首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simultaneous measurements were made using a 2.66 MHz interferometer radar, infrared photometers, and imaging systems during the total lunar eclipse of 6 July 1982. The radar data showed that a series of six discrete scatterers passed overhead at 103 km with an average spacing of 54 min, and two passed overhead at 88 km, also 54 min apart. The 88 km events were approximately 27 min out of phase with those at 103 km. One of the 88 km events was examined in detail; the radar returns appeared to come from a single scatterer or a few clustered scatterers, with a velocity of 135 m s−1 almost due south, at 6° below the horizontal. The speed and period give a horizontal wavelength of 440 km, and the phase shift between 88 and 103 km activity suggests a 30 km vertical wavelength, in agreement with values for typical medium-scale traveling ionospheric disturbances (TIDs). Infrared images were made in the near infrared, and photometric measurements were made on and off the 8−3 band of OH. These observations, made from one site near the radar and a second site 575 km south, showed wavelike structures appearing first over the radar, then further south until they filled most of the sky. The speed of development of the infrared structure pattern in the sky is consistent with the 135 m s−1 southward wave speed observed by the radar, but the structures themselves appeared in place, then drifted slowly northward at 10 m s−1. The photographically determined wavelengths were 30–60 km, considerably shorter than the 440 km determined with the radar.  相似文献   

2.
On the evening of 13 January 1983 we made simultaneous observations of optical and radar aurora using low light television cameras together with the EISCAT radar system. At 19 h 16 m 06 s UT an extremely bright auroral arc moved rapidly (about 2 km s−1) through the EISCAT radar beam. The associated rapid rise and fall in the E-region electron density indicates that there was an intense narrow electron beam associated with the optical arc. We estimate that the ionisation rate in the E-region increased at least 20-fold (from 1 × 1010 m−3 s−1 to >2 x 1011 m−3 s−1) for 1 or 2 s as the arc passed by. In addition, there was a brief (<4 s) increase of 130% in the signal returned from 250 km altitude which coincided with the arc crossing the radar beam at that height. In view of this coincidence, we find that a possible explanation is that the increase arose from short-lived molecular ions, for example vibrationally excited N+2 ions, produced in the F-region by soft precipitation associated with the arc.  相似文献   

3.
Large-scale travelling ionospheric disturbances (1.s. TIDs) have been investigated in order to derive the horizontal velocity dispersion by using f0F2 data from four ionospheric observatories in Japan. It was found that the horizontal phase trace velocity lies between 300 and 1000ms−1 with periods in the range 50 to 150 min. There is evidence that the derived velocity generally increases with increase of wave period. This is consistent with the dispersion predicted by the theory of the internal gravity waves. The azimuthal angles are distributed in ±35° sectors centered around 197° (measured clockwise from north), indicating that 1.s. TIDs may be obtainable when they are excited along the auroral zone of the same sector in longitude as that of the observatories. The average propagation direction shifts by 17° from south towards west. This clockwise shift is consistent with the rotation caused by the Coriolis effect. This means that the Coriolis effect cannot be ignored for the wave propagation of 1.s. TIDs. In addition to the positive correlation between TID speed and geomagnetic activity, the direction of wave propagation is found to be correlated with polar magnetic activity. The propagation direction is mostly southward during the period of large polar magnetic disturbances, while during the period of low magnetic activity the direction scatters considerably.  相似文献   

4.
Standard riometer data from a southern auroral station were compared with ionograms obtained at five stations positioned from sub-auroral to equatorial latitudes. The rapid onset in riometer absorption, during intense substorm activities in an equinoctial period, was associated with a sequential propagation of ionospheric disturbances deduced from the F-region parameters h′F and range spread-F. The time shift between absorption maxima and extrapolated commencement times of the disturbances was consistent with the presence of large-scale travelling ionospheric disturbances (TIDs), propagating equatorwards with velocities lying typically in the range 600–900 m s−1, and with a median velocity of 720 m s−1. It is suggested that the onset of TIDs is associated with high-energy particle precipitation, manifested by the occurrence of auroral absorption events. Similarity of absorption increases at the southern and northern conjugate points, found from a previous riometer study, would indicate that large-scale TIDs are simultaneously generated in both hemispheres.  相似文献   

5.
Measurements with a 25 MHz radar over Iioka, Japan show that field-aligned E-region irregularities occur mainly at night in association with Es-layers at an altitude range of about 100–110 km and drift predominantly westward with speeds of the order of 60 m s−1. These observed characteristics of the irregularities are shown to be in reasonable agreement with quantitative predictions of the gradient drift instability theory. The predictions are based on appropriate models for neutral air densities and temperatures, ionic composition and ionospheric electric fields and on available observations of electron density profiles of E- and sEs-layers.  相似文献   

