gradients to make such phenomena visible on the radar. The vertical wave structure from radar echoes was found to be consistent with that observed in horizontal wind and temperature profiles measured by Datasondes flown shortly after each large rocket. An analysis of the wave structure from radar data has shown that although large scale waves (λz ~ 7 km) were found to be present, a higher frequency shorter wavelength (∼ 1–3 km) component probably played a more significant role in modulating the signal-to-noise structure of the radar echoes.  相似文献   

2.
We report about a quantitative comparison of rocket observations of electron density fluctuations and simultaneous 53.5 MHz radar measurements that were obtained during the MAC/SINE campaign in northern Norway in summer 1987. Out of three rockets launched during the Tur-bulence/Gravity Wave salvo on 14 July 1987, two were flown during conditions that allowed a detailed investigation. For a large part of the data from these rocket flights it is found that the radar reflectivity is about 10 dB, enhanced over what would be expected from the rocket observations in the case of isotropic electron density fluctuations. The observations can be reconciled under the assumption of an anisotropic turbulence. Assuming a simple model spectrum for the electron density fluctuations, we derive a relation between the rocket and radar observations that covers the whole range from isotropic turbulent scatter to Fresnel scatter at horizontal density stratifications. For the observed dataset, an anisotropy which typically corresponds to a ratio of the horizontal to the vertical coherence length of about 10 is consistent with the comparison of rocket and radar observations. A similar anisotropy is found also from the observed aspect sensitivity of the radar echoes. The variation of the anisotropy with height and time shows an anticorrelation with the turbulence level of the mesosphere as deduced from the spectral width of the radar echoes. The anisotropy is found to maximize in heights where the electron density displays deep ‘bite-outs’. These depletions in the electron density were independently observed by a Langmuir and an admittance probe on board two of the rockets.  相似文献   

3.
Simultaneous observations of polar mesospheric summer echoes (PMSE) have been made with two different frequency radars during the launch of a sounding rocket designed to measure the fluctuations in the electron density in the same height range. The cross-section for radar backscatter deduced from the rocket probe data under the assumption of isotropic turbulence is in reasonable agreement with the measured signals at both 53.5 MHz with the mobile SOUSY radar and 224 MHz with the EISCAT VHF radar, which correspond to backscatter wavelengths of about 3 and 0.75 m, respectively. Some controversy exists over the relative roles of turbulent scatter vs specular reflections in PMSE. A number of characteristics of the data obtained in this experiment are consistent with nearly isotropic, intense meter-scale turbulence on this particular day. Since equally compelling arguments for the importance of an anisotropic-type mechanism have been presented by other experimenters studying PMSE, we conclude that both isotropic and anisotropic mechanisms must operate. We have found the inner scale for the electron fluctuation spectrum, which corresponds to the diffusive subrange for that fluid, and have compared it to the inner scale for the neutral gas. The latter was found from the Kolmogorov microscale, which in turn depends on the energy dissipation rate in the gas. We found the dissipation rate from the spectral width of the 53.5 MHz backscatter signal and from the rocket electron density fluctuation data. The diffusive subrange was found to occur at a wavelength a factor of about 10 times smaller than the viscous subrange. This corresponds to a Schmidt number of about 100. High Schmidt numbers have been reported in recent measurements of the diffusion coefficient of the electrons in this height range made with the EISCAT incoherent scatter radar. About 15 min after the rocket flight an extremely high radar reflectivity was found with the SOUSY system. We have been able to reproduce this high level theoretically by scaling the rocket data with an increase in the neutral turbulence energy dissipation rate by a factor of 14 as deduced from the SOUSY spectral width, an increase in the electron density which is consistent with riometer data, and a 33% decrease in the electron density gradient scale length which is hypothesized. We also estimate the radar reflectivity at 933 MHz and conclude that signals in excess of thermal scatter levels would have occurred at the peak of the event studied, provided that the electron fluctuation spectrum decreases as k−7 in the viscous subrange. If the spectrum has an exponential form, however, a turbulent source cannot explain the enhanced 933 MHz echoes reported by EISCAT.  相似文献   

4.
Long series of laser sounding of the sodium layer have been performed at Heyss Island (80.4°N) during the polar winters of 1977–1978 and 1978–1979. The measurements show large and rapid variations of the sodium total content (a factor of 2, about 1000s). Those variations and the correlated modification of the sodium layer could be interpreted as the response of the layer to internal gravity waves.  相似文献   

