首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Radar wind measurements made at Adelaide (35°S, 138°E) and Kyoto (35°N, 136°E) are used to construct climatologies of solar tidal wind motions in the 80–185 km region. The climatologies, in the form of contour plots of amplitude and phase of the diurnal (24 h) and semidiurnal (12 h) tides, show that there are significant asymmetries between Adelaide and Kyoto. The amplitude of the diurnal tide is significantly larger at Adelaide than at Kyoto. At both stations the phase changes in a systematic way with lime such that the phases of the zonal wind components tend to be in anti-phase at the solstices. At Adelaide, there is more evidence of the propagating (1,1) diurnal mode. At both stations, the semidiurnal tide is strongest and has the longest vertical wavelengths (>100 km) in late summer; short vertical wavelength (~ 50–80 km) oscillations are most in evidence in winter. In order to place the Adelaide and Kyoto observations in context they are compared with observations made at other latitudes and with recent numerical simulations. There is encouraging agreement between the observations and models, especially for the semidiurnal tide.  相似文献   

2.
Mean winds at 60–90 km altitudes observed with the MU radar (35°N, 136°E) in 1985–1989 are presented in this paper. The zonal wind at 70 km became westward and eastward in summer and winter, respectively, with a maximum amplitude of 45 m s−1 westward in early July and 80 m s−1 eastward at the end of November. The meridional wind below 85 km was generally northward with the amplitudes less than 10 m s−1. In September to November, the meridional wind at 75–80 km becomes as large as 20–30 m s−1. Those zonal wind profiles below 90 km show good coincidence with the CIRA 1986 model, except for the latter half of winter, from January to March, when the observational result showed a much weaker eastward wind than the CIRA model. The height of the reversal of the summer wind from westward to eastward was determined as being 83–84 km, which is close to the CIRA 1986 model of 85 km. The difference between the previous meteor radar results at 35–40°N, which showed the reversal height below 80 km, could be due to interannual variations or the difference in wind measurement technique. In order to clarify that point, careful comparative observations would be necessary. These mean winds were compared with Adelaide MF radar observations, and showed good symmetry between the hemispheres, including the summer reversal height, except for the short period of eastward winds above Kyoto and the long period over Adelaide.  相似文献   

3.
We attempt to find the northern hemisphere zonal wavenumber for a striking quasi-2-day wave “event” or “burst” observed near 90 km altitude in the summer of 1992. A unique set of data on the upper atmosphere from nine radar sites is analysed (spacings ∼400– ∼ 12,000 km), and compared with expectations from models. The 2-day wave phase comparison, which finds zonal wavenumber m = 4, is conclusive. Determination of n, which defines the meridional wave amplitude structure, is not attempted, as the sites here have only a small latitude spread (21°N to 55°N). Also the amplitude seems to be unstable showing some sort of modulation which is not simultaneous at all sites. Finally, the radars have not been “calibrated” against each other in terms of wind speed. This calibration would have to be done before small differences in wave amplitude could be believed. A similar event in 1991 for which fewer sites are available is also discussed. Here the choice between m = 3 and 4 is not as clear.  相似文献   

4.
The spectra of long period wind oscillations in the meteor zone over Trivandrum are presented. The spectral amplitudes were found to be much larger during June 1984 when the QBO in the stratospheric zonal wind was in a strong easterly phase compared with June 1987 when the zonal winds at the altitude of maximum QBO were weak westerlies. Zonal wind amplitudes for periods of 15 and 5 days were found to be most significant during these two June months. The amplitudes of these two oscillations in meridional wind were found to be as large as the amplitudes in the zonal wind. The vertical wavelength in both zonal wind and meridional winds of the 15-day oscillation is very large whereas for the 5-day oscillation the vertical wavelengths were 80 and 65 km during June 1984 and June 1987, respectively. The results are discussed.  相似文献   