6.
A multifrequency HF Doppler sounder and four spaced receivers were operated near Alma-Ata to form a three-dimensional array of reflection points of HF radio waves. The spacings of reflection points ranged from 5 to 80 km in the vertical and from 30 to 65 km in the horizontal. The purpose of the experiment was to estimate the spatial coherence of travelling ionospheric disturbances (TIDs). Estimation of the coherence length (the distance at which the coherence falls to e−1) in both vertical and horizontal planes is carried out. The coherence often shows peaks at frequencies exceeding the Brunt-Väisälä frequency. Measurements of the slant coherencies have given the opportunity to study the coherence as a function of orientation.  相似文献   

7.
Travelling ionospheric disturbances with periods in the range 10 < τ < 30 min were observed by an HF Doppier network on the Antarctic Peninsula. A distinction was made between TIDs associated with geomagnetically quiet and active intervals, in the expectation that their morphology might depend on the degree of magnetic activity. During quiet times the short period TIDs have speeds less than 300 m s−1 and may be classified as Medium Scale TIDs. An anticlockwise diurnal azimuth rotation is established, with waves tending to propagate in the (modelled) antiwindward direction. Waves associated with magnetically active intervals often have high speeds and do not generally conform to the simple azimuth variation described above. These differences are explained in terms of perturbed neutral wind patterns and the existence of different wave sources during active times. These observations are presented in the context of previous morphological wave studies. The geomagnetic dependence observed in Antarctica may explain some of the conflicting or ambiguous conclusions resulting from investigations at other locations.  相似文献   

8.
The determination of the kinematic parameters of travelling ionospheric disturbances (TIDs) is an essential basis for their physical understanding and investigation of their possible excitation mechanisms. This paper describes a method to determine these parameters on the basis of combined radio interferometric observations and measurements of differential Doppler shift observed for NNSS satellites.The analysis of Dutch interferometric and differential Doppler observations, based on this method, shows that the average direction of propagation of a sample of medium scale TIDs observed during the first three months of 1982 and 1983 is towards about 10° west of south; the speeds and horizontal ‘wavelengths’ are typical for medium scale TIDs. The results are in satisfactory agreement with those of similar research performed at Nançay (France) more than 4 yr later and using a different methodology, but not with results obtained at Nançay during the same winter months as used in the present study. Differences may indicate that TID parameters vary with geographic location and time.  相似文献   

9.
Mean winds at 60–90 km altitudes observed with the MU radar (35°N, 136°E) in 1985–1989 are presented in this paper. The zonal wind at 70 km became westward and eastward in summer and winter, respectively, with a maximum amplitude of 45 m s−1 westward in early July and 80 m s−1 eastward at the end of November. The meridional wind below 85 km was generally northward with the amplitudes less than 10 m s−1. In September to November, the meridional wind at 75–80 km becomes as large as 20–30 m s−1. Those zonal wind profiles below 90 km show good coincidence with the CIRA 1986 model, except for the latter half of winter, from January to March, when the observational result showed a much weaker eastward wind than the CIRA model. The height of the reversal of the summer wind from westward to eastward was determined as being 83–84 km, which is close to the CIRA 1986 model of 85 km. The difference between the previous meteor radar results at 35–40°N, which showed the reversal height below 80 km, could be due to interannual variations or the difference in wind measurement technique. In order to clarify that point, careful comparative observations would be necessary. These mean winds were compared with Adelaide MF radar observations, and showed good symmetry between the hemispheres, including the summer reversal height, except for the short period of eastward winds above Kyoto and the long period over Adelaide.  相似文献   

10.
When transmitting on 5.8 MHz the Bribie Island HF radar array synthesizes a beam that is 2.5 wide. The beam can be steered rapidly across the sky or left to dwell in any direction to observe the fading rates of echoes within a small cone of angles. With the beam held stationary, the time scale associated with deep fading of F-region echoes is usually more than 5 min. This is consistent with the focusing and defocusing effects caused by the passage of ever-present medium-scale travelling ionospheric disturbances (TIDs). On occasion the time scale for deep fading is much shorter, of the order of tens of seconds or less, and this is thought to be due to the interference of many echoes from within the beam of the radar. It is shown that the echoes are not due to scatter from fine structure in the F-region, but rather due to the creation of multiple F-region paths with differing phase lengths by small, refracting irregularities in underlying, transparent spread sporadic-E, (Spread-Es). The natural drift of the Spread-Es causes the phase paths of the different echoes to change in different ways causing the interference.Two methods are used to investigate the rapidly fading F-region signals. Doppler sorting of the refracted F-region signal does not resolve echoes in angle of arrival suggesting that many echoes exist within a Fresnel zone [Whitehead and Monro (1975), J. atmos. terr. Phys. 37, 1427]. Statistical analysis of F-region amplitude data indicates that when the range spread in Es is severe on ionograms, then a modified Rayleigh distribution caused by the combination of 10 or so echoes is most appropriate. Using knowledge of the refracting process the scale of Es structure is deduced from these results. Both methods find a Spread-Es irregularity size of the order of 1 km or less. It is proposed that the Rayleigh type F-region signals seen by Jacobsonet al. [(1991b), J. atmos. terr. Phys. 53, 63] are F-region signals refracted by spread-Es.  相似文献   