5.
First VHF radar measurements with height resolution of 300 m and angular resolution of 1.7° were carried out in low latitudes at the Arecibo Observatory, Puerto Rico. A short outline is given of the experimental set-up which consisted of a 160W average power radar-transceiver and a self-contained digital radar control and data acquisition unit. The new VHF feed system of the Arecibo dish is described shortly. Reliable radar echoes were detected from the troposphere, lower stratosphere and from some heights in the mesosphere, indicating that the described VHF radar is capable of proper investigations of dynamical processes in the low latitude middle atmosphere. The angular dependence of aspect sensitive tropospheric and stratospheric turbulence structures was measured to be 1.5–2.5 dB degree−1. Echoes from the mesosphere indicate a patchy structure of turbulence. The analysis of the signal-to-noise ratio shows considerably high reflectivity in the upper troposphere, which can be caused by high-reaching tropical cumulus convection. Wind profiles measured with the VHF radar between 7.5 and 19.5 km with a height resolution of 300m are very similar to radiosonde wind profiles. Mesospheric VHF radar winds are roughly consistent in amplitude with tidal winds.  相似文献   

6.
7.
In the high latitude wintertime mesosphere VHF radar measurements usually reveal several turbulence layers at heights between 65 and 85 km which are closely related to strong vertical wind shear. The turbulence layers are superposed by turbulence bursts, which often form sequences with periods similar to those of simultaneously observed velocity oscillations. The horizontal propagation velocity of the resulting turbulence structures can be obtained by cross-correlating the signal power time series measured at three antenna beam positions. A statistical study using a total of 71 events shows that there is a significant correlation between the propagation velocity of turbulence structures and the mean wind, being consistent with the assumption that turbulence is advected by large scale motions. It is suggested that the observed turbulence bursts are due to secondary static instabilities, which for their part are generated by primary Kelvin-Helmholtz instabilities in regions of strong wind shear.  相似文献   

8.
A coordinated experiment involving scintillation observations using NNSS satellites and special program measurements with the EISCAT ionospheric radar facility is described. The results reveal the presence of sub-kilometre scale irregularities in the vicinity of a long lived steep equatorwards gradient in electron density. Evidence is presented of a southwards plasma flow which would cause the gradient to be unstable to the E Λ B gradient-drift mechanism. An instability growth time of about 4 min has been estimated from the observations. Cooler electron temperatures associated with enhanced densities rules out soft particle precipitation as an irregularity source in this case.  相似文献   

9.
A large set of temperature profiles has been obtained in the upper stratosphere and the mesosphere over Europe during the MAP/WINE compaign by the use of different techniques: datasondes and falling spheres launched by metrockets, ground-based OH spectrometers and a Rayleigh lidar. These data have been used to study the large scale variability of the middle atmosphere during the winter 1983–1984. The temperature variations with periods longer than 25 days are clearly related to the succession of minor upper stratospheric warmings observed during this winter. The variations in the period range 10–20 days are at least partially due to westward propagating Rossby waves, of which one mode, with a 12.5 days period, is tentatively identified as the second symmetric mode of the wave number 2.  相似文献   

10.
A second series of long term mesospheric and lower thermospheric wind observations was conducted at Arecibo (18.4°N, 66.8°W) between 6 and 20 March 1981 using the UHF Doppler radar, following the first observations in August 1980 (Hirota et al., 1983). Zonal and meridional wind velocities were measured during the morning (8–10 LT) and afternoon (13–15 LT) periods. The mean wind profile averaged over the entire observational period shows the predominance of the diurnal tide. The fluctuating wind vector rotates clockwise relative to height with a characteristic vertical scale of about 10 km. The phase difference inferred by a cross correlation analysis between morning and afternoon profiles indicates that the dominant period is about 20–30 h. This oscillation is discussed in relation to internal inertia-gravity waves observed by the same radar in the lower stratosphere. On the other hand, wind fluctuation with a vertical scale larger than 20 km shows a substantial day-to-day variation with a period of 5–8 days. This long period oscillation shows a good correlation with the global scale geopotential height anomalies at 1 mb (46–48 km) observed by the Tiros-N satellite at 20°N. Our evidence suggests that westward travelling planetary-scale waves with zonal wavenumber one may propagate up to the lower thermosphere.  相似文献   

11.
Observations with the Poker Flat, Alaska, MST radar during and after solar proton events in 1982 and 1984 suggest that winds in the altitude range of ~ 80–90 km were altered as a consequence of the influx of energetic charged particles and large electric fields at high latitudes. The atmospheric changes accompanying these events appear to result in a reduction of the semidiurnal tide and an enhancement in the diurnal tide. It is suggested that these changes could result from the alteration of the local tidal heating distribution produced by the particle precipitation, either through changes in the local ozone distribution or as a result of mesospheric Joule heating.  相似文献   