5.
We present the results of MF radar observations of mean winds and waves in the height range 78–108 km at Mawson (67°S, 63°E), Antarctica. The measurements were made in the period from 1984 to 1990. Climatologies of the prevailing zonal and meridional circulations made with a 12-day time resolution show that the mean circulation remained relatively stable over the 6 yr of observation. Climatologies of gravity-wave motions in the 1–24 h period range were also generated. These reveal that the r.m.s. amplitudes of horizontal wave motions near the mesopause (~90 km) are about 30 m s−1, and that there is some anisotropy in the motions, especially at heights below 90 km. Meridional amplitudes are larger than zonal amplitudes, which suggests a preference for wave propagation in the north-south direction. Comparisons with MST radar wind observations made near the summer solstice at Poker Flat, Alaska (65°N) and at Andøya, Norway (69°N) show similarities with the Mawson observations, but the wave amplitudes and mean motions are larger in magnitude at the northern sites. This suggests hemispheric differences in wave activity that require further study.  相似文献   

6.
Observations of the Austral quasi 2-day wave at Mawson, Antarctica (67°S, 63°E) are presented and compared with those from Adelaide (35°S, 138°E). The data were obtained from partial-reflection radars which have been measuring winds continuously since mid-1984, and the results presented here are the first to record the 2-day wave in middle atmosphere winds from Mawson. They show that 2-day period oscillations of 10–15 m s−1 are a regular feature of the high latitude southern hemisphere summer. The wide longitude and latitude separation of the radar stations permits estimates of propagation velocity and latitude phase structure, and results are consistent with the passage of a westward travelling Rossby-gravity (3, 3) wave.  相似文献   

7.
The seasonal variations in winds measured in the equatorial mesosphere and lower thermosphere are discussed, and oscillations in zonal winds in the 3–10 day period range are examined. The observations were made between January 1990 and June 1991 with a spaced-antenna MF radar located on Christmas Island (2°N, 157°W). The seasonal variations are analyzed in terms of the mean, annual, and semiannual (SAO) harmonic components. The SAO is the dominant component in the zonal winds, with the amplitude and phase characteristics being in good agreement with earlier rocketsonde measurements at Kwajalien (9°N) and Ascension Island (8°S). The annual and semiannual oscillations combine to produce a stronger change in zonal wind strength in the first half-year (January–June) than in the second half-year (July–December). An annual cycle dominates the meridional winds with maximum velocities (5–10m s−1) attained at about 90km. The meridional circulation at the solstices is consistent with a flow from the summer to the winter pole. Power spectral analyses indicate that motions in the 3–10 day period range occur mainly in the zonal winds, behavior which is interpreted as being due to eastward propagating Kelvin waves. Despite the intermittent nature there is an overall semiannual variation in Kelvin-wave activity. Maximum amplitudes are achieved at the mesopause in January/February and August/September which are times when the zonal winds are westward.  相似文献   

8.
Mean winds at 82–106 km altitude have been almost continuously monitored by the Kyoto meteor radar over the period from May 1983 to December 1985. The mean zonal wind becomes eastward with amplitudes as large as 30 m s−1 in the summer months (May–August), maximizing early in July at 95 km altitude, while it is less than 10 m s−1 at all the observed altitudes during the equinoxes. It is normally eastward in winter at low altitudes, although it sometimes becomes westward during sudden stratospheric warmings. The mean meridional wind is usually equatorward and is weaker than the zonal component. A southward wind exceeding 10 m s−1 is detected in July and August. The observed mean winds are compared with the CIRA 1972 model and coincidences with sudden warmings of changes in zonal wind direction are pointed out.  相似文献   

9.
Meteor wind measurements made at Obninsk during MAC/SINE and MAC/EPSILON, and in the summer and autumn of other years since 1973, are reported. The zonal wind, which is presumed to be in the 93–95 km height region, is generally westerly, and the meridional wind is mainly northerly. Quasi-two-day oscillations are studied, as are semidiurnal tides. There is some evidence for a 22-yr periodicity in the amplitude of the semidiurnal tide  相似文献   