11.
12.
The Bribie Island HF radar array (27°S, 153° E) can be set up to make angle of arrival and Doppler shift measurements throughout the range of spread-Es, layers. Results of this experiment show that the range spread seen on ionograms is not due to multiple reflection with varying obliquity, but rather a genuine height spread exists. Where velocity measurements can be reliably made, reflector velocity appears to be a slowly varying function of height. Spread-Es, can be blanketing or non-blanketing, sequential or non-sequential and at first impression it seems that the chief difference between spread-Es, and normal Es, is a small scale, partially transparent structure in lower regions that allows higher regions to be observed. It is suggested that on occasion spread-Es, irregularities are further modulated by the passage of gravity waves.  相似文献   

13.
The main object of the campaign reported here was to compare TID characteristics obtained from two essentially different observation techniques: (1) observation of the apparent angular position shifts of Virgo A by the Nançay radioheliograph (47.33°N, 2.15°E) gave azimuths and periods of travelling ionospheric disturbances (TIDs); (2) differential Doppler shifts of signals from NNSS-satellites recorded simultaneously at Tours (47.35°N, 0.70°E), Nançay and Besançon (47.32°N, 5.99°E) provided azimuths and latitudinal wavelengths. Observations were made during the period 10–30 November 1987, between 6 and 12 h UT. It is found that azimuths obtained from the two techniques are consistent if sufficient averaging over wave trains is performed: averaging over several hours for radio interferometry and averaging over the whole satellite trace for the differential Doppler technique. Averaging is necessary because of (1) the intrinsic dispersion in wave azimuth, (2) the broadness of observed wave spectra and the dispersive properties of gravity waves, and (3) the spatial separation of ionospheric points for the two techniques. Good agreement between the azimuths was achieved by setting the altitude of the TIDs, which is used in the differential Doppler analysis, to about 250 km, appreciably lower than the maximum in electron density (about 350 km). The mean azimuth of observed TIDs was 12° East from South with a standard deviation of about 30°. The dominant period and horizontal wavelength of the observed TIDs were 40 min and 450 km. The East-West coherence length of the TIDs was found to be only of the order of 200 km.  相似文献   

14.
A brief outline is given of the experimental technique used during the Cold Arctic Mesopause Project to record the first D-region ion line spectra with the EISCAT incoherent scatter radar. The data analysis shows that echoes from mesospheric heights between about 70 km and 90 km can be detected during disturbed periods of enhanced electron density during particle precipitation events. Electron density profiles were determined which show a fairly high density, up to 5 × 1010 m−3 in the upper D-region. The measured meridional winds were lower than 10 m s−1. A fit of the measured height profile of spectral width to temperature and neutral density models yielded a measured temperature profile in good agreement with simultaneous rocket data. The mesopause temperature was determined to be as low as 130 K. This detailed analysis of the spectral width profile indicates that below about 77–80 km the ratio of negative ions to electrons exceeded unity. Finally, some discussions are added on the limitations and significance of these first mesosphere observations.  相似文献   

15.
The collision frequency v in the ionosphere has often been determined by measuring differences in the amplitude and group path of two closely spaced signals reflected in the region of high group retardation. In this paper we describe a method of measuring v using a CW double-side-band modulated signal reflected obliquely in the ionosphere. This allows v to be determined on a continuous basis and it is found that the value of v obtained is 1–5 × 104 s−1 for the E-region and ~ 103 s−1 for the F-region. It is shown that measurements made just after sunset, when the E-region is still present, are more representative of E-region values than F-region.  相似文献   

16.
The nonlinear ionospheric response to atmospheric gravity waves is studied in an approximate fashion using a new approach. The concept of nonlinear travelling ionospheric disturbances (TIDs) is outlined, and the nonlinear behaviour of atmospheric gravity waves is calculated. A principal result is that harmonics are generated which cause the wave velocity perturbation to deform. The ionospheric response is investigated by solving the continuity equation for ionization in the F-region. The distortion of the TIDs waveform produced by the nonlinear interactions is depicted. The nonlinear TIDs depart seriously from a cosinusoidal wave described by previous linear TID theory. The distorted TIDs appear as ‘sharp peak’ and ‘sawtooth’ waveform shapes. The ‘peaks’ can be upward or downward, and the ‘sawteeth’ forward or backward, depending on the wave parameters. The nonlinearly distorted TIDs show a good agreement with various observed ionospheric irregularities produced by atmospheric gravity waves.  相似文献   