12.
The MAP/WINE campaign has yielded information on small scale structure and turbulence in the winter mesosphere and lower thermosphere by a number of very different remote and in situ techniques. We have assimilated the data from the various sources and thus attempted to present a coherent picture of the small scale dynamics of the atmosphere between 60 and 100 km. We review physical mechanisms which could be responsible for the observed effects, such as ion density fluctuations, radar echoes and wind corners. Evidence has been found for the existence of dynamic structures extending over distances of the order of 100 km; these may be turbulent or non-turbulent. The results indicate that gravity wave saturation is a plausible mechanism for the creation of turbulence and that laminar flows, sharply defined in height and widespread horizontally, may exist.  相似文献   

13.
The possible generation and suppression of ion-cyclotron waves in a collisional plasma by external high power electromagnetic (EM) waves with frequency close to the local upper-hybrid frequency is considered. It is shown that the ion cyclotron instability can be destabilized (stabilized) for ω0UH0 > ωUH), where ω0 is the pump frequency of the EM wave. The results are applied to naturally occurring ion-cyclotron instabilities in the high latitude ionosphere.  相似文献   

14.
The spectra of high frequency waves backscattered at night by small scale (10–20 m) sub-auroral F-region irregularities often exhibit large Doppler shifts and widths in the local time sector 2000–2400. After local midnight the Doppler shifts and the widths of the spectra decrease rapidly. We present examples of experimental data, obtained with the two coherent backscatter radars of the EDIA1 experiment, showing the spectral characteristics just mentioned. From the Doppler shift measured at the two sites we deduced the perpendicular velocity of the irregularities, which can reach values as high as 2000 ms −1. These observations are interpreted using results of theoretical models which predict strong sub-auroral ion flow in the trough region.  相似文献   

15.
Ionospheric electric field values are presented, obtained simultaneously by the double probe technique on board a rocket and by two incoherent backscatter radar installations. The measurements were performed during auroral activity over northern Scandinavia. The spatial distribution of the field reveals pronounced local variations.  相似文献   

16.
The behavior of the F2-peak height difference ΔhmF2, between low latitude magnetic conjugate points, is known to be governed by thermospheric winds blowing along the magnetic meridian. Ground based ionosonde measurements of hmF2, at two pairs of magnetic conjugate stations, have been analysed in conjunction with the results of a realistic dynamic computer model of the tropical ionospheric F-region, to determine thermospheric wind velocities. The behavior of monthly average values of the sum, at conjugate points, of the thermospheric horizontal wind velocity component in the magnetic meridian, at low latitudes, has been inferred for months of solstice and equinox, as well as for periods of low and high solar activity.  相似文献   

17.
In studies of the high latitude thermospheric movements caused by electromagnetic fields, the driving source in the magnetosphere is usually treated as a voltage source. There may be situations where the driving source can be treated as a current source. The transient behaviours of the thermospheric movement due to the two sources are quite different. We illustrate this.  相似文献   

18.
A survey is presented of recent developments in the observation of wind and turbulence in the stratosphere and mesosphere using MST radars. One of the highlights of these developments is the growing recognition that the MST/ST radar is a valuable tool for routine monitoring of the atmospheric wind field. Furthermore, preliminary observations have shown the feasibility of monitoring atmospheric turbulence as well. Recent observations of mesospheric turbulence support theoretical models that emphasize the role of propagating waves in coupling the lower and middle atmospheres. Scientific groups in several countries are now planning or constructing MST radars so that within a few years observations should be available from diverse geographical locations spanning the globe.  相似文献   

19.
The seasonal variation of the semi-diurnal tide is well established in the upper mesosphere from meteor radar observations, such as those made at Garchy (France). A classical propagation model, using a realistic excitation source from ozone and water vapour solar heating, can account for most of the seasonal variation characteristics, and in particular the strong difference between summer and winter features.  相似文献   

20.
On 17 December 1990 a series magnetic impulsive events (MIEs) were observed at high latitudes near local noon. EISCAT, situated some 5 hours of MLT away from the noon sector, detected simultaneous impulsive electron density enhancements at heights between 90 and 120 km. The MIEs at noon were also associated with riometer absorption spikes. The correlated EISCAT and riometer observations indicate that there was an elongated electron precipitation region some 3000 km wide stretching from local noon to morning. In close association with the impulsive electron precipitation, VLF emissions were observed by groundbased stations in the morning side. We interpret the large scale electron precipitation and VLF emissions as signatures of a global compression of the Earth's magnetosphere. This is confirmed by the specific type of magnetic variations simultaneously recorded at the worldwide network of magnetometers. We conclude that the small scale MIEs with their drifting ionospheric current vortex structures can (but do not necessarily have to) occur in conjunction with large scale SIs. Moreover, MIEs and SIs have a common origin: the interaction of solar wind inhomogeneities with the Earth's magnetosphere. They do, however, represent different effects of the same primary agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号