10.
A second series of long term mesospheric and lower thermospheric wind observations was conducted at Arecibo (18.4°N, 66.8°W) between 6 and 20 March 1981 using the UHF Doppler radar, following the first observations in August 1980 (Hirota et al., 1983). Zonal and meridional wind velocities were measured during the morning (8–10 LT) and afternoon (13–15 LT) periods. The mean wind profile averaged over the entire observational period shows the predominance of the diurnal tide. The fluctuating wind vector rotates clockwise relative to height with a characteristic vertical scale of about 10 km. The phase difference inferred by a cross correlation analysis between morning and afternoon profiles indicates that the dominant period is about 20–30 h. This oscillation is discussed in relation to internal inertia-gravity waves observed by the same radar in the lower stratosphere. On the other hand, wind fluctuation with a vertical scale larger than 20 km shows a substantial day-to-day variation with a period of 5–8 days. This long period oscillation shows a good correlation with the global scale geopotential height anomalies at 1 mb (46–48 km) observed by the Tiros-N satellite at 20°N. Our evidence suggests that westward travelling planetary-scale waves with zonal wavenumber one may propagate up to the lower thermosphere.  相似文献   

11.
A high resolution wind observation of the mesosphere and lower thermosphere (73–95 km) was conducted with the aid of the high power UHF Doppler radar at Arecibo (18.4°N, 66.8°W). Zonal wind velocities were continuously observed during day-time hours on 1–15 August 1980. We discuss here the observed wind fluctuations with periods of 1–4 h in the light of internal gravity waves. The phase propagation associated with these fluctuations is, on average, shown to be downward, indicating an upward energy flux. A space-time spectral analysis shows that waves with vertical wavelengths shorter than 10 km disappear around the mesopause (about 85km), while those with longer vertical wavelengths exist throughout the observational height. This result is explained in terms of wave absorption at a critical layer where the mean zonal wind has a westerly shear with height. This feature is consistent with the behavior expected for internal gravity waves around the summer mesopause in order to explain general circulation models.  相似文献   

12.
Measurements of the pseudo 2-day wave have been made at many of the mesosphere-lower-thermosphere radars. Comparisons are made here between measurements taken at Saskatoon MF radar (52°N, 107°W) and two meteor radars, one at Christmas Island (2°N, 157°W) and the other at Durham (43°N, 71°W). Although results averaged for 10 days or longer agree with previous measurements (i.e. larger amplitudes and more phase stability in late summer), when the wave is analyzed over 2–4 days as a 48 h component, interesting phase properties emerge and the wave is seen over more of the year. The wave is amplitude and phase modulated, making the interpretation of results obtained over long time frames (20 days or more) difficult. There is strong evidence of solar influence on the 2-day wave.  相似文献   

13.
In the altitude range 70–100 km, high-resolution wind profiles have been measured during the summers of 1987 and 1988 at Andenes (69°N). We report on the wind corners observed in these profiles and compare their properties with those of wind corners seen in the winter of 1983–1984 and autumn 1987. Five of the main results are as follows. (1) The occurrence rates for wind corners in general are similar in summer and in winter. The database for autumn (only 7 flights) was too small to draw any firm conclusions. A strong wind corner was seen, roughly, on every third experiment, both in summer and in winter. (2) The results obtained on the temporal occurrence of wind corners suggest that wind corners seem to have no preference to appear at certain hours of the day. (3) Wind corners tend to appear at preferred heights which are higher in summer than in winter. The spacing between these preferred heights is about 5 km in summer and about 3-3.5 km in winter. (4) In strong wind corners the sense of rotation of the wind direction is positive in summer and negative in winter (with positive being defined as a rotation of the wind direction from northward towards eastward with increasing altitude). (5) At altitudes below 90km wind corners tend to occur at or close to atmospheric layers having Ri ≈ 0.25.  相似文献   