17.
The 2.75 MHz partial-reflection radar at Ramfjordmoen near Tromsø has been used for a study of D-region electron densities by the differential-absorption method on a number of days during 1978–79. Received signals are generally stratified in several layers, typically over 60–80 km. Strong stable echoes are seen down to 55 km during periods of enhanced riometer absorption. Inferred electron densities vary between ~ 100–1000 cm−3 at ~ 60–80 km and show well-defined features which persist for ~ 10–20 min. During periods of high absorption, enhanced electron densities (~ 600 cm−3) are observed below 65 km. During a Polar Cap Absorption event, the inferred electron densities at 60–70 km show a very stable profile. Possible sources of D-region ionization at high latitudes are briefly discussed  相似文献   

18.
The MICADO instrument has been built to measure temperature and wind in the E- and F-regions. It employs a thermally stable field-compensated Michelson interferometer to allow wind measurements. During the winter of 1988–1989, the MICADO instrument was operated at Sodankylä (67°22′N, Finland). Measurements were made by observing the O1S (low thermosphere) and the O1D lines (high thermosphere) emission. Two co-ordinated campaigns were organized with the EISCAT radar, which operated in special modes. Neutral wind and temperature are derived from EISCAT data. Results of the two instruments are shown. The differences between the two sets of results are discussed and show that most of the discrepancy is due to the presence of vertical winds during the observations where the magnetic activity was high.  相似文献   

19.
This paper examines the feasibility of deriving a climatology of the diurnal variations of the wind in the 85–120 km region from the tidal components of temperature, density, and composition contained in the new COSPAR International Reference Atmosphere, CIRA-1986, Part I: Thermosphere Models [(1988), Adv. Space Res.8, 9]. To derive the wind field, we used the zonal and meridional momentum equations which have been modified from the characteristic scales of the tidal components observed in the 85–120 km region. The CIRA temperature and density model was used to derive the eastward (westerly) and northward (southerly) pressure gradient forces which serve as the forcing functions in the coupled momentum equations. Ground-based wind data from the Mesosphere-Lower Thermosphere (MLT) radar network is used as an independent data set to check the accuracy of the derived tidal wind model. At midlatitudes, the model reproduces some of the general features observed in the radar tidal data, such as the dominant semidiurnal tide with increasing amplitude with height and clockwise (counterclockwise) rotation of the velocity vector observed in the northern (southern) hemisphere. The model overestimates the semidiurnal amplitudes observed by radar by 50–75% during most seasons with the best agreement found during the equinoctial months. The model exhibits little phase variation with height or season, whereas the radar data exhibit a downward phase progression during most seasons (other than summer) characteristic of upward propagating tidal waves, and large seasonal phase variations associated with seasonal changes in vertical wavelengths. The diurnal tidal amplitudes, which are generally 5–20 m s−1 at mid-latitude radar stations and are dominant over the semidiurnal amplitudes at lower latitudes, are less than 5 m s−1 at all latitudes in the model.  相似文献   

20.
The Arecibo Initiative in Dynamics of the Atmosphere (AIDA) '89 was a multi-instrument campaign designed to compare various mesospheric wind measurement techniques. Our emphasis here is the comparison of the incoherent scatter radar (ISR) measurements with those of a 3.175 MHz radar operating a s an imaging Doppler interferometer (1131). We have performed further analyses in order to justify the interpretation of the long term IDI measurements in terms of prevailing winds and tides. Initial comparison of 14 profiles by Hines et al., 1993, J. atmos. terr. Phys. 55, 241–288, showed good agreement between the ISR and IDI measurements up to about 80 km, with fair to poor agreement above that altitude. We have compiled statistics from 208 profiles which show that the prevailing wind and diurnal and semidiurnal tides deduced from the IDI data provide a background wind about which both the IDI and ISR winds are normally distributed over the height range from 70 to 97 km. The 3.175 MHz radar data have also been processed using an interferometry (INT) technique [Van Baelen and Richmond 1991, Radio Sts. 26, 1209–1218] and two spaced antenna (SA) techniques [Meek, 1980, J. atmos. terr. Phys. 42, 837–839; Briggs. 1984, MAP Handbook, Vol. 13, pp. 166–186] to determine the three dimensional wind vector. These are then compared with the IDI results. Tidal amplitudes and phases were calculated using the generalized analysis of Groves, 1959, S. atmos. terr. Phys. 16, 344–356, historically used on meteor wind radar data. Results show a predominance of the diurnal S11 tidal mode in the altitude range 70–110 km, reaching a maximum amplitude 45 ms−1 at 95 km, with semidiurnal amplitudes being about 10–15 ms−1 throughout the height range considered. There is evidence of the two day wave in data from 86–120 km, with amplitudes on the order of 20 ms−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号