14.
The coherent pulse Meteor Automatic Radar System (MARS) based at Kharkov (49°30′N, 36°51′E) was used to measure zonal winds in the altitude range 80–105 km in the period from November 1986 to December 1990. It was found that, for the greater part of the year, the zonal prevailing wind component was in the eastward direction. The change from eastward to westward direction begins in the lower thermosphere in February–March, propagating downwards to the mesosphere, and it remains there until June–July. The structure of semidiurnal tides has general regularities at different sites. Annual variations in the monthly mean values of semidiurnal vertical wavelengths are practically the same, both in the northern and southern hemispheres. Wavelengths are more than 100 km in summer months, whereas they are less than 60 km in winter months.Studies of internal gravity wave (IGW) parameters in the height range of 80–105 km have shown that the internal gravity wave amplitude does not exceed 30 m/s, the vertical wavelength is in the range of 10–30 km, the horizontal wavelengths are 100–800 km and the horizontal phase velocities are in the range 20–160 m/s. The propagation and breaking of upward and downward IGW at heights of 80–100 km have been recorded.  相似文献   

15.
The characteristics of the quasi two-day wave, as observed in meteor wind data recorded at Grahamstown (33°19′S, 26°30′E) between April 1986 and April 1989, are described and discussed in the context of existing knowledge. As is typical, the wave amplitude has been largest during the summer months December–February with a maximum in late January, but this amplitude has differed markedly from year-to-year. The period and phase are found to be variable and, where possible, have been obtained as functions of date. January 1987 and 1989 were both characterised by clear drifts toward longer periods, with corresponding drifts in phase. At each of the summer maxima observed the period was found to be close to 48 h, with the phase of the meridional component within 3 h of local midnight. Direct comparison of local data for January 1987 with published data obtained simultaneously in Australia and Antarctica confirms the well-established westward propagation of the wave, but with an apparent zonal wavenumber somewhat smaller than the expected value of 3. It is shown that the discrepancy could arise from a combination of observational effects and a northward tilt to the wave velocity. The best result of an attempt to detect a horizontal phase gradient from local data alone is, however, more consistent with a southward tilt. There is theoretical support for both conclusions, but the matter cannot be resolved with the data presently available. It is also concluded that the background circulation at meteor heights has little influence on the wave parameters, and that indications of wave activity outside the summer season are of doubtful significance.  相似文献   

16.
The first results from a VHF radar of the ST type located at Buckland Park near Adelaide, Australia (35°S, 138°E), are presented. The radar is designed to be versatile and can be used to measure velocities in the lower atmosphere using both the spaced antenna (SA) and Doppler beam-swinging (DBS) techniques. Here studies of irregularities and motions made with the spaced antenna technique are discussed. It is shown that the scale of the diffraction pattern formed by the backscattered radiation varies with altitude, with the mean pattern scale being smaller in the troposphere than in the stratosphere. The observations are consistent with the backscattered energy decreasing as a function of off-vertical angle by 1.5 dB per degree in the troposphere and by about 2.8 dB per degree in the lower stratosphere. An intercomparison of zonal velocities measured with the SA and DBS methods shows good agreement. In May and August 1984 an extensive comparison was made between the velocities measured by the SA method and winds determined from over 80 balloon-borne radiosondes released from Adelaide Airport, situated some 36 km to the south of the radar. The velocities were compared on a statistical basis and showed excellent agreement, although the SA speeds tended to be 1–2 m s−1 smaller in magnitude than the radiosonde velocities. Overall, the rms differences between the two sets of measurements was only 3–4ms−1 throughout the troposphere, a result which is consistent with the random errors inherent in each technique, as well as the spatial separation between the radar and balloon observations. The utility of the SA method for meteorological observations is illustrated by a study of both the horizontal and vertical wind fields during the passage of a cold front made in November 1984. The high time resolution available with the radar allows detailed studies of the development of the pre-frontal jet, the wind convergence into the front and associated vertical motions.  相似文献   

17.
Wind measurements which were carried out during the MAP/WINE Campaign in northern Scandinavia between 2 December 1983 and 24 February 1984 are used to derive background winds and monthly as well as winter mean values from the ground up to 90 km altitude. These mean winds compare favourably to the wind field proposed for the revised CIRA 86, which is deduced from satellite measurements. The vertical structure of the zonal monthly means is similar in both data sets during January and February. The winter mean zonal winds are observed to be slightly stronger in the stratosphere and lower mesosphere during the MAP/WINE winter than the satellite winds proposed for CIRA 86. The long term mean meridional winds are in good agreement up to 60 km. They indicate a dominant influence of quasistationary planetary waves up to 90 km and an ageostrophic poleward flow between 60 km and 85 km over northern Scandinavia, which maximizes at 76 km at about 8 m s−1. The observed short term variability of the wind is discussed with respect to a possible impact of saturating gravity waves on the momentum budget of the middle atmosphere.  相似文献   

18.
The behaviour of the diurnal tide at 95 km over various years between 1965 and 1986 is studied using radar data from Heiss Island (81°N), Mawson (67°S), Molodezhnaya (68°S) and Scott Base (78°S). The observations are also compared with the model results of FORBES and HAGAN [(1988) Planet. Space Sci. 36, 579] for the same latitudes. There are substantial fluctuations in amplitude and phase at all stations, particularly in winter. Phase fluctuations can be as large as a uniform random distribution over the 24-h cycle. In summmer the phases of the meridional components are well defined and suggest the presence of a dominant symmetric mode. The meridional amplitudes are larger in summer whereas the zonal components have a greater variation and show no significant variation with season.  相似文献   

19.
As part of the MAP/WINE campaign (winter 1983–1984) and the MAC/SINE campaign (summer 1987) high resolution wind profiles were obtained in the upper mesosphere using the foil cloud technique. Vertical winds were derived from the fall rate of the foil clouds and are used for estimating the momentum fluxes associated with vertical wavelengths shorter than about 10 km. From the ensemble average of 15 observations over an altitude range of 74–89 km we calculate a zonal net momentum flux of +12.6 ± 4.5 m2s−2 in summer. The average of 14 measurements in winter between 73 and 85 km indicates a zonal net momentum flux of −3.7 ± 2.4 m22 s−2.  相似文献   

20.
A quantitative assessment has been made of the longitude-dependent differences and the interannual variations of the zonal wind components in the equatorial stratosphere and troposphere, from the analysis of rocket and balloon data for 1979 and 1980 for three stations near ±8.5° latitude (Ascension Island at 14.4°W, Thumba at 76.9°E and Kwajalein at 67.7°E) and two stations near 21.5° latitude (Barking Sands at 159.6°W and Balasore at 86.9°E). The longitude-dependent differences are found to be about 10–20 m s−1 (amounting to 50–200% in some cases) for the semi-annual oscillation (SAO) and the annual oscillation (AO) amplitudes, depending upon the altitude and latitude. Inter-annual variations of about 10 m s−1 also exist in both oscillations. The phase of the SAO exhibits an almost 180° shift at Kwajalein compared to that at the other two stations near 8.5°, while the phase of the AO is independent of longitude, in the stratosphere.The amplitude and phase of the quasi-biennial oscillation (QBO) are found to be almost independent of longitude in the 18–38 km range, but above 40 km height the QBO amplitude and phase have different values in different longitude sectors for the three stations near ±8.5° latitude. The mean zonal wind shows no change from 1979 to 1980, but in the troposphere at 8.5° latitude strong easterlies prevail in the Indian zone, in contrast to the westerlies at the Atlantic and Pacific stations